add bullet

This commit is contained in:
gmueller
2011-01-18 21:02:48 +01:00
parent 21985a4ea4
commit bf00db6c68
251 changed files with 59131 additions and 3 deletions

View File

@ -0,0 +1,209 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "LinearMath/btScalar.h"
#include "SphereTriangleDetector.h"
#include "BulletCollision/CollisionShapes/btTriangleShape.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
SphereTriangleDetector::SphereTriangleDetector(btSphereShape* sphere,btTriangleShape* triangle,btScalar contactBreakingThreshold)
:m_sphere(sphere),
m_triangle(triangle),
m_contactBreakingThreshold(contactBreakingThreshold)
{
}
void SphereTriangleDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw,bool swapResults)
{
(void)debugDraw;
const btTransform& transformA = input.m_transformA;
const btTransform& transformB = input.m_transformB;
btVector3 point,normal;
btScalar timeOfImpact = btScalar(1.);
btScalar depth = btScalar(0.);
// output.m_distance = btScalar(BT_LARGE_FLOAT);
//move sphere into triangle space
btTransform sphereInTr = transformB.inverseTimes(transformA);
if (collide(sphereInTr.getOrigin(),point,normal,depth,timeOfImpact,m_contactBreakingThreshold))
{
if (swapResults)
{
btVector3 normalOnB = transformB.getBasis()*normal;
btVector3 normalOnA = -normalOnB;
btVector3 pointOnA = transformB*point+normalOnB*depth;
output.addContactPoint(normalOnA,pointOnA,depth);
} else
{
output.addContactPoint(transformB.getBasis()*normal,transformB*point,depth);
}
}
}
#define MAX_OVERLAP btScalar(0.)
// See also geometrictools.com
// Basic idea: D = |p - (lo + t0*lv)| where t0 = lv . (p - lo) / lv . lv
btScalar SegmentSqrDistance(const btVector3& from, const btVector3& to,const btVector3 &p, btVector3 &nearest);
btScalar SegmentSqrDistance(const btVector3& from, const btVector3& to,const btVector3 &p, btVector3 &nearest) {
btVector3 diff = p - from;
btVector3 v = to - from;
btScalar t = v.dot(diff);
if (t > 0) {
btScalar dotVV = v.dot(v);
if (t < dotVV) {
t /= dotVV;
diff -= t*v;
} else {
t = 1;
diff -= v;
}
} else
t = 0;
nearest = from + t*v;
return diff.dot(diff);
}
bool SphereTriangleDetector::facecontains(const btVector3 &p,const btVector3* vertices,btVector3& normal) {
btVector3 lp(p);
btVector3 lnormal(normal);
return pointInTriangle(vertices, lnormal, &lp);
}
///combined discrete/continuous sphere-triangle
bool SphereTriangleDetector::collide(const btVector3& sphereCenter,btVector3 &point, btVector3& resultNormal, btScalar& depth, btScalar &timeOfImpact, btScalar contactBreakingThreshold)
{
const btVector3* vertices = &m_triangle->getVertexPtr(0);
const btVector3& c = sphereCenter;
btScalar r = m_sphere->getRadius();
btVector3 delta (0,0,0);
btVector3 normal = (vertices[1]-vertices[0]).cross(vertices[2]-vertices[0]);
normal.normalize();
btVector3 p1ToCentre = c - vertices[0];
btScalar distanceFromPlane = p1ToCentre.dot(normal);
if (distanceFromPlane < btScalar(0.))
{
//triangle facing the other way
distanceFromPlane *= btScalar(-1.);
normal *= btScalar(-1.);
}
btScalar contactMargin = contactBreakingThreshold;
bool isInsideContactPlane = distanceFromPlane < r + contactMargin;
bool isInsideShellPlane = distanceFromPlane < r;
btScalar deltaDotNormal = delta.dot(normal);
if (!isInsideShellPlane && deltaDotNormal >= btScalar(0.0))
return false;
// Check for contact / intersection
bool hasContact = false;
btVector3 contactPoint;
if (isInsideContactPlane) {
if (facecontains(c,vertices,normal)) {
// Inside the contact wedge - touches a point on the shell plane
hasContact = true;
contactPoint = c - normal*distanceFromPlane;
} else {
// Could be inside one of the contact capsules
btScalar contactCapsuleRadiusSqr = (r + contactMargin) * (r + contactMargin);
btVector3 nearestOnEdge;
for (int i = 0; i < m_triangle->getNumEdges(); i++) {
btVector3 pa;
btVector3 pb;
m_triangle->getEdge(i,pa,pb);
btScalar distanceSqr = SegmentSqrDistance(pa,pb,c, nearestOnEdge);
if (distanceSqr < contactCapsuleRadiusSqr) {
// Yep, we're inside a capsule
hasContact = true;
contactPoint = nearestOnEdge;
}
}
}
}
if (hasContact) {
btVector3 contactToCentre = c - contactPoint;
btScalar distanceSqr = contactToCentre.length2();
if (distanceSqr < (r - MAX_OVERLAP)*(r - MAX_OVERLAP)) {
btScalar distance = btSqrt(distanceSqr);
resultNormal = contactToCentre;
resultNormal.normalize();
point = contactPoint;
depth = -(r-distance);
return true;
}
if (delta.dot(contactToCentre) >= btScalar(0.0))
return false;
// Moving towards the contact point -> collision
point = contactPoint;
timeOfImpact = btScalar(0.0);
return true;
}
return false;
}
bool SphereTriangleDetector::pointInTriangle(const btVector3 vertices[], const btVector3 &normal, btVector3 *p )
{
const btVector3* p1 = &vertices[0];
const btVector3* p2 = &vertices[1];
const btVector3* p3 = &vertices[2];
btVector3 edge1( *p2 - *p1 );
btVector3 edge2( *p3 - *p2 );
btVector3 edge3( *p1 - *p3 );
btVector3 p1_to_p( *p - *p1 );
btVector3 p2_to_p( *p - *p2 );
btVector3 p3_to_p( *p - *p3 );
btVector3 edge1_normal( edge1.cross(normal));
btVector3 edge2_normal( edge2.cross(normal));
btVector3 edge3_normal( edge3.cross(normal));
btScalar r1, r2, r3;
r1 = edge1_normal.dot( p1_to_p );
r2 = edge2_normal.dot( p2_to_p );
r3 = edge3_normal.dot( p3_to_p );
if ( ( r1 > 0 && r2 > 0 && r3 > 0 ) ||
( r1 <= 0 && r2 <= 0 && r3 <= 0 ) )
return true;
return false;
}

View File

@ -0,0 +1,51 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef SPHERE_TRIANGLE_DETECTOR_H
#define SPHERE_TRIANGLE_DETECTOR_H
#include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
class btSphereShape;
class btTriangleShape;
/// sphere-triangle to match the btDiscreteCollisionDetectorInterface
struct SphereTriangleDetector : public btDiscreteCollisionDetectorInterface
{
virtual void getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw,bool swapResults=false);
SphereTriangleDetector(btSphereShape* sphere,btTriangleShape* triangle, btScalar contactBreakingThreshold);
virtual ~SphereTriangleDetector() {};
bool collide(const btVector3& sphereCenter,btVector3 &point, btVector3& resultNormal, btScalar& depth, btScalar &timeOfImpact, btScalar contactBreakingThreshold);
private:
bool pointInTriangle(const btVector3 vertices[], const btVector3 &normal, btVector3 *p );
bool facecontains(const btVector3 &p,const btVector3* vertices,btVector3& normal);
btSphereShape* m_sphere;
btTriangleShape* m_triangle;
btScalar m_contactBreakingThreshold;
};
#endif //SPHERE_TRIANGLE_DETECTOR_H

View File

@ -0,0 +1,47 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2008 Erwin Coumans http://bulletphysics.com
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btActivatingCollisionAlgorithm.h"
#include "btCollisionDispatcher.h"
#include "btCollisionObject.h"
btActivatingCollisionAlgorithm::btActivatingCollisionAlgorithm (const btCollisionAlgorithmConstructionInfo& ci)
:btCollisionAlgorithm(ci)
//,
//m_colObj0(0),
//m_colObj1(0)
{
}
btActivatingCollisionAlgorithm::btActivatingCollisionAlgorithm (const btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* colObj0,btCollisionObject* colObj1)
:btCollisionAlgorithm(ci)
//,
//m_colObj0(0),
//m_colObj1(0)
{
// if (ci.m_dispatcher1->needsCollision(colObj0,colObj1))
// {
// m_colObj0 = colObj0;
// m_colObj1 = colObj1;
//
// m_colObj0->activate();
// m_colObj1->activate();
// }
}
btActivatingCollisionAlgorithm::~btActivatingCollisionAlgorithm()
{
// m_colObj0->activate();
// m_colObj1->activate();
}

View File

@ -0,0 +1,36 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2008 Erwin Coumans http://bulletphysics.com
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef __BT_ACTIVATING_COLLISION_ALGORITHM_H
#define __BT_ACTIVATING_COLLISION_ALGORITHM_H
#include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h"
///This class is not enabled yet (work-in-progress) to more aggressively activate objects.
class btActivatingCollisionAlgorithm : public btCollisionAlgorithm
{
// btCollisionObject* m_colObj0;
// btCollisionObject* m_colObj1;
public:
btActivatingCollisionAlgorithm (const btCollisionAlgorithmConstructionInfo& ci);
btActivatingCollisionAlgorithm (const btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* colObj0,btCollisionObject* colObj1);
virtual ~btActivatingCollisionAlgorithm();
};
#endif //__BT_ACTIVATING_COLLISION_ALGORITHM_H

View File

@ -0,0 +1,435 @@
/*
Bullet Continuous Collision Detection and Physics Library
* The b2CollidePolygons routines are Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///btBox2dBox2dCollisionAlgorithm, with modified b2CollidePolygons routines from the Box2D library.
///The modifications include: switching from b2Vec to btVector3, redefinition of b2Dot, b2Cross
#include "btBox2dBox2dCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionDispatch/btBoxBoxDetector.h"
#include "BulletCollision/CollisionShapes/btBox2dShape.h"
#define USE_PERSISTENT_CONTACTS 1
btBox2dBox2dCollisionAlgorithm::btBox2dBox2dCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* obj0,btCollisionObject* obj1)
: btActivatingCollisionAlgorithm(ci,obj0,obj1),
m_ownManifold(false),
m_manifoldPtr(mf)
{
if (!m_manifoldPtr && m_dispatcher->needsCollision(obj0,obj1))
{
m_manifoldPtr = m_dispatcher->getNewManifold(obj0,obj1);
m_ownManifold = true;
}
}
btBox2dBox2dCollisionAlgorithm::~btBox2dBox2dCollisionAlgorithm()
{
if (m_ownManifold)
{
if (m_manifoldPtr)
m_dispatcher->releaseManifold(m_manifoldPtr);
}
}
void b2CollidePolygons(btManifoldResult* manifold, const btBox2dShape* polyA, const btTransform& xfA, const btBox2dShape* polyB, const btTransform& xfB);
//#include <stdio.h>
void btBox2dBox2dCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
if (!m_manifoldPtr)
return;
btCollisionObject* col0 = body0;
btCollisionObject* col1 = body1;
btBox2dShape* box0 = (btBox2dShape*)col0->getCollisionShape();
btBox2dShape* box1 = (btBox2dShape*)col1->getCollisionShape();
resultOut->setPersistentManifold(m_manifoldPtr);
b2CollidePolygons(resultOut,box0,col0->getWorldTransform(),box1,col1->getWorldTransform());
// refreshContactPoints is only necessary when using persistent contact points. otherwise all points are newly added
if (m_ownManifold)
{
resultOut->refreshContactPoints();
}
}
btScalar btBox2dBox2dCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* /*body0*/,btCollisionObject* /*body1*/,const btDispatcherInfo& /*dispatchInfo*/,btManifoldResult* /*resultOut*/)
{
//not yet
return 1.f;
}
struct ClipVertex
{
btVector3 v;
int id;
//b2ContactID id;
//b2ContactID id;
};
#define b2Dot(a,b) (a).dot(b)
#define b2Mul(a,b) (a)*(b)
#define b2MulT(a,b) (a).transpose()*(b)
#define b2Cross(a,b) (a).cross(b)
#define btCrossS(a,s) btVector3(s * a.getY(), -s * a.getX(),0.f)
int b2_maxManifoldPoints =2;
static int ClipSegmentToLine(ClipVertex vOut[2], ClipVertex vIn[2],
const btVector3& normal, btScalar offset)
{
// Start with no output points
int numOut = 0;
// Calculate the distance of end points to the line
btScalar distance0 = b2Dot(normal, vIn[0].v) - offset;
btScalar distance1 = b2Dot(normal, vIn[1].v) - offset;
// If the points are behind the plane
if (distance0 <= 0.0f) vOut[numOut++] = vIn[0];
if (distance1 <= 0.0f) vOut[numOut++] = vIn[1];
// If the points are on different sides of the plane
if (distance0 * distance1 < 0.0f)
{
// Find intersection point of edge and plane
btScalar interp = distance0 / (distance0 - distance1);
vOut[numOut].v = vIn[0].v + interp * (vIn[1].v - vIn[0].v);
if (distance0 > 0.0f)
{
vOut[numOut].id = vIn[0].id;
}
else
{
vOut[numOut].id = vIn[1].id;
}
++numOut;
}
return numOut;
}
// Find the separation between poly1 and poly2 for a give edge normal on poly1.
static btScalar EdgeSeparation(const btBox2dShape* poly1, const btTransform& xf1, int edge1,
const btBox2dShape* poly2, const btTransform& xf2)
{
const btVector3* vertices1 = poly1->getVertices();
const btVector3* normals1 = poly1->getNormals();
int count2 = poly2->getVertexCount();
const btVector3* vertices2 = poly2->getVertices();
btAssert(0 <= edge1 && edge1 < poly1->getVertexCount());
// Convert normal from poly1's frame into poly2's frame.
btVector3 normal1World = b2Mul(xf1.getBasis(), normals1[edge1]);
btVector3 normal1 = b2MulT(xf2.getBasis(), normal1World);
// Find support vertex on poly2 for -normal.
int index = 0;
btScalar minDot = BT_LARGE_FLOAT;
for (int i = 0; i < count2; ++i)
{
btScalar dot = b2Dot(vertices2[i], normal1);
if (dot < minDot)
{
minDot = dot;
index = i;
}
}
btVector3 v1 = b2Mul(xf1, vertices1[edge1]);
btVector3 v2 = b2Mul(xf2, vertices2[index]);
btScalar separation = b2Dot(v2 - v1, normal1World);
return separation;
}
// Find the max separation between poly1 and poly2 using edge normals from poly1.
static btScalar FindMaxSeparation(int* edgeIndex,
const btBox2dShape* poly1, const btTransform& xf1,
const btBox2dShape* poly2, const btTransform& xf2)
{
int count1 = poly1->getVertexCount();
const btVector3* normals1 = poly1->getNormals();
// Vector pointing from the centroid of poly1 to the centroid of poly2.
btVector3 d = b2Mul(xf2, poly2->getCentroid()) - b2Mul(xf1, poly1->getCentroid());
btVector3 dLocal1 = b2MulT(xf1.getBasis(), d);
// Find edge normal on poly1 that has the largest projection onto d.
int edge = 0;
btScalar maxDot = -BT_LARGE_FLOAT;
for (int i = 0; i < count1; ++i)
{
btScalar dot = b2Dot(normals1[i], dLocal1);
if (dot > maxDot)
{
maxDot = dot;
edge = i;
}
}
// Get the separation for the edge normal.
btScalar s = EdgeSeparation(poly1, xf1, edge, poly2, xf2);
if (s > 0.0f)
{
return s;
}
// Check the separation for the previous edge normal.
int prevEdge = edge - 1 >= 0 ? edge - 1 : count1 - 1;
btScalar sPrev = EdgeSeparation(poly1, xf1, prevEdge, poly2, xf2);
if (sPrev > 0.0f)
{
return sPrev;
}
// Check the separation for the next edge normal.
int nextEdge = edge + 1 < count1 ? edge + 1 : 0;
btScalar sNext = EdgeSeparation(poly1, xf1, nextEdge, poly2, xf2);
if (sNext > 0.0f)
{
return sNext;
}
// Find the best edge and the search direction.
int bestEdge;
btScalar bestSeparation;
int increment;
if (sPrev > s && sPrev > sNext)
{
increment = -1;
bestEdge = prevEdge;
bestSeparation = sPrev;
}
else if (sNext > s)
{
increment = 1;
bestEdge = nextEdge;
bestSeparation = sNext;
}
else
{
*edgeIndex = edge;
return s;
}
// Perform a local search for the best edge normal.
for ( ; ; )
{
if (increment == -1)
edge = bestEdge - 1 >= 0 ? bestEdge - 1 : count1 - 1;
else
edge = bestEdge + 1 < count1 ? bestEdge + 1 : 0;
s = EdgeSeparation(poly1, xf1, edge, poly2, xf2);
if (s > 0.0f)
{
return s;
}
if (s > bestSeparation)
{
bestEdge = edge;
bestSeparation = s;
}
else
{
break;
}
}
*edgeIndex = bestEdge;
return bestSeparation;
}
static void FindIncidentEdge(ClipVertex c[2],
const btBox2dShape* poly1, const btTransform& xf1, int edge1,
const btBox2dShape* poly2, const btTransform& xf2)
{
const btVector3* normals1 = poly1->getNormals();
int count2 = poly2->getVertexCount();
const btVector3* vertices2 = poly2->getVertices();
const btVector3* normals2 = poly2->getNormals();
btAssert(0 <= edge1 && edge1 < poly1->getVertexCount());
// Get the normal of the reference edge in poly2's frame.
btVector3 normal1 = b2MulT(xf2.getBasis(), b2Mul(xf1.getBasis(), normals1[edge1]));
// Find the incident edge on poly2.
int index = 0;
btScalar minDot = BT_LARGE_FLOAT;
for (int i = 0; i < count2; ++i)
{
btScalar dot = b2Dot(normal1, normals2[i]);
if (dot < minDot)
{
minDot = dot;
index = i;
}
}
// Build the clip vertices for the incident edge.
int i1 = index;
int i2 = i1 + 1 < count2 ? i1 + 1 : 0;
c[0].v = b2Mul(xf2, vertices2[i1]);
// c[0].id.features.referenceEdge = (unsigned char)edge1;
// c[0].id.features.incidentEdge = (unsigned char)i1;
// c[0].id.features.incidentVertex = 0;
c[1].v = b2Mul(xf2, vertices2[i2]);
// c[1].id.features.referenceEdge = (unsigned char)edge1;
// c[1].id.features.incidentEdge = (unsigned char)i2;
// c[1].id.features.incidentVertex = 1;
}
// Find edge normal of max separation on A - return if separating axis is found
// Find edge normal of max separation on B - return if separation axis is found
// Choose reference edge as min(minA, minB)
// Find incident edge
// Clip
// The normal points from 1 to 2
void b2CollidePolygons(btManifoldResult* manifold,
const btBox2dShape* polyA, const btTransform& xfA,
const btBox2dShape* polyB, const btTransform& xfB)
{
int edgeA = 0;
btScalar separationA = FindMaxSeparation(&edgeA, polyA, xfA, polyB, xfB);
if (separationA > 0.0f)
return;
int edgeB = 0;
btScalar separationB = FindMaxSeparation(&edgeB, polyB, xfB, polyA, xfA);
if (separationB > 0.0f)
return;
const btBox2dShape* poly1; // reference poly
const btBox2dShape* poly2; // incident poly
btTransform xf1, xf2;
int edge1; // reference edge
unsigned char flip;
const btScalar k_relativeTol = 0.98f;
const btScalar k_absoluteTol = 0.001f;
// TODO_ERIN use "radius" of poly for absolute tolerance.
if (separationB > k_relativeTol * separationA + k_absoluteTol)
{
poly1 = polyB;
poly2 = polyA;
xf1 = xfB;
xf2 = xfA;
edge1 = edgeB;
flip = 1;
}
else
{
poly1 = polyA;
poly2 = polyB;
xf1 = xfA;
xf2 = xfB;
edge1 = edgeA;
flip = 0;
}
ClipVertex incidentEdge[2];
FindIncidentEdge(incidentEdge, poly1, xf1, edge1, poly2, xf2);
int count1 = poly1->getVertexCount();
const btVector3* vertices1 = poly1->getVertices();
btVector3 v11 = vertices1[edge1];
btVector3 v12 = edge1 + 1 < count1 ? vertices1[edge1+1] : vertices1[0];
btVector3 dv = v12 - v11;
btVector3 sideNormal = b2Mul(xf1.getBasis(), v12 - v11);
sideNormal.normalize();
btVector3 frontNormal = btCrossS(sideNormal, 1.0f);
v11 = b2Mul(xf1, v11);
v12 = b2Mul(xf1, v12);
btScalar frontOffset = b2Dot(frontNormal, v11);
btScalar sideOffset1 = -b2Dot(sideNormal, v11);
btScalar sideOffset2 = b2Dot(sideNormal, v12);
// Clip incident edge against extruded edge1 side edges.
ClipVertex clipPoints1[2];
clipPoints1[0].v.setValue(0,0,0);
clipPoints1[1].v.setValue(0,0,0);
ClipVertex clipPoints2[2];
clipPoints2[0].v.setValue(0,0,0);
clipPoints2[1].v.setValue(0,0,0);
int np;
// Clip to box side 1
np = ClipSegmentToLine(clipPoints1, incidentEdge, -sideNormal, sideOffset1);
if (np < 2)
return;
// Clip to negative box side 1
np = ClipSegmentToLine(clipPoints2, clipPoints1, sideNormal, sideOffset2);
if (np < 2)
{
return;
}
// Now clipPoints2 contains the clipped points.
btVector3 manifoldNormal = flip ? -frontNormal : frontNormal;
int pointCount = 0;
for (int i = 0; i < b2_maxManifoldPoints; ++i)
{
btScalar separation = b2Dot(frontNormal, clipPoints2[i].v) - frontOffset;
if (separation <= 0.0f)
{
//b2ManifoldPoint* cp = manifold->points + pointCount;
//btScalar separation = separation;
//cp->localPoint1 = b2MulT(xfA, clipPoints2[i].v);
//cp->localPoint2 = b2MulT(xfB, clipPoints2[i].v);
manifold->addContactPoint(-manifoldNormal,clipPoints2[i].v,separation);
// cp->id = clipPoints2[i].id;
// cp->id.features.flip = flip;
++pointCount;
}
}
// manifold->pointCount = pointCount;}
}

View File

@ -0,0 +1,66 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BOX_2D_BOX_2D__COLLISION_ALGORITHM_H
#define BOX_2D_BOX_2D__COLLISION_ALGORITHM_H
#include "BulletCollision/CollisionDispatch/btActivatingCollisionAlgorithm.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/BroadphaseCollision/btDispatcher.h"
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
class btPersistentManifold;
///box-box collision detection
class btBox2dBox2dCollisionAlgorithm : public btActivatingCollisionAlgorithm
{
bool m_ownManifold;
btPersistentManifold* m_manifoldPtr;
public:
btBox2dBox2dCollisionAlgorithm(const btCollisionAlgorithmConstructionInfo& ci)
: btActivatingCollisionAlgorithm(ci) {}
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
btBox2dBox2dCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1);
virtual ~btBox2dBox2dCollisionAlgorithm();
virtual void getAllContactManifolds(btManifoldArray& manifoldArray)
{
if (m_manifoldPtr && m_ownManifold)
{
manifoldArray.push_back(m_manifoldPtr);
}
}
struct CreateFunc :public btCollisionAlgorithmCreateFunc
{
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
{
int bbsize = sizeof(btBox2dBox2dCollisionAlgorithm);
void* ptr = ci.m_dispatcher1->allocateCollisionAlgorithm(bbsize);
return new(ptr) btBox2dBox2dCollisionAlgorithm(0,ci,body0,body1);
}
};
};
#endif //BOX_2D_BOX_2D__COLLISION_ALGORITHM_H

View File

@ -0,0 +1,85 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btBoxBoxCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "btBoxBoxDetector.h"
#define USE_PERSISTENT_CONTACTS 1
btBoxBoxCollisionAlgorithm::btBoxBoxCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* obj0,btCollisionObject* obj1)
: btActivatingCollisionAlgorithm(ci,obj0,obj1),
m_ownManifold(false),
m_manifoldPtr(mf)
{
if (!m_manifoldPtr && m_dispatcher->needsCollision(obj0,obj1))
{
m_manifoldPtr = m_dispatcher->getNewManifold(obj0,obj1);
m_ownManifold = true;
}
}
btBoxBoxCollisionAlgorithm::~btBoxBoxCollisionAlgorithm()
{
if (m_ownManifold)
{
if (m_manifoldPtr)
m_dispatcher->releaseManifold(m_manifoldPtr);
}
}
void btBoxBoxCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
if (!m_manifoldPtr)
return;
btCollisionObject* col0 = body0;
btCollisionObject* col1 = body1;
btBoxShape* box0 = (btBoxShape*)col0->getCollisionShape();
btBoxShape* box1 = (btBoxShape*)col1->getCollisionShape();
/// report a contact. internally this will be kept persistent, and contact reduction is done
resultOut->setPersistentManifold(m_manifoldPtr);
#ifndef USE_PERSISTENT_CONTACTS
m_manifoldPtr->clearManifold();
#endif //USE_PERSISTENT_CONTACTS
btDiscreteCollisionDetectorInterface::ClosestPointInput input;
input.m_maximumDistanceSquared = BT_LARGE_FLOAT;
input.m_transformA = body0->getWorldTransform();
input.m_transformB = body1->getWorldTransform();
btBoxBoxDetector detector(box0,box1);
detector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
#ifdef USE_PERSISTENT_CONTACTS
// refreshContactPoints is only necessary when using persistent contact points. otherwise all points are newly added
if (m_ownManifold)
{
resultOut->refreshContactPoints();
}
#endif //USE_PERSISTENT_CONTACTS
}
btScalar btBoxBoxCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* /*body0*/,btCollisionObject* /*body1*/,const btDispatcherInfo& /*dispatchInfo*/,btManifoldResult* /*resultOut*/)
{
//not yet
return 1.f;
}

View File

@ -0,0 +1,66 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BOX_BOX__COLLISION_ALGORITHM_H
#define BOX_BOX__COLLISION_ALGORITHM_H
#include "btActivatingCollisionAlgorithm.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/BroadphaseCollision/btDispatcher.h"
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
class btPersistentManifold;
///box-box collision detection
class btBoxBoxCollisionAlgorithm : public btActivatingCollisionAlgorithm
{
bool m_ownManifold;
btPersistentManifold* m_manifoldPtr;
public:
btBoxBoxCollisionAlgorithm(const btCollisionAlgorithmConstructionInfo& ci)
: btActivatingCollisionAlgorithm(ci) {}
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
btBoxBoxCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1);
virtual ~btBoxBoxCollisionAlgorithm();
virtual void getAllContactManifolds(btManifoldArray& manifoldArray)
{
if (m_manifoldPtr && m_ownManifold)
{
manifoldArray.push_back(m_manifoldPtr);
}
}
struct CreateFunc :public btCollisionAlgorithmCreateFunc
{
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
{
int bbsize = sizeof(btBoxBoxCollisionAlgorithm);
void* ptr = ci.m_dispatcher1->allocateCollisionAlgorithm(bbsize);
return new(ptr) btBoxBoxCollisionAlgorithm(0,ci,body0,body1);
}
};
};
#endif //BOX_BOX__COLLISION_ALGORITHM_H

View File

@ -0,0 +1,718 @@
/*
* Box-Box collision detection re-distributed under the ZLib license with permission from Russell L. Smith
* Original version is from Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.
* All rights reserved. Email: russ@q12.org Web: www.q12.org
Bullet Continuous Collision Detection and Physics Library
Bullet is Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///ODE box-box collision detection is adapted to work with Bullet
#include "btBoxBoxDetector.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include <float.h>
#include <string.h>
btBoxBoxDetector::btBoxBoxDetector(btBoxShape* box1,btBoxShape* box2)
: m_box1(box1),
m_box2(box2)
{
}
// given two boxes (p1,R1,side1) and (p2,R2,side2), collide them together and
// generate contact points. this returns 0 if there is no contact otherwise
// it returns the number of contacts generated.
// `normal' returns the contact normal.
// `depth' returns the maximum penetration depth along that normal.
// `return_code' returns a number indicating the type of contact that was
// detected:
// 1,2,3 = box 2 intersects with a face of box 1
// 4,5,6 = box 1 intersects with a face of box 2
// 7..15 = edge-edge contact
// `maxc' is the maximum number of contacts allowed to be generated, i.e.
// the size of the `contact' array.
// `contact' and `skip' are the contact array information provided to the
// collision functions. this function only fills in the position and depth
// fields.
struct dContactGeom;
#define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)])
#define dInfinity FLT_MAX
/*PURE_INLINE btScalar dDOT (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); }
PURE_INLINE btScalar dDOT13 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,3); }
PURE_INLINE btScalar dDOT31 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,1); }
PURE_INLINE btScalar dDOT33 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,3); }
*/
static btScalar dDOT (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); }
static btScalar dDOT44 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,4); }
static btScalar dDOT41 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,1); }
static btScalar dDOT14 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,4); }
#define dMULTIPLYOP1_331(A,op,B,C) \
{\
(A)[0] op dDOT41((B),(C)); \
(A)[1] op dDOT41((B+1),(C)); \
(A)[2] op dDOT41((B+2),(C)); \
}
#define dMULTIPLYOP0_331(A,op,B,C) \
{ \
(A)[0] op dDOT((B),(C)); \
(A)[1] op dDOT((B+4),(C)); \
(A)[2] op dDOT((B+8),(C)); \
}
#define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C)
#define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C)
typedef btScalar dMatrix3[4*3];
void dLineClosestApproach (const btVector3& pa, const btVector3& ua,
const btVector3& pb, const btVector3& ub,
btScalar *alpha, btScalar *beta);
void dLineClosestApproach (const btVector3& pa, const btVector3& ua,
const btVector3& pb, const btVector3& ub,
btScalar *alpha, btScalar *beta)
{
btVector3 p;
p[0] = pb[0] - pa[0];
p[1] = pb[1] - pa[1];
p[2] = pb[2] - pa[2];
btScalar uaub = dDOT(ua,ub);
btScalar q1 = dDOT(ua,p);
btScalar q2 = -dDOT(ub,p);
btScalar d = 1-uaub*uaub;
if (d <= btScalar(0.0001f)) {
// @@@ this needs to be made more robust
*alpha = 0;
*beta = 0;
}
else {
d = 1.f/d;
*alpha = (q1 + uaub*q2)*d;
*beta = (uaub*q1 + q2)*d;
}
}
// find all the intersection points between the 2D rectangle with vertices
// at (+/-h[0],+/-h[1]) and the 2D quadrilateral with vertices (p[0],p[1]),
// (p[2],p[3]),(p[4],p[5]),(p[6],p[7]).
//
// the intersection points are returned as x,y pairs in the 'ret' array.
// the number of intersection points is returned by the function (this will
// be in the range 0 to 8).
static int intersectRectQuad2 (btScalar h[2], btScalar p[8], btScalar ret[16])
{
// q (and r) contain nq (and nr) coordinate points for the current (and
// chopped) polygons
int nq=4,nr=0;
btScalar buffer[16];
btScalar *q = p;
btScalar *r = ret;
for (int dir=0; dir <= 1; dir++) {
// direction notation: xy[0] = x axis, xy[1] = y axis
for (int sign=-1; sign <= 1; sign += 2) {
// chop q along the line xy[dir] = sign*h[dir]
btScalar *pq = q;
btScalar *pr = r;
nr = 0;
for (int i=nq; i > 0; i--) {
// go through all points in q and all lines between adjacent points
if (sign*pq[dir] < h[dir]) {
// this point is inside the chopping line
pr[0] = pq[0];
pr[1] = pq[1];
pr += 2;
nr++;
if (nr & 8) {
q = r;
goto done;
}
}
btScalar *nextq = (i > 1) ? pq+2 : q;
if ((sign*pq[dir] < h[dir]) ^ (sign*nextq[dir] < h[dir])) {
// this line crosses the chopping line
pr[1-dir] = pq[1-dir] + (nextq[1-dir]-pq[1-dir]) /
(nextq[dir]-pq[dir]) * (sign*h[dir]-pq[dir]);
pr[dir] = sign*h[dir];
pr += 2;
nr++;
if (nr & 8) {
q = r;
goto done;
}
}
pq += 2;
}
q = r;
r = (q==ret) ? buffer : ret;
nq = nr;
}
}
done:
if (q != ret) memcpy (ret,q,nr*2*sizeof(btScalar));
return nr;
}
#define M__PI 3.14159265f
// given n points in the plane (array p, of size 2*n), generate m points that
// best represent the whole set. the definition of 'best' here is not
// predetermined - the idea is to select points that give good box-box
// collision detection behavior. the chosen point indexes are returned in the
// array iret (of size m). 'i0' is always the first entry in the array.
// n must be in the range [1..8]. m must be in the range [1..n]. i0 must be
// in the range [0..n-1].
void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[]);
void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[])
{
// compute the centroid of the polygon in cx,cy
int i,j;
btScalar a,cx,cy,q;
if (n==1) {
cx = p[0];
cy = p[1];
}
else if (n==2) {
cx = btScalar(0.5)*(p[0] + p[2]);
cy = btScalar(0.5)*(p[1] + p[3]);
}
else {
a = 0;
cx = 0;
cy = 0;
for (i=0; i<(n-1); i++) {
q = p[i*2]*p[i*2+3] - p[i*2+2]*p[i*2+1];
a += q;
cx += q*(p[i*2]+p[i*2+2]);
cy += q*(p[i*2+1]+p[i*2+3]);
}
q = p[n*2-2]*p[1] - p[0]*p[n*2-1];
if (btFabs(a+q) > SIMD_EPSILON)
{
a = 1.f/(btScalar(3.0)*(a+q));
} else
{
a=BT_LARGE_FLOAT;
}
cx = a*(cx + q*(p[n*2-2]+p[0]));
cy = a*(cy + q*(p[n*2-1]+p[1]));
}
// compute the angle of each point w.r.t. the centroid
btScalar A[8];
for (i=0; i<n; i++) A[i] = btAtan2(p[i*2+1]-cy,p[i*2]-cx);
// search for points that have angles closest to A[i0] + i*(2*pi/m).
int avail[8];
for (i=0; i<n; i++) avail[i] = 1;
avail[i0] = 0;
iret[0] = i0;
iret++;
for (j=1; j<m; j++) {
a = btScalar(j)*(2*M__PI/m) + A[i0];
if (a > M__PI) a -= 2*M__PI;
btScalar maxdiff=1e9,diff;
*iret = i0; // iret is not allowed to keep this value, but it sometimes does, when diff=#QNAN0
for (i=0; i<n; i++) {
if (avail[i]) {
diff = btFabs (A[i]-a);
if (diff > M__PI) diff = 2*M__PI - diff;
if (diff < maxdiff) {
maxdiff = diff;
*iret = i;
}
}
}
#if defined(DEBUG) || defined (_DEBUG)
btAssert (*iret != i0); // ensure iret got set
#endif
avail[*iret] = 0;
iret++;
}
}
int dBoxBox2 (const btVector3& p1, const dMatrix3 R1,
const btVector3& side1, const btVector3& p2,
const dMatrix3 R2, const btVector3& side2,
btVector3& normal, btScalar *depth, int *return_code,
int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output);
int dBoxBox2 (const btVector3& p1, const dMatrix3 R1,
const btVector3& side1, const btVector3& p2,
const dMatrix3 R2, const btVector3& side2,
btVector3& normal, btScalar *depth, int *return_code,
int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output)
{
const btScalar fudge_factor = btScalar(1.05);
btVector3 p,pp,normalC(0.f,0.f,0.f);
const btScalar *normalR = 0;
btScalar A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33,
Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l;
int i,j,invert_normal,code;
// get vector from centers of box 1 to box 2, relative to box 1
p = p2 - p1;
dMULTIPLY1_331 (pp,R1,p); // get pp = p relative to body 1
// get side lengths / 2
A[0] = side1[0]*btScalar(0.5);
A[1] = side1[1]*btScalar(0.5);
A[2] = side1[2]*btScalar(0.5);
B[0] = side2[0]*btScalar(0.5);
B[1] = side2[1]*btScalar(0.5);
B[2] = side2[2]*btScalar(0.5);
// Rij is R1'*R2, i.e. the relative rotation between R1 and R2
R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2);
R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2);
R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2);
Q11 = btFabs(R11); Q12 = btFabs(R12); Q13 = btFabs(R13);
Q21 = btFabs(R21); Q22 = btFabs(R22); Q23 = btFabs(R23);
Q31 = btFabs(R31); Q32 = btFabs(R32); Q33 = btFabs(R33);
// for all 15 possible separating axes:
// * see if the axis separates the boxes. if so, return 0.
// * find the depth of the penetration along the separating axis (s2)
// * if this is the largest depth so far, record it.
// the normal vector will be set to the separating axis with the smallest
// depth. note: normalR is set to point to a column of R1 or R2 if that is
// the smallest depth normal so far. otherwise normalR is 0 and normalC is
// set to a vector relative to body 1. invert_normal is 1 if the sign of
// the normal should be flipped.
#define TST(expr1,expr2,norm,cc) \
s2 = btFabs(expr1) - (expr2); \
if (s2 > 0) return 0; \
if (s2 > s) { \
s = s2; \
normalR = norm; \
invert_normal = ((expr1) < 0); \
code = (cc); \
}
s = -dInfinity;
invert_normal = 0;
code = 0;
// separating axis = u1,u2,u3
TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1);
TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2);
TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3);
// separating axis = v1,v2,v3
TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4);
TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5);
TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6);
// note: cross product axes need to be scaled when s is computed.
// normal (n1,n2,n3) is relative to box 1.
#undef TST
#define TST(expr1,expr2,n1,n2,n3,cc) \
s2 = btFabs(expr1) - (expr2); \
if (s2 > SIMD_EPSILON) return 0; \
l = btSqrt((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \
if (l > SIMD_EPSILON) { \
s2 /= l; \
if (s2*fudge_factor > s) { \
s = s2; \
normalR = 0; \
normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \
invert_normal = ((expr1) < 0); \
code = (cc); \
} \
}
btScalar fudge2 (1.0e-5f);
Q11 += fudge2;
Q12 += fudge2;
Q13 += fudge2;
Q21 += fudge2;
Q22 += fudge2;
Q23 += fudge2;
Q31 += fudge2;
Q32 += fudge2;
Q33 += fudge2;
// separating axis = u1 x (v1,v2,v3)
TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7);
TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8);
TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9);
// separating axis = u2 x (v1,v2,v3)
TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10);
TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11);
TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12);
// separating axis = u3 x (v1,v2,v3)
TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13);
TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14);
TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15);
#undef TST
if (!code) return 0;
// if we get to this point, the boxes interpenetrate. compute the normal
// in global coordinates.
if (normalR) {
normal[0] = normalR[0];
normal[1] = normalR[4];
normal[2] = normalR[8];
}
else {
dMULTIPLY0_331 (normal,R1,normalC);
}
if (invert_normal) {
normal[0] = -normal[0];
normal[1] = -normal[1];
normal[2] = -normal[2];
}
*depth = -s;
// compute contact point(s)
if (code > 6) {
// an edge from box 1 touches an edge from box 2.
// find a point pa on the intersecting edge of box 1
btVector3 pa;
btScalar sign;
for (i=0; i<3; i++) pa[i] = p1[i];
for (j=0; j<3; j++) {
sign = (dDOT14(normal,R1+j) > 0) ? btScalar(1.0) : btScalar(-1.0);
for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j];
}
// find a point pb on the intersecting edge of box 2
btVector3 pb;
for (i=0; i<3; i++) pb[i] = p2[i];
for (j=0; j<3; j++) {
sign = (dDOT14(normal,R2+j) > 0) ? btScalar(-1.0) : btScalar(1.0);
for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j];
}
btScalar alpha,beta;
btVector3 ua,ub;
for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4];
for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4];
dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta);
for (i=0; i<3; i++) pa[i] += ua[i]*alpha;
for (i=0; i<3; i++) pb[i] += ub[i]*beta;
{
//contact[0].pos[i] = btScalar(0.5)*(pa[i]+pb[i]);
//contact[0].depth = *depth;
btVector3 pointInWorld;
#ifdef USE_CENTER_POINT
for (i=0; i<3; i++)
pointInWorld[i] = (pa[i]+pb[i])*btScalar(0.5);
output.addContactPoint(-normal,pointInWorld,-*depth);
#else
output.addContactPoint(-normal,pb,-*depth);
#endif //
*return_code = code;
}
return 1;
}
// okay, we have a face-something intersection (because the separating
// axis is perpendicular to a face). define face 'a' to be the reference
// face (i.e. the normal vector is perpendicular to this) and face 'b' to be
// the incident face (the closest face of the other box).
const btScalar *Ra,*Rb,*pa,*pb,*Sa,*Sb;
if (code <= 3) {
Ra = R1;
Rb = R2;
pa = p1;
pb = p2;
Sa = A;
Sb = B;
}
else {
Ra = R2;
Rb = R1;
pa = p2;
pb = p1;
Sa = B;
Sb = A;
}
// nr = normal vector of reference face dotted with axes of incident box.
// anr = absolute values of nr.
btVector3 normal2,nr,anr;
if (code <= 3) {
normal2[0] = normal[0];
normal2[1] = normal[1];
normal2[2] = normal[2];
}
else {
normal2[0] = -normal[0];
normal2[1] = -normal[1];
normal2[2] = -normal[2];
}
dMULTIPLY1_331 (nr,Rb,normal2);
anr[0] = btFabs (nr[0]);
anr[1] = btFabs (nr[1]);
anr[2] = btFabs (nr[2]);
// find the largest compontent of anr: this corresponds to the normal
// for the indident face. the other axis numbers of the indicent face
// are stored in a1,a2.
int lanr,a1,a2;
if (anr[1] > anr[0]) {
if (anr[1] > anr[2]) {
a1 = 0;
lanr = 1;
a2 = 2;
}
else {
a1 = 0;
a2 = 1;
lanr = 2;
}
}
else {
if (anr[0] > anr[2]) {
lanr = 0;
a1 = 1;
a2 = 2;
}
else {
a1 = 0;
a2 = 1;
lanr = 2;
}
}
// compute center point of incident face, in reference-face coordinates
btVector3 center;
if (nr[lanr] < 0) {
for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr];
}
else {
for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr];
}
// find the normal and non-normal axis numbers of the reference box
int codeN,code1,code2;
if (code <= 3) codeN = code-1; else codeN = code-4;
if (codeN==0) {
code1 = 1;
code2 = 2;
}
else if (codeN==1) {
code1 = 0;
code2 = 2;
}
else {
code1 = 0;
code2 = 1;
}
// find the four corners of the incident face, in reference-face coordinates
btScalar quad[8]; // 2D coordinate of incident face (x,y pairs)
btScalar c1,c2,m11,m12,m21,m22;
c1 = dDOT14 (center,Ra+code1);
c2 = dDOT14 (center,Ra+code2);
// optimize this? - we have already computed this data above, but it is not
// stored in an easy-to-index format. for now it's quicker just to recompute
// the four dot products.
m11 = dDOT44 (Ra+code1,Rb+a1);
m12 = dDOT44 (Ra+code1,Rb+a2);
m21 = dDOT44 (Ra+code2,Rb+a1);
m22 = dDOT44 (Ra+code2,Rb+a2);
{
btScalar k1 = m11*Sb[a1];
btScalar k2 = m21*Sb[a1];
btScalar k3 = m12*Sb[a2];
btScalar k4 = m22*Sb[a2];
quad[0] = c1 - k1 - k3;
quad[1] = c2 - k2 - k4;
quad[2] = c1 - k1 + k3;
quad[3] = c2 - k2 + k4;
quad[4] = c1 + k1 + k3;
quad[5] = c2 + k2 + k4;
quad[6] = c1 + k1 - k3;
quad[7] = c2 + k2 - k4;
}
// find the size of the reference face
btScalar rect[2];
rect[0] = Sa[code1];
rect[1] = Sa[code2];
// intersect the incident and reference faces
btScalar ret[16];
int n = intersectRectQuad2 (rect,quad,ret);
if (n < 1) return 0; // this should never happen
// convert the intersection points into reference-face coordinates,
// and compute the contact position and depth for each point. only keep
// those points that have a positive (penetrating) depth. delete points in
// the 'ret' array as necessary so that 'point' and 'ret' correspond.
btScalar point[3*8]; // penetrating contact points
btScalar dep[8]; // depths for those points
btScalar det1 = 1.f/(m11*m22 - m12*m21);
m11 *= det1;
m12 *= det1;
m21 *= det1;
m22 *= det1;
int cnum = 0; // number of penetrating contact points found
for (j=0; j < n; j++) {
btScalar k1 = m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2);
btScalar k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2);
for (i=0; i<3; i++) point[cnum*3+i] =
center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2];
dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3);
if (dep[cnum] >= 0) {
ret[cnum*2] = ret[j*2];
ret[cnum*2+1] = ret[j*2+1];
cnum++;
}
}
if (cnum < 1) return 0; // this should never happen
// we can't generate more contacts than we actually have
if (maxc > cnum) maxc = cnum;
if (maxc < 1) maxc = 1;
if (cnum <= maxc) {
if (code<4)
{
// we have less contacts than we need, so we use them all
for (j=0; j < cnum; j++)
{
btVector3 pointInWorld;
for (i=0; i<3; i++)
pointInWorld[i] = point[j*3+i] + pa[i];
output.addContactPoint(-normal,pointInWorld,-dep[j]);
}
} else
{
// we have less contacts than we need, so we use them all
for (j=0; j < cnum; j++)
{
btVector3 pointInWorld;
for (i=0; i<3; i++)
pointInWorld[i] = point[j*3+i] + pa[i]-normal[i]*dep[j];
//pointInWorld[i] = point[j*3+i] + pa[i];
output.addContactPoint(-normal,pointInWorld,-dep[j]);
}
}
}
else {
// we have more contacts than are wanted, some of them must be culled.
// find the deepest point, it is always the first contact.
int i1 = 0;
btScalar maxdepth = dep[0];
for (i=1; i<cnum; i++) {
if (dep[i] > maxdepth) {
maxdepth = dep[i];
i1 = i;
}
}
int iret[8];
cullPoints2 (cnum,ret,maxc,i1,iret);
for (j=0; j < maxc; j++) {
// dContactGeom *con = CONTACT(contact,skip*j);
// for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i];
// con->depth = dep[iret[j]];
btVector3 posInWorld;
for (i=0; i<3; i++)
posInWorld[i] = point[iret[j]*3+i] + pa[i];
if (code<4)
{
output.addContactPoint(-normal,posInWorld,-dep[iret[j]]);
} else
{
output.addContactPoint(-normal,posInWorld-normal*dep[iret[j]],-dep[iret[j]]);
}
}
cnum = maxc;
}
*return_code = code;
return cnum;
}
void btBoxBoxDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* /*debugDraw*/,bool /*swapResults*/)
{
const btTransform& transformA = input.m_transformA;
const btTransform& transformB = input.m_transformB;
int skip = 0;
dContactGeom *contact = 0;
dMatrix3 R1;
dMatrix3 R2;
for (int j=0;j<3;j++)
{
R1[0+4*j] = transformA.getBasis()[j].x();
R2[0+4*j] = transformB.getBasis()[j].x();
R1[1+4*j] = transformA.getBasis()[j].y();
R2[1+4*j] = transformB.getBasis()[j].y();
R1[2+4*j] = transformA.getBasis()[j].z();
R2[2+4*j] = transformB.getBasis()[j].z();
}
btVector3 normal;
btScalar depth;
int return_code;
int maxc = 4;
dBoxBox2 (transformA.getOrigin(),
R1,
2.f*m_box1->getHalfExtentsWithMargin(),
transformB.getOrigin(),
R2,
2.f*m_box2->getHalfExtentsWithMargin(),
normal, &depth, &return_code,
maxc, contact, skip,
output
);
}

View File

@ -0,0 +1,44 @@
/*
* Box-Box collision detection re-distributed under the ZLib license with permission from Russell L. Smith
* Original version is from Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.
* All rights reserved. Email: russ@q12.org Web: www.q12.org
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BOX_BOX_DETECTOR_H
#define BOX_BOX_DETECTOR_H
class btBoxShape;
#include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
/// btBoxBoxDetector wraps the ODE box-box collision detector
/// re-distributed under the Zlib license with permission from Russell L. Smith
struct btBoxBoxDetector : public btDiscreteCollisionDetectorInterface
{
btBoxShape* m_box1;
btBoxShape* m_box2;
public:
btBoxBoxDetector(btBoxShape* box1,btBoxShape* box2);
virtual ~btBoxBoxDetector() {};
virtual void getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw,bool swapResults=false);
};
#endif //BT_BOX_BOX_DETECTOR_H

View File

@ -0,0 +1,47 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_COLLISION_CONFIGURATION
#define BT_COLLISION_CONFIGURATION
struct btCollisionAlgorithmCreateFunc;
class btStackAlloc;
class btPoolAllocator;
///btCollisionConfiguration allows to configure Bullet collision detection
///stack allocator size, default collision algorithms and persistent manifold pool size
///@todo: describe the meaning
class btCollisionConfiguration
{
public:
virtual ~btCollisionConfiguration()
{
}
///memory pools
virtual btPoolAllocator* getPersistentManifoldPool() = 0;
virtual btPoolAllocator* getCollisionAlgorithmPool() = 0;
virtual btStackAlloc* getStackAllocator() = 0;
virtual btCollisionAlgorithmCreateFunc* getCollisionAlgorithmCreateFunc(int proxyType0,int proxyType1) =0;
};
#endif //BT_COLLISION_CONFIGURATION

View File

@ -0,0 +1,45 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef COLLISION_CREATE_FUNC
#define COLLISION_CREATE_FUNC
#include "LinearMath/btAlignedObjectArray.h"
class btCollisionAlgorithm;
class btCollisionObject;
struct btCollisionAlgorithmConstructionInfo;
///Used by the btCollisionDispatcher to register and create instances for btCollisionAlgorithm
struct btCollisionAlgorithmCreateFunc
{
bool m_swapped;
btCollisionAlgorithmCreateFunc()
:m_swapped(false)
{
}
virtual ~btCollisionAlgorithmCreateFunc(){};
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& , btCollisionObject* body0,btCollisionObject* body1)
{
(void)body0;
(void)body1;
return 0;
}
};
#endif //COLLISION_CREATE_FUNC

View File

@ -0,0 +1,303 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btCollisionDispatcher.h"
#include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h"
#include "BulletCollision/CollisionShapes/btCollisionShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h"
#include "LinearMath/btPoolAllocator.h"
#include "BulletCollision/CollisionDispatch/btCollisionConfiguration.h"
int gNumManifold = 0;
#ifdef BT_DEBUG
#include <stdio.h>
#endif
btCollisionDispatcher::btCollisionDispatcher (btCollisionConfiguration* collisionConfiguration):
m_dispatcherFlags(btCollisionDispatcher::CD_USE_RELATIVE_CONTACT_BREAKING_THRESHOLD),
m_collisionConfiguration(collisionConfiguration)
{
int i;
setNearCallback(defaultNearCallback);
m_collisionAlgorithmPoolAllocator = collisionConfiguration->getCollisionAlgorithmPool();
m_persistentManifoldPoolAllocator = collisionConfiguration->getPersistentManifoldPool();
for (i=0;i<MAX_BROADPHASE_COLLISION_TYPES;i++)
{
for (int j=0;j<MAX_BROADPHASE_COLLISION_TYPES;j++)
{
m_doubleDispatch[i][j] = m_collisionConfiguration->getCollisionAlgorithmCreateFunc(i,j);
btAssert(m_doubleDispatch[i][j]);
}
}
}
void btCollisionDispatcher::registerCollisionCreateFunc(int proxyType0, int proxyType1, btCollisionAlgorithmCreateFunc *createFunc)
{
m_doubleDispatch[proxyType0][proxyType1] = createFunc;
}
btCollisionDispatcher::~btCollisionDispatcher()
{
}
btPersistentManifold* btCollisionDispatcher::getNewManifold(void* b0,void* b1)
{
gNumManifold++;
//btAssert(gNumManifold < 65535);
btCollisionObject* body0 = (btCollisionObject*)b0;
btCollisionObject* body1 = (btCollisionObject*)b1;
//optional relative contact breaking threshold, turned on by default (use setDispatcherFlags to switch off feature for improved performance)
btScalar contactBreakingThreshold = (m_dispatcherFlags & btCollisionDispatcher::CD_USE_RELATIVE_CONTACT_BREAKING_THRESHOLD) ?
btMin(body0->getCollisionShape()->getContactBreakingThreshold(gContactBreakingThreshold) , body1->getCollisionShape()->getContactBreakingThreshold(gContactBreakingThreshold))
: gContactBreakingThreshold ;
btScalar contactProcessingThreshold = btMin(body0->getContactProcessingThreshold(),body1->getContactProcessingThreshold());
void* mem = 0;
if (m_persistentManifoldPoolAllocator->getFreeCount())
{
mem = m_persistentManifoldPoolAllocator->allocate(sizeof(btPersistentManifold));
} else
{
mem = btAlignedAlloc(sizeof(btPersistentManifold),16);
}
btPersistentManifold* manifold = new(mem) btPersistentManifold (body0,body1,0,contactBreakingThreshold,contactProcessingThreshold);
manifold->m_index1a = m_manifoldsPtr.size();
m_manifoldsPtr.push_back(manifold);
return manifold;
}
void btCollisionDispatcher::clearManifold(btPersistentManifold* manifold)
{
manifold->clearManifold();
}
void btCollisionDispatcher::releaseManifold(btPersistentManifold* manifold)
{
gNumManifold--;
//printf("releaseManifold: gNumManifold %d\n",gNumManifold);
clearManifold(manifold);
int findIndex = manifold->m_index1a;
btAssert(findIndex < m_manifoldsPtr.size());
m_manifoldsPtr.swap(findIndex,m_manifoldsPtr.size()-1);
m_manifoldsPtr[findIndex]->m_index1a = findIndex;
m_manifoldsPtr.pop_back();
manifold->~btPersistentManifold();
if (m_persistentManifoldPoolAllocator->validPtr(manifold))
{
m_persistentManifoldPoolAllocator->freeMemory(manifold);
} else
{
btAlignedFree(manifold);
}
}
btCollisionAlgorithm* btCollisionDispatcher::findAlgorithm(btCollisionObject* body0,btCollisionObject* body1,btPersistentManifold* sharedManifold)
{
btCollisionAlgorithmConstructionInfo ci;
ci.m_dispatcher1 = this;
ci.m_manifold = sharedManifold;
btCollisionAlgorithm* algo = m_doubleDispatch[body0->getCollisionShape()->getShapeType()][body1->getCollisionShape()->getShapeType()]->CreateCollisionAlgorithm(ci,body0,body1);
return algo;
}
bool btCollisionDispatcher::needsResponse(btCollisionObject* body0,btCollisionObject* body1)
{
//here you can do filtering
bool hasResponse =
(body0->hasContactResponse() && body1->hasContactResponse());
//no response between two static/kinematic bodies:
hasResponse = hasResponse &&
((!body0->isStaticOrKinematicObject()) ||(! body1->isStaticOrKinematicObject()));
return hasResponse;
}
bool btCollisionDispatcher::needsCollision(btCollisionObject* body0,btCollisionObject* body1)
{
btAssert(body0);
btAssert(body1);
bool needsCollision = true;
#ifdef BT_DEBUG
if (!(m_dispatcherFlags & btCollisionDispatcher::CD_STATIC_STATIC_REPORTED))
{
//broadphase filtering already deals with this
if ((body0->isStaticObject() || body0->isKinematicObject()) &&
(body1->isStaticObject() || body1->isKinematicObject()))
{
m_dispatcherFlags |= btCollisionDispatcher::CD_STATIC_STATIC_REPORTED;
printf("warning btCollisionDispatcher::needsCollision: static-static collision!\n");
}
}
#endif //BT_DEBUG
if ((!body0->isActive()) && (!body1->isActive()))
needsCollision = false;
else if (!body0->checkCollideWith(body1))
needsCollision = false;
return needsCollision ;
}
///interface for iterating all overlapping collision pairs, no matter how those pairs are stored (array, set, map etc)
///this is useful for the collision dispatcher.
class btCollisionPairCallback : public btOverlapCallback
{
const btDispatcherInfo& m_dispatchInfo;
btCollisionDispatcher* m_dispatcher;
public:
btCollisionPairCallback(const btDispatcherInfo& dispatchInfo,btCollisionDispatcher* dispatcher)
:m_dispatchInfo(dispatchInfo),
m_dispatcher(dispatcher)
{
}
/*btCollisionPairCallback& operator=(btCollisionPairCallback& other)
{
m_dispatchInfo = other.m_dispatchInfo;
m_dispatcher = other.m_dispatcher;
return *this;
}
*/
virtual ~btCollisionPairCallback() {}
virtual bool processOverlap(btBroadphasePair& pair)
{
(*m_dispatcher->getNearCallback())(pair,*m_dispatcher,m_dispatchInfo);
return false;
}
};
void btCollisionDispatcher::dispatchAllCollisionPairs(btOverlappingPairCache* pairCache,const btDispatcherInfo& dispatchInfo,btDispatcher* dispatcher)
{
//m_blockedForChanges = true;
btCollisionPairCallback collisionCallback(dispatchInfo,this);
pairCache->processAllOverlappingPairs(&collisionCallback,dispatcher);
//m_blockedForChanges = false;
}
//by default, Bullet will use this near callback
void btCollisionDispatcher::defaultNearCallback(btBroadphasePair& collisionPair, btCollisionDispatcher& dispatcher, const btDispatcherInfo& dispatchInfo)
{
btCollisionObject* colObj0 = (btCollisionObject*)collisionPair.m_pProxy0->m_clientObject;
btCollisionObject* colObj1 = (btCollisionObject*)collisionPair.m_pProxy1->m_clientObject;
if (dispatcher.needsCollision(colObj0,colObj1))
{
//dispatcher will keep algorithms persistent in the collision pair
if (!collisionPair.m_algorithm)
{
collisionPair.m_algorithm = dispatcher.findAlgorithm(colObj0,colObj1);
}
if (collisionPair.m_algorithm)
{
btManifoldResult contactPointResult(colObj0,colObj1);
if (dispatchInfo.m_dispatchFunc == btDispatcherInfo::DISPATCH_DISCRETE)
{
//discrete collision detection query
collisionPair.m_algorithm->processCollision(colObj0,colObj1,dispatchInfo,&contactPointResult);
} else
{
//continuous collision detection query, time of impact (toi)
btScalar toi = collisionPair.m_algorithm->calculateTimeOfImpact(colObj0,colObj1,dispatchInfo,&contactPointResult);
if (dispatchInfo.m_timeOfImpact > toi)
dispatchInfo.m_timeOfImpact = toi;
}
}
}
}
void* btCollisionDispatcher::allocateCollisionAlgorithm(int size)
{
if (m_collisionAlgorithmPoolAllocator->getFreeCount())
{
return m_collisionAlgorithmPoolAllocator->allocate(size);
}
//warn user for overflow?
return btAlignedAlloc(static_cast<size_t>(size), 16);
}
void btCollisionDispatcher::freeCollisionAlgorithm(void* ptr)
{
if (m_collisionAlgorithmPoolAllocator->validPtr(ptr))
{
m_collisionAlgorithmPoolAllocator->freeMemory(ptr);
} else
{
btAlignedFree(ptr);
}
}

View File

@ -0,0 +1,159 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef COLLISION__DISPATCHER_H
#define COLLISION__DISPATCHER_H
#include "BulletCollision/BroadphaseCollision/btDispatcher.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "LinearMath/btAlignedObjectArray.h"
class btIDebugDraw;
class btOverlappingPairCache;
class btPoolAllocator;
class btCollisionConfiguration;
#include "btCollisionCreateFunc.h"
#define USE_DISPATCH_REGISTRY_ARRAY 1
class btCollisionDispatcher;
///user can override this nearcallback for collision filtering and more finegrained control over collision detection
typedef void (*btNearCallback)(btBroadphasePair& collisionPair, btCollisionDispatcher& dispatcher, const btDispatcherInfo& dispatchInfo);
///btCollisionDispatcher supports algorithms that handle ConvexConvex and ConvexConcave collision pairs.
///Time of Impact, Closest Points and Penetration Depth.
class btCollisionDispatcher : public btDispatcher
{
int m_dispatcherFlags;
btAlignedObjectArray<btPersistentManifold*> m_manifoldsPtr;
btManifoldResult m_defaultManifoldResult;
btNearCallback m_nearCallback;
btPoolAllocator* m_collisionAlgorithmPoolAllocator;
btPoolAllocator* m_persistentManifoldPoolAllocator;
btCollisionAlgorithmCreateFunc* m_doubleDispatch[MAX_BROADPHASE_COLLISION_TYPES][MAX_BROADPHASE_COLLISION_TYPES];
btCollisionConfiguration* m_collisionConfiguration;
public:
enum DispatcherFlags
{
CD_STATIC_STATIC_REPORTED = 1,
CD_USE_RELATIVE_CONTACT_BREAKING_THRESHOLD = 2
};
int getDispatcherFlags() const
{
return m_dispatcherFlags;
}
void setDispatcherFlags(int flags)
{
(void) flags;
m_dispatcherFlags = 0;
}
///registerCollisionCreateFunc allows registration of custom/alternative collision create functions
void registerCollisionCreateFunc(int proxyType0,int proxyType1, btCollisionAlgorithmCreateFunc* createFunc);
int getNumManifolds() const
{
return int( m_manifoldsPtr.size());
}
btPersistentManifold** getInternalManifoldPointer()
{
return &m_manifoldsPtr[0];
}
btPersistentManifold* getManifoldByIndexInternal(int index)
{
return m_manifoldsPtr[index];
}
const btPersistentManifold* getManifoldByIndexInternal(int index) const
{
return m_manifoldsPtr[index];
}
btCollisionDispatcher (btCollisionConfiguration* collisionConfiguration);
virtual ~btCollisionDispatcher();
virtual btPersistentManifold* getNewManifold(void* b0,void* b1);
virtual void releaseManifold(btPersistentManifold* manifold);
virtual void clearManifold(btPersistentManifold* manifold);
btCollisionAlgorithm* findAlgorithm(btCollisionObject* body0,btCollisionObject* body1,btPersistentManifold* sharedManifold = 0);
virtual bool needsCollision(btCollisionObject* body0,btCollisionObject* body1);
virtual bool needsResponse(btCollisionObject* body0,btCollisionObject* body1);
virtual void dispatchAllCollisionPairs(btOverlappingPairCache* pairCache,const btDispatcherInfo& dispatchInfo,btDispatcher* dispatcher) ;
void setNearCallback(btNearCallback nearCallback)
{
m_nearCallback = nearCallback;
}
btNearCallback getNearCallback() const
{
return m_nearCallback;
}
//by default, Bullet will use this near callback
static void defaultNearCallback(btBroadphasePair& collisionPair, btCollisionDispatcher& dispatcher, const btDispatcherInfo& dispatchInfo);
virtual void* allocateCollisionAlgorithm(int size);
virtual void freeCollisionAlgorithm(void* ptr);
btCollisionConfiguration* getCollisionConfiguration()
{
return m_collisionConfiguration;
}
const btCollisionConfiguration* getCollisionConfiguration() const
{
return m_collisionConfiguration;
}
void setCollisionConfiguration(btCollisionConfiguration* config)
{
m_collisionConfiguration = config;
}
};
#endif //COLLISION__DISPATCHER_H

View File

@ -0,0 +1,116 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btCollisionObject.h"
#include "LinearMath/btSerializer.h"
btCollisionObject::btCollisionObject()
: m_anisotropicFriction(1.f,1.f,1.f),
m_hasAnisotropicFriction(false),
m_contactProcessingThreshold(BT_LARGE_FLOAT),
m_broadphaseHandle(0),
m_collisionShape(0),
m_extensionPointer(0),
m_rootCollisionShape(0),
m_collisionFlags(btCollisionObject::CF_STATIC_OBJECT),
m_islandTag1(-1),
m_companionId(-1),
m_activationState1(1),
m_deactivationTime(btScalar(0.)),
m_friction(btScalar(0.5)),
m_restitution(btScalar(0.)),
m_internalType(CO_COLLISION_OBJECT),
m_userObjectPointer(0),
m_hitFraction(btScalar(1.)),
m_ccdSweptSphereRadius(btScalar(0.)),
m_ccdMotionThreshold(btScalar(0.)),
m_checkCollideWith(false)
{
m_worldTransform.setIdentity();
}
btCollisionObject::~btCollisionObject()
{
}
void btCollisionObject::setActivationState(int newState)
{
if ( (m_activationState1 != DISABLE_DEACTIVATION) && (m_activationState1 != DISABLE_SIMULATION))
m_activationState1 = newState;
}
void btCollisionObject::forceActivationState(int newState)
{
m_activationState1 = newState;
}
void btCollisionObject::activate(bool forceActivation)
{
if (forceActivation || !(m_collisionFlags & (CF_STATIC_OBJECT|CF_KINEMATIC_OBJECT)))
{
setActivationState(ACTIVE_TAG);
m_deactivationTime = btScalar(0.);
}
}
const char* btCollisionObject::serialize(void* dataBuffer, btSerializer* serializer) const
{
btCollisionObjectData* dataOut = (btCollisionObjectData*)dataBuffer;
m_worldTransform.serialize(dataOut->m_worldTransform);
m_interpolationWorldTransform.serialize(dataOut->m_interpolationWorldTransform);
m_interpolationLinearVelocity.serialize(dataOut->m_interpolationLinearVelocity);
m_interpolationAngularVelocity.serialize(dataOut->m_interpolationAngularVelocity);
m_anisotropicFriction.serialize(dataOut->m_anisotropicFriction);
dataOut->m_hasAnisotropicFriction = m_hasAnisotropicFriction;
dataOut->m_contactProcessingThreshold = m_contactProcessingThreshold;
dataOut->m_broadphaseHandle = 0;
dataOut->m_collisionShape = serializer->getUniquePointer(m_collisionShape);
dataOut->m_rootCollisionShape = 0;//@todo
dataOut->m_collisionFlags = m_collisionFlags;
dataOut->m_islandTag1 = m_islandTag1;
dataOut->m_companionId = m_companionId;
dataOut->m_activationState1 = m_activationState1;
dataOut->m_activationState1 = m_activationState1;
dataOut->m_deactivationTime = m_deactivationTime;
dataOut->m_friction = m_friction;
dataOut->m_restitution = m_restitution;
dataOut->m_internalType = m_internalType;
char* name = (char*) serializer->findNameForPointer(this);
dataOut->m_name = (char*)serializer->getUniquePointer(name);
if (dataOut->m_name)
{
serializer->serializeName(name);
}
dataOut->m_hitFraction = m_hitFraction;
dataOut->m_ccdSweptSphereRadius = m_ccdSweptSphereRadius;
dataOut->m_ccdMotionThreshold = m_ccdMotionThreshold;
dataOut->m_ccdMotionThreshold = m_ccdMotionThreshold;
dataOut->m_checkCollideWith = m_checkCollideWith;
return btCollisionObjectDataName;
}
void btCollisionObject::serializeSingleObject(class btSerializer* serializer) const
{
int len = calculateSerializeBufferSize();
btChunk* chunk = serializer->allocate(len,1);
const char* structType = serialize(chunk->m_oldPtr, serializer);
serializer->finalizeChunk(chunk,structType,BT_COLLISIONOBJECT_CODE,(void*)this);
}

View File

@ -0,0 +1,524 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef COLLISION_OBJECT_H
#define COLLISION_OBJECT_H
#include "LinearMath/btTransform.h"
//island management, m_activationState1
#define ACTIVE_TAG 1
#define ISLAND_SLEEPING 2
#define WANTS_DEACTIVATION 3
#define DISABLE_DEACTIVATION 4
#define DISABLE_SIMULATION 5
struct btBroadphaseProxy;
class btCollisionShape;
struct btCollisionShapeData;
#include "LinearMath/btMotionState.h"
#include "LinearMath/btAlignedAllocator.h"
#include "LinearMath/btAlignedObjectArray.h"
typedef btAlignedObjectArray<class btCollisionObject*> btCollisionObjectArray;
#ifdef BT_USE_DOUBLE_PRECISION
#define btCollisionObjectData btCollisionObjectDoubleData
#define btCollisionObjectDataName "btCollisionObjectDoubleData"
#else
#define btCollisionObjectData btCollisionObjectFloatData
#define btCollisionObjectDataName "btCollisionObjectFloatData"
#endif
/// btCollisionObject can be used to manage collision detection objects.
/// btCollisionObject maintains all information that is needed for a collision detection: Shape, Transform and AABB proxy.
/// They can be added to the btCollisionWorld.
ATTRIBUTE_ALIGNED16(class) btCollisionObject
{
protected:
btTransform m_worldTransform;
///m_interpolationWorldTransform is used for CCD and interpolation
///it can be either previous or future (predicted) transform
btTransform m_interpolationWorldTransform;
//those two are experimental: just added for bullet time effect, so you can still apply impulses (directly modifying velocities)
//without destroying the continuous interpolated motion (which uses this interpolation velocities)
btVector3 m_interpolationLinearVelocity;
btVector3 m_interpolationAngularVelocity;
btVector3 m_anisotropicFriction;
int m_hasAnisotropicFriction;
btScalar m_contactProcessingThreshold;
btBroadphaseProxy* m_broadphaseHandle;
btCollisionShape* m_collisionShape;
///m_extensionPointer is used by some internal low-level Bullet extensions.
void* m_extensionPointer;
///m_rootCollisionShape is temporarily used to store the original collision shape
///The m_collisionShape might be temporarily replaced by a child collision shape during collision detection purposes
///If it is NULL, the m_collisionShape is not temporarily replaced.
btCollisionShape* m_rootCollisionShape;
int m_collisionFlags;
int m_islandTag1;
int m_companionId;
int m_activationState1;
btScalar m_deactivationTime;
btScalar m_friction;
btScalar m_restitution;
///m_internalType is reserved to distinguish Bullet's btCollisionObject, btRigidBody, btSoftBody, btGhostObject etc.
///do not assign your own m_internalType unless you write a new dynamics object class.
int m_internalType;
///users can point to their objects, m_userPointer is not used by Bullet, see setUserPointer/getUserPointer
void* m_userObjectPointer;
///time of impact calculation
btScalar m_hitFraction;
///Swept sphere radius (0.0 by default), see btConvexConvexAlgorithm::
btScalar m_ccdSweptSphereRadius;
/// Don't do continuous collision detection if the motion (in one step) is less then m_ccdMotionThreshold
btScalar m_ccdMotionThreshold;
/// If some object should have elaborate collision filtering by sub-classes
int m_checkCollideWith;
virtual bool checkCollideWithOverride(btCollisionObject* /* co */)
{
return true;
}
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
enum CollisionFlags
{
CF_STATIC_OBJECT= 1,
CF_KINEMATIC_OBJECT= 2,
CF_NO_CONTACT_RESPONSE = 4,
CF_CUSTOM_MATERIAL_CALLBACK = 8,//this allows per-triangle material (friction/restitution)
CF_CHARACTER_OBJECT = 16,
CF_DISABLE_VISUALIZE_OBJECT = 32, //disable debug drawing
CF_DISABLE_SPU_COLLISION_PROCESSING = 64//disable parallel/SPU processing
};
enum CollisionObjectTypes
{
CO_COLLISION_OBJECT =1,
CO_RIGID_BODY=2,
///CO_GHOST_OBJECT keeps track of all objects overlapping its AABB and that pass its collision filter
///It is useful for collision sensors, explosion objects, character controller etc.
CO_GHOST_OBJECT=4,
CO_SOFT_BODY=8,
CO_HF_FLUID=16,
CO_USER_TYPE=32
};
SIMD_FORCE_INLINE bool mergesSimulationIslands() const
{
///static objects, kinematic and object without contact response don't merge islands
return ((m_collisionFlags & (CF_STATIC_OBJECT | CF_KINEMATIC_OBJECT | CF_NO_CONTACT_RESPONSE) )==0);
}
const btVector3& getAnisotropicFriction() const
{
return m_anisotropicFriction;
}
void setAnisotropicFriction(const btVector3& anisotropicFriction)
{
m_anisotropicFriction = anisotropicFriction;
m_hasAnisotropicFriction = (anisotropicFriction[0]!=1.f) || (anisotropicFriction[1]!=1.f) || (anisotropicFriction[2]!=1.f);
}
bool hasAnisotropicFriction() const
{
return m_hasAnisotropicFriction!=0;
}
///the constraint solver can discard solving contacts, if the distance is above this threshold. 0 by default.
///Note that using contacts with positive distance can improve stability. It increases, however, the chance of colliding with degerate contacts, such as 'interior' triangle edges
void setContactProcessingThreshold( btScalar contactProcessingThreshold)
{
m_contactProcessingThreshold = contactProcessingThreshold;
}
btScalar getContactProcessingThreshold() const
{
return m_contactProcessingThreshold;
}
SIMD_FORCE_INLINE bool isStaticObject() const {
return (m_collisionFlags & CF_STATIC_OBJECT) != 0;
}
SIMD_FORCE_INLINE bool isKinematicObject() const
{
return (m_collisionFlags & CF_KINEMATIC_OBJECT) != 0;
}
SIMD_FORCE_INLINE bool isStaticOrKinematicObject() const
{
return (m_collisionFlags & (CF_KINEMATIC_OBJECT | CF_STATIC_OBJECT)) != 0 ;
}
SIMD_FORCE_INLINE bool hasContactResponse() const {
return (m_collisionFlags & CF_NO_CONTACT_RESPONSE)==0;
}
btCollisionObject();
virtual ~btCollisionObject();
virtual void setCollisionShape(btCollisionShape* collisionShape)
{
m_collisionShape = collisionShape;
m_rootCollisionShape = collisionShape;
}
SIMD_FORCE_INLINE const btCollisionShape* getCollisionShape() const
{
return m_collisionShape;
}
SIMD_FORCE_INLINE btCollisionShape* getCollisionShape()
{
return m_collisionShape;
}
SIMD_FORCE_INLINE const btCollisionShape* getRootCollisionShape() const
{
return m_rootCollisionShape;
}
SIMD_FORCE_INLINE btCollisionShape* getRootCollisionShape()
{
return m_rootCollisionShape;
}
///Avoid using this internal API call
///internalSetTemporaryCollisionShape is used to temporary replace the actual collision shape by a child collision shape.
void internalSetTemporaryCollisionShape(btCollisionShape* collisionShape)
{
m_collisionShape = collisionShape;
}
///Avoid using this internal API call, the extension pointer is used by some Bullet extensions.
///If you need to store your own user pointer, use 'setUserPointer/getUserPointer' instead.
void* internalGetExtensionPointer() const
{
return m_extensionPointer;
}
///Avoid using this internal API call, the extension pointer is used by some Bullet extensions
///If you need to store your own user pointer, use 'setUserPointer/getUserPointer' instead.
void internalSetExtensionPointer(void* pointer)
{
m_extensionPointer = pointer;
}
SIMD_FORCE_INLINE int getActivationState() const { return m_activationState1;}
void setActivationState(int newState);
void setDeactivationTime(btScalar time)
{
m_deactivationTime = time;
}
btScalar getDeactivationTime() const
{
return m_deactivationTime;
}
void forceActivationState(int newState);
void activate(bool forceActivation = false);
SIMD_FORCE_INLINE bool isActive() const
{
return ((getActivationState() != ISLAND_SLEEPING) && (getActivationState() != DISABLE_SIMULATION));
}
void setRestitution(btScalar rest)
{
m_restitution = rest;
}
btScalar getRestitution() const
{
return m_restitution;
}
void setFriction(btScalar frict)
{
m_friction = frict;
}
btScalar getFriction() const
{
return m_friction;
}
///reserved for Bullet internal usage
int getInternalType() const
{
return m_internalType;
}
btTransform& getWorldTransform()
{
return m_worldTransform;
}
const btTransform& getWorldTransform() const
{
return m_worldTransform;
}
void setWorldTransform(const btTransform& worldTrans)
{
m_worldTransform = worldTrans;
}
SIMD_FORCE_INLINE btBroadphaseProxy* getBroadphaseHandle()
{
return m_broadphaseHandle;
}
SIMD_FORCE_INLINE const btBroadphaseProxy* getBroadphaseHandle() const
{
return m_broadphaseHandle;
}
void setBroadphaseHandle(btBroadphaseProxy* handle)
{
m_broadphaseHandle = handle;
}
const btTransform& getInterpolationWorldTransform() const
{
return m_interpolationWorldTransform;
}
btTransform& getInterpolationWorldTransform()
{
return m_interpolationWorldTransform;
}
void setInterpolationWorldTransform(const btTransform& trans)
{
m_interpolationWorldTransform = trans;
}
void setInterpolationLinearVelocity(const btVector3& linvel)
{
m_interpolationLinearVelocity = linvel;
}
void setInterpolationAngularVelocity(const btVector3& angvel)
{
m_interpolationAngularVelocity = angvel;
}
const btVector3& getInterpolationLinearVelocity() const
{
return m_interpolationLinearVelocity;
}
const btVector3& getInterpolationAngularVelocity() const
{
return m_interpolationAngularVelocity;
}
SIMD_FORCE_INLINE int getIslandTag() const
{
return m_islandTag1;
}
void setIslandTag(int tag)
{
m_islandTag1 = tag;
}
SIMD_FORCE_INLINE int getCompanionId() const
{
return m_companionId;
}
void setCompanionId(int id)
{
m_companionId = id;
}
SIMD_FORCE_INLINE btScalar getHitFraction() const
{
return m_hitFraction;
}
void setHitFraction(btScalar hitFraction)
{
m_hitFraction = hitFraction;
}
SIMD_FORCE_INLINE int getCollisionFlags() const
{
return m_collisionFlags;
}
void setCollisionFlags(int flags)
{
m_collisionFlags = flags;
}
///Swept sphere radius (0.0 by default), see btConvexConvexAlgorithm::
btScalar getCcdSweptSphereRadius() const
{
return m_ccdSweptSphereRadius;
}
///Swept sphere radius (0.0 by default), see btConvexConvexAlgorithm::
void setCcdSweptSphereRadius(btScalar radius)
{
m_ccdSweptSphereRadius = radius;
}
btScalar getCcdMotionThreshold() const
{
return m_ccdMotionThreshold;
}
btScalar getCcdSquareMotionThreshold() const
{
return m_ccdMotionThreshold*m_ccdMotionThreshold;
}
/// Don't do continuous collision detection if the motion (in one step) is less then m_ccdMotionThreshold
void setCcdMotionThreshold(btScalar ccdMotionThreshold)
{
m_ccdMotionThreshold = ccdMotionThreshold;
}
///users can point to their objects, userPointer is not used by Bullet
void* getUserPointer() const
{
return m_userObjectPointer;
}
///users can point to their objects, userPointer is not used by Bullet
void setUserPointer(void* userPointer)
{
m_userObjectPointer = userPointer;
}
inline bool checkCollideWith(btCollisionObject* co)
{
if (m_checkCollideWith)
return checkCollideWithOverride(co);
return true;
}
virtual int calculateSerializeBufferSize() const;
///fills the dataBuffer and returns the struct name (and 0 on failure)
virtual const char* serialize(void* dataBuffer, class btSerializer* serializer) const;
virtual void serializeSingleObject(class btSerializer* serializer) const;
};
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
struct btCollisionObjectDoubleData
{
void *m_broadphaseHandle;
void *m_collisionShape;
btCollisionShapeData *m_rootCollisionShape;
char *m_name;
btTransformDoubleData m_worldTransform;
btTransformDoubleData m_interpolationWorldTransform;
btVector3DoubleData m_interpolationLinearVelocity;
btVector3DoubleData m_interpolationAngularVelocity;
btVector3DoubleData m_anisotropicFriction;
double m_contactProcessingThreshold;
double m_deactivationTime;
double m_friction;
double m_restitution;
double m_hitFraction;
double m_ccdSweptSphereRadius;
double m_ccdMotionThreshold;
int m_hasAnisotropicFriction;
int m_collisionFlags;
int m_islandTag1;
int m_companionId;
int m_activationState1;
int m_internalType;
int m_checkCollideWith;
char m_padding[4];
};
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
struct btCollisionObjectFloatData
{
void *m_broadphaseHandle;
void *m_collisionShape;
btCollisionShapeData *m_rootCollisionShape;
char *m_name;
btTransformFloatData m_worldTransform;
btTransformFloatData m_interpolationWorldTransform;
btVector3FloatData m_interpolationLinearVelocity;
btVector3FloatData m_interpolationAngularVelocity;
btVector3FloatData m_anisotropicFriction;
float m_contactProcessingThreshold;
float m_deactivationTime;
float m_friction;
float m_restitution;
float m_hitFraction;
float m_ccdSweptSphereRadius;
float m_ccdMotionThreshold;
int m_hasAnisotropicFriction;
int m_collisionFlags;
int m_islandTag1;
int m_companionId;
int m_activationState1;
int m_internalType;
int m_checkCollideWith;
};
SIMD_FORCE_INLINE int btCollisionObject::calculateSerializeBufferSize() const
{
return sizeof(btCollisionObjectData);
}
#endif //COLLISION_OBJECT_H

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,509 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://bulletphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/**
* @mainpage Bullet Documentation
*
* @section intro_sec Introduction
* Bullet Collision Detection & Physics SDK
*
* Bullet is a Collision Detection and Rigid Body Dynamics Library. The Library is Open Source and free for commercial use, under the ZLib license ( http://opensource.org/licenses/zlib-license.php ).
*
* The main documentation is Bullet_User_Manual.pdf, included in the source code distribution.
* There is the Physics Forum for feedback and general Collision Detection and Physics discussions.
* Please visit http://www.bulletphysics.com
*
* @section install_sec Installation
*
* @subsection step1 Step 1: Download
* You can download the Bullet Physics Library from the Google Code repository: http://code.google.com/p/bullet/downloads/list
*
* @subsection step2 Step 2: Building
* Bullet main build system for all platforms is cmake, you can download http://www.cmake.org
* cmake can autogenerate projectfiles for Microsoft Visual Studio, Apple Xcode, KDevelop and Unix Makefiles.
* The easiest is to run the CMake cmake-gui graphical user interface and choose the options and generate projectfiles.
* You can also use cmake in the command-line. Here are some examples for various platforms:
* cmake . -G "Visual Studio 9 2008"
* cmake . -G Xcode
* cmake . -G "Unix Makefiles"
* Although cmake is recommended, you can also use autotools for UNIX: ./autogen.sh ./configure to create a Makefile and then run make.
*
* @subsection step3 Step 3: Testing demos
* Try to run and experiment with BasicDemo executable as a starting point.
* Bullet can be used in several ways, as Full Rigid Body simulation, as Collision Detector Library or Low Level / Snippets like the GJK Closest Point calculation.
* The Dependencies can be seen in this documentation under Directories
*
* @subsection step4 Step 4: Integrating in your application, full Rigid Body and Soft Body simulation
* Check out BasicDemo how to create a btDynamicsWorld, btRigidBody and btCollisionShape, Stepping the simulation and synchronizing your graphics object transform.
* Check out SoftDemo how to use soft body dynamics, using btSoftRigidDynamicsWorld.
* @subsection step5 Step 5 : Integrate the Collision Detection Library (without Dynamics and other Extras)
* Bullet Collision Detection can also be used without the Dynamics/Extras.
* Check out btCollisionWorld and btCollisionObject, and the CollisionInterfaceDemo.
* @subsection step6 Step 6 : Use Snippets like the GJK Closest Point calculation.
* Bullet has been designed in a modular way keeping dependencies to a minimum. The ConvexHullDistance demo demonstrates direct use of btGjkPairDetector.
*
* @section copyright Copyright
* For up-to-data information and copyright and contributors list check out the Bullet_User_Manual.pdf
*
*/
#ifndef COLLISION_WORLD_H
#define COLLISION_WORLD_H
class btStackAlloc;
class btCollisionShape;
class btConvexShape;
class btBroadphaseInterface;
class btSerializer;
#include "LinearMath/btVector3.h"
#include "LinearMath/btTransform.h"
#include "btCollisionObject.h"
#include "btCollisionDispatcher.h"
#include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h"
#include "LinearMath/btAlignedObjectArray.h"
///CollisionWorld is interface and container for the collision detection
class btCollisionWorld
{
protected:
btAlignedObjectArray<btCollisionObject*> m_collisionObjects;
btDispatcher* m_dispatcher1;
btDispatcherInfo m_dispatchInfo;
btStackAlloc* m_stackAlloc;
btBroadphaseInterface* m_broadphasePairCache;
btIDebugDraw* m_debugDrawer;
///m_forceUpdateAllAabbs can be set to false as an optimization to only update active object AABBs
///it is true by default, because it is error-prone (setting the position of static objects wouldn't update their AABB)
bool m_forceUpdateAllAabbs;
void serializeCollisionObjects(btSerializer* serializer);
public:
//this constructor doesn't own the dispatcher and paircache/broadphase
btCollisionWorld(btDispatcher* dispatcher,btBroadphaseInterface* broadphasePairCache, btCollisionConfiguration* collisionConfiguration);
virtual ~btCollisionWorld();
void setBroadphase(btBroadphaseInterface* pairCache)
{
m_broadphasePairCache = pairCache;
}
const btBroadphaseInterface* getBroadphase() const
{
return m_broadphasePairCache;
}
btBroadphaseInterface* getBroadphase()
{
return m_broadphasePairCache;
}
btOverlappingPairCache* getPairCache()
{
return m_broadphasePairCache->getOverlappingPairCache();
}
btDispatcher* getDispatcher()
{
return m_dispatcher1;
}
const btDispatcher* getDispatcher() const
{
return m_dispatcher1;
}
void updateSingleAabb(btCollisionObject* colObj);
virtual void updateAabbs();
virtual void setDebugDrawer(btIDebugDraw* debugDrawer)
{
m_debugDrawer = debugDrawer;
}
virtual btIDebugDraw* getDebugDrawer()
{
return m_debugDrawer;
}
virtual void debugDrawWorld();
virtual void debugDrawObject(const btTransform& worldTransform, const btCollisionShape* shape, const btVector3& color);
///LocalShapeInfo gives extra information for complex shapes
///Currently, only btTriangleMeshShape is available, so it just contains triangleIndex and subpart
struct LocalShapeInfo
{
int m_shapePart;
int m_triangleIndex;
//const btCollisionShape* m_shapeTemp;
//const btTransform* m_shapeLocalTransform;
};
struct LocalRayResult
{
LocalRayResult(btCollisionObject* collisionObject,
LocalShapeInfo* localShapeInfo,
const btVector3& hitNormalLocal,
btScalar hitFraction)
:m_collisionObject(collisionObject),
m_localShapeInfo(localShapeInfo),
m_hitNormalLocal(hitNormalLocal),
m_hitFraction(hitFraction)
{
}
btCollisionObject* m_collisionObject;
LocalShapeInfo* m_localShapeInfo;
btVector3 m_hitNormalLocal;
btScalar m_hitFraction;
};
///RayResultCallback is used to report new raycast results
struct RayResultCallback
{
btScalar m_closestHitFraction;
btCollisionObject* m_collisionObject;
short int m_collisionFilterGroup;
short int m_collisionFilterMask;
//@BP Mod - Custom flags, currently used to enable backface culling on tri-meshes, see btRaycastCallback
unsigned int m_flags;
virtual ~RayResultCallback()
{
}
bool hasHit() const
{
return (m_collisionObject != 0);
}
RayResultCallback()
:m_closestHitFraction(btScalar(1.)),
m_collisionObject(0),
m_collisionFilterGroup(btBroadphaseProxy::DefaultFilter),
m_collisionFilterMask(btBroadphaseProxy::AllFilter),
//@BP Mod
m_flags(0)
{
}
virtual bool needsCollision(btBroadphaseProxy* proxy0) const
{
bool collides = (proxy0->m_collisionFilterGroup & m_collisionFilterMask) != 0;
collides = collides && (m_collisionFilterGroup & proxy0->m_collisionFilterMask);
return collides;
}
virtual btScalar addSingleResult(LocalRayResult& rayResult,bool normalInWorldSpace) = 0;
};
struct ClosestRayResultCallback : public RayResultCallback
{
ClosestRayResultCallback(const btVector3& rayFromWorld,const btVector3& rayToWorld)
:m_rayFromWorld(rayFromWorld),
m_rayToWorld(rayToWorld)
{
}
btVector3 m_rayFromWorld;//used to calculate hitPointWorld from hitFraction
btVector3 m_rayToWorld;
btVector3 m_hitNormalWorld;
btVector3 m_hitPointWorld;
virtual btScalar addSingleResult(LocalRayResult& rayResult,bool normalInWorldSpace)
{
//caller already does the filter on the m_closestHitFraction
btAssert(rayResult.m_hitFraction <= m_closestHitFraction);
m_closestHitFraction = rayResult.m_hitFraction;
m_collisionObject = rayResult.m_collisionObject;
if (normalInWorldSpace)
{
m_hitNormalWorld = rayResult.m_hitNormalLocal;
} else
{
///need to transform normal into worldspace
m_hitNormalWorld = m_collisionObject->getWorldTransform().getBasis()*rayResult.m_hitNormalLocal;
}
m_hitPointWorld.setInterpolate3(m_rayFromWorld,m_rayToWorld,rayResult.m_hitFraction);
return rayResult.m_hitFraction;
}
};
struct AllHitsRayResultCallback : public RayResultCallback
{
AllHitsRayResultCallback(const btVector3& rayFromWorld,const btVector3& rayToWorld)
:m_rayFromWorld(rayFromWorld),
m_rayToWorld(rayToWorld)
{
}
btAlignedObjectArray<btCollisionObject*> m_collisionObjects;
btVector3 m_rayFromWorld;//used to calculate hitPointWorld from hitFraction
btVector3 m_rayToWorld;
btAlignedObjectArray<btVector3> m_hitNormalWorld;
btAlignedObjectArray<btVector3> m_hitPointWorld;
btAlignedObjectArray<btScalar> m_hitFractions;
virtual btScalar addSingleResult(LocalRayResult& rayResult,bool normalInWorldSpace)
{
m_collisionObject = rayResult.m_collisionObject;
m_collisionObjects.push_back(rayResult.m_collisionObject);
btVector3 hitNormalWorld;
if (normalInWorldSpace)
{
hitNormalWorld = rayResult.m_hitNormalLocal;
} else
{
///need to transform normal into worldspace
hitNormalWorld = m_collisionObject->getWorldTransform().getBasis()*rayResult.m_hitNormalLocal;
}
m_hitNormalWorld.push_back(hitNormalWorld);
btVector3 hitPointWorld;
hitPointWorld.setInterpolate3(m_rayFromWorld,m_rayToWorld,rayResult.m_hitFraction);
m_hitPointWorld.push_back(hitPointWorld);
m_hitFractions.push_back(rayResult.m_hitFraction);
return m_closestHitFraction;
}
};
struct LocalConvexResult
{
LocalConvexResult(btCollisionObject* hitCollisionObject,
LocalShapeInfo* localShapeInfo,
const btVector3& hitNormalLocal,
const btVector3& hitPointLocal,
btScalar hitFraction
)
:m_hitCollisionObject(hitCollisionObject),
m_localShapeInfo(localShapeInfo),
m_hitNormalLocal(hitNormalLocal),
m_hitPointLocal(hitPointLocal),
m_hitFraction(hitFraction)
{
}
btCollisionObject* m_hitCollisionObject;
LocalShapeInfo* m_localShapeInfo;
btVector3 m_hitNormalLocal;
btVector3 m_hitPointLocal;
btScalar m_hitFraction;
};
///RayResultCallback is used to report new raycast results
struct ConvexResultCallback
{
btScalar m_closestHitFraction;
short int m_collisionFilterGroup;
short int m_collisionFilterMask;
ConvexResultCallback()
:m_closestHitFraction(btScalar(1.)),
m_collisionFilterGroup(btBroadphaseProxy::DefaultFilter),
m_collisionFilterMask(btBroadphaseProxy::AllFilter)
{
}
virtual ~ConvexResultCallback()
{
}
bool hasHit() const
{
return (m_closestHitFraction < btScalar(1.));
}
virtual bool needsCollision(btBroadphaseProxy* proxy0) const
{
bool collides = (proxy0->m_collisionFilterGroup & m_collisionFilterMask) != 0;
collides = collides && (m_collisionFilterGroup & proxy0->m_collisionFilterMask);
return collides;
}
virtual btScalar addSingleResult(LocalConvexResult& convexResult,bool normalInWorldSpace) = 0;
};
struct ClosestConvexResultCallback : public ConvexResultCallback
{
ClosestConvexResultCallback(const btVector3& convexFromWorld,const btVector3& convexToWorld)
:m_convexFromWorld(convexFromWorld),
m_convexToWorld(convexToWorld),
m_hitCollisionObject(0)
{
}
btVector3 m_convexFromWorld;//used to calculate hitPointWorld from hitFraction
btVector3 m_convexToWorld;
btVector3 m_hitNormalWorld;
btVector3 m_hitPointWorld;
btCollisionObject* m_hitCollisionObject;
virtual btScalar addSingleResult(LocalConvexResult& convexResult,bool normalInWorldSpace)
{
//caller already does the filter on the m_closestHitFraction
btAssert(convexResult.m_hitFraction <= m_closestHitFraction);
m_closestHitFraction = convexResult.m_hitFraction;
m_hitCollisionObject = convexResult.m_hitCollisionObject;
if (normalInWorldSpace)
{
m_hitNormalWorld = convexResult.m_hitNormalLocal;
} else
{
///need to transform normal into worldspace
m_hitNormalWorld = m_hitCollisionObject->getWorldTransform().getBasis()*convexResult.m_hitNormalLocal;
}
m_hitPointWorld = convexResult.m_hitPointLocal;
return convexResult.m_hitFraction;
}
};
///ContactResultCallback is used to report contact points
struct ContactResultCallback
{
short int m_collisionFilterGroup;
short int m_collisionFilterMask;
ContactResultCallback()
:m_collisionFilterGroup(btBroadphaseProxy::DefaultFilter),
m_collisionFilterMask(btBroadphaseProxy::AllFilter)
{
}
virtual ~ContactResultCallback()
{
}
virtual bool needsCollision(btBroadphaseProxy* proxy0) const
{
bool collides = (proxy0->m_collisionFilterGroup & m_collisionFilterMask) != 0;
collides = collides && (m_collisionFilterGroup & proxy0->m_collisionFilterMask);
return collides;
}
virtual btScalar addSingleResult(btManifoldPoint& cp, const btCollisionObject* colObj0,int partId0,int index0,const btCollisionObject* colObj1,int partId1,int index1) = 0;
};
int getNumCollisionObjects() const
{
return int(m_collisionObjects.size());
}
/// rayTest performs a raycast on all objects in the btCollisionWorld, and calls the resultCallback
/// This allows for several queries: first hit, all hits, any hit, dependent on the value returned by the callback.
virtual void rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const;
/// convexTest performs a swept convex cast on all objects in the btCollisionWorld, and calls the resultCallback
/// This allows for several queries: first hit, all hits, any hit, dependent on the value return by the callback.
void convexSweepTest (const btConvexShape* castShape, const btTransform& from, const btTransform& to, ConvexResultCallback& resultCallback, btScalar allowedCcdPenetration = btScalar(0.)) const;
///contactTest performs a discrete collision test between colObj against all objects in the btCollisionWorld, and calls the resultCallback.
///it reports one or more contact points for every overlapping object (including the one with deepest penetration)
void contactTest(btCollisionObject* colObj, ContactResultCallback& resultCallback);
///contactTest performs a discrete collision test between two collision objects and calls the resultCallback if overlap if detected.
///it reports one or more contact points (including the one with deepest penetration)
void contactPairTest(btCollisionObject* colObjA, btCollisionObject* colObjB, ContactResultCallback& resultCallback);
/// rayTestSingle performs a raycast call and calls the resultCallback. It is used internally by rayTest.
/// In a future implementation, we consider moving the ray test as a virtual method in btCollisionShape.
/// This allows more customization.
static void rayTestSingle(const btTransform& rayFromTrans,const btTransform& rayToTrans,
btCollisionObject* collisionObject,
const btCollisionShape* collisionShape,
const btTransform& colObjWorldTransform,
RayResultCallback& resultCallback);
/// objectQuerySingle performs a collision detection query and calls the resultCallback. It is used internally by rayTest.
static void objectQuerySingle(const btConvexShape* castShape, const btTransform& rayFromTrans,const btTransform& rayToTrans,
btCollisionObject* collisionObject,
const btCollisionShape* collisionShape,
const btTransform& colObjWorldTransform,
ConvexResultCallback& resultCallback, btScalar allowedPenetration);
virtual void addCollisionObject(btCollisionObject* collisionObject,short int collisionFilterGroup=btBroadphaseProxy::DefaultFilter,short int collisionFilterMask=btBroadphaseProxy::AllFilter);
btCollisionObjectArray& getCollisionObjectArray()
{
return m_collisionObjects;
}
const btCollisionObjectArray& getCollisionObjectArray() const
{
return m_collisionObjects;
}
virtual void removeCollisionObject(btCollisionObject* collisionObject);
virtual void performDiscreteCollisionDetection();
btDispatcherInfo& getDispatchInfo()
{
return m_dispatchInfo;
}
const btDispatcherInfo& getDispatchInfo() const
{
return m_dispatchInfo;
}
bool getForceUpdateAllAabbs() const
{
return m_forceUpdateAllAabbs;
}
void setForceUpdateAllAabbs( bool forceUpdateAllAabbs)
{
m_forceUpdateAllAabbs = forceUpdateAllAabbs;
}
///Preliminary serialization test for Bullet 2.76. Loading those files requires a separate parser (Bullet/Demos/SerializeDemo)
virtual void serialize(btSerializer* serializer);
};
#endif //COLLISION_WORLD_H

View File

@ -0,0 +1,353 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "BulletCollision/CollisionDispatch/btCompoundCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/BroadphaseCollision/btDbvt.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btAabbUtil2.h"
#include "btManifoldResult.h"
btCompoundCollisionAlgorithm::btCompoundCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,bool isSwapped)
:btActivatingCollisionAlgorithm(ci,body0,body1),
m_isSwapped(isSwapped),
m_sharedManifold(ci.m_manifold)
{
m_ownsManifold = false;
btCollisionObject* colObj = m_isSwapped? body1 : body0;
btAssert (colObj->getCollisionShape()->isCompound());
btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape());
m_compoundShapeRevision = compoundShape->getUpdateRevision();
preallocateChildAlgorithms(body0,body1);
}
void btCompoundCollisionAlgorithm::preallocateChildAlgorithms(btCollisionObject* body0,btCollisionObject* body1)
{
btCollisionObject* colObj = m_isSwapped? body1 : body0;
btCollisionObject* otherObj = m_isSwapped? body0 : body1;
btAssert (colObj->getCollisionShape()->isCompound());
btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape());
int numChildren = compoundShape->getNumChildShapes();
int i;
m_childCollisionAlgorithms.resize(numChildren);
for (i=0;i<numChildren;i++)
{
if (compoundShape->getDynamicAabbTree())
{
m_childCollisionAlgorithms[i] = 0;
} else
{
btCollisionShape* tmpShape = colObj->getCollisionShape();
btCollisionShape* childShape = compoundShape->getChildShape(i);
colObj->internalSetTemporaryCollisionShape( childShape );
m_childCollisionAlgorithms[i] = m_dispatcher->findAlgorithm(colObj,otherObj,m_sharedManifold);
colObj->internalSetTemporaryCollisionShape( tmpShape );
}
}
}
void btCompoundCollisionAlgorithm::removeChildAlgorithms()
{
int numChildren = m_childCollisionAlgorithms.size();
int i;
for (i=0;i<numChildren;i++)
{
if (m_childCollisionAlgorithms[i])
{
m_childCollisionAlgorithms[i]->~btCollisionAlgorithm();
m_dispatcher->freeCollisionAlgorithm(m_childCollisionAlgorithms[i]);
}
}
}
btCompoundCollisionAlgorithm::~btCompoundCollisionAlgorithm()
{
removeChildAlgorithms();
}
struct btCompoundLeafCallback : btDbvt::ICollide
{
public:
btCollisionObject* m_compoundColObj;
btCollisionObject* m_otherObj;
btDispatcher* m_dispatcher;
const btDispatcherInfo& m_dispatchInfo;
btManifoldResult* m_resultOut;
btCollisionAlgorithm** m_childCollisionAlgorithms;
btPersistentManifold* m_sharedManifold;
btCompoundLeafCallback (btCollisionObject* compoundObj,btCollisionObject* otherObj,btDispatcher* dispatcher,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut,btCollisionAlgorithm** childCollisionAlgorithms,btPersistentManifold* sharedManifold)
:m_compoundColObj(compoundObj),m_otherObj(otherObj),m_dispatcher(dispatcher),m_dispatchInfo(dispatchInfo),m_resultOut(resultOut),
m_childCollisionAlgorithms(childCollisionAlgorithms),
m_sharedManifold(sharedManifold)
{
}
void ProcessChildShape(btCollisionShape* childShape,int index)
{
btAssert(index>=0);
btCompoundShape* compoundShape = static_cast<btCompoundShape*>(m_compoundColObj->getCollisionShape());
btAssert(index<compoundShape->getNumChildShapes());
//backup
btTransform orgTrans = m_compoundColObj->getWorldTransform();
btTransform orgInterpolationTrans = m_compoundColObj->getInterpolationWorldTransform();
const btTransform& childTrans = compoundShape->getChildTransform(index);
btTransform newChildWorldTrans = orgTrans*childTrans ;
//perform an AABB check first
btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
childShape->getAabb(newChildWorldTrans,aabbMin0,aabbMax0);
m_otherObj->getCollisionShape()->getAabb(m_otherObj->getWorldTransform(),aabbMin1,aabbMax1);
if (TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
{
m_compoundColObj->setWorldTransform( newChildWorldTrans);
m_compoundColObj->setInterpolationWorldTransform(newChildWorldTrans);
//the contactpoint is still projected back using the original inverted worldtrans
btCollisionShape* tmpShape = m_compoundColObj->getCollisionShape();
m_compoundColObj->internalSetTemporaryCollisionShape( childShape );
if (!m_childCollisionAlgorithms[index])
m_childCollisionAlgorithms[index] = m_dispatcher->findAlgorithm(m_compoundColObj,m_otherObj,m_sharedManifold);
///detect swapping case
if (m_resultOut->getBody0Internal() == m_compoundColObj)
{
m_resultOut->setShapeIdentifiersA(-1,index);
} else
{
m_resultOut->setShapeIdentifiersB(-1,index);
}
m_childCollisionAlgorithms[index]->processCollision(m_compoundColObj,m_otherObj,m_dispatchInfo,m_resultOut);
if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
{
btVector3 worldAabbMin,worldAabbMax;
m_dispatchInfo.m_debugDraw->drawAabb(aabbMin0,aabbMax0,btVector3(1,1,1));
m_dispatchInfo.m_debugDraw->drawAabb(aabbMin1,aabbMax1,btVector3(1,1,1));
}
//revert back transform
m_compoundColObj->internalSetTemporaryCollisionShape( tmpShape);
m_compoundColObj->setWorldTransform( orgTrans );
m_compoundColObj->setInterpolationWorldTransform(orgInterpolationTrans);
}
}
void Process(const btDbvtNode* leaf)
{
int index = leaf->dataAsInt;
btCompoundShape* compoundShape = static_cast<btCompoundShape*>(m_compoundColObj->getCollisionShape());
btCollisionShape* childShape = compoundShape->getChildShape(index);
if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
{
btVector3 worldAabbMin,worldAabbMax;
btTransform orgTrans = m_compoundColObj->getWorldTransform();
btTransformAabb(leaf->volume.Mins(),leaf->volume.Maxs(),0.,orgTrans,worldAabbMin,worldAabbMax);
m_dispatchInfo.m_debugDraw->drawAabb(worldAabbMin,worldAabbMax,btVector3(1,0,0));
}
ProcessChildShape(childShape,index);
}
};
void btCompoundCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
btCollisionObject* colObj = m_isSwapped? body1 : body0;
btCollisionObject* otherObj = m_isSwapped? body0 : body1;
btAssert (colObj->getCollisionShape()->isCompound());
btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape());
///btCompoundShape might have changed:
////make sure the internal child collision algorithm caches are still valid
if (compoundShape->getUpdateRevision() != m_compoundShapeRevision)
{
///clear and update all
removeChildAlgorithms();
preallocateChildAlgorithms(body0,body1);
}
btDbvt* tree = compoundShape->getDynamicAabbTree();
//use a dynamic aabb tree to cull potential child-overlaps
btCompoundLeafCallback callback(colObj,otherObj,m_dispatcher,dispatchInfo,resultOut,&m_childCollisionAlgorithms[0],m_sharedManifold);
///we need to refresh all contact manifolds
///note that we should actually recursively traverse all children, btCompoundShape can nested more then 1 level deep
///so we should add a 'refreshManifolds' in the btCollisionAlgorithm
{
int i;
btManifoldArray manifoldArray;
for (i=0;i<m_childCollisionAlgorithms.size();i++)
{
if (m_childCollisionAlgorithms[i])
{
m_childCollisionAlgorithms[i]->getAllContactManifolds(manifoldArray);
for (int m=0;m<manifoldArray.size();m++)
{
if (manifoldArray[m]->getNumContacts())
{
resultOut->setPersistentManifold(manifoldArray[m]);
resultOut->refreshContactPoints();
resultOut->setPersistentManifold(0);//??necessary?
}
}
manifoldArray.clear();
}
}
}
if (tree)
{
btVector3 localAabbMin,localAabbMax;
btTransform otherInCompoundSpace;
otherInCompoundSpace = colObj->getWorldTransform().inverse() * otherObj->getWorldTransform();
otherObj->getCollisionShape()->getAabb(otherInCompoundSpace,localAabbMin,localAabbMax);
const ATTRIBUTE_ALIGNED16(btDbvtVolume) bounds=btDbvtVolume::FromMM(localAabbMin,localAabbMax);
//process all children, that overlap with the given AABB bounds
tree->collideTV(tree->m_root,bounds,callback);
} else
{
//iterate over all children, perform an AABB check inside ProcessChildShape
int numChildren = m_childCollisionAlgorithms.size();
int i;
for (i=0;i<numChildren;i++)
{
callback.ProcessChildShape(compoundShape->getChildShape(i),i);
}
}
{
//iterate over all children, perform an AABB check inside ProcessChildShape
int numChildren = m_childCollisionAlgorithms.size();
int i;
btManifoldArray manifoldArray;
btCollisionShape* childShape = 0;
btTransform orgTrans;
btTransform orgInterpolationTrans;
btTransform newChildWorldTrans;
btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
for (i=0;i<numChildren;i++)
{
if (m_childCollisionAlgorithms[i])
{
childShape = compoundShape->getChildShape(i);
//if not longer overlapping, remove the algorithm
orgTrans = colObj->getWorldTransform();
orgInterpolationTrans = colObj->getInterpolationWorldTransform();
const btTransform& childTrans = compoundShape->getChildTransform(i);
newChildWorldTrans = orgTrans*childTrans ;
//perform an AABB check first
childShape->getAabb(newChildWorldTrans,aabbMin0,aabbMax0);
otherObj->getCollisionShape()->getAabb(otherObj->getWorldTransform(),aabbMin1,aabbMax1);
if (!TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
{
m_childCollisionAlgorithms[i]->~btCollisionAlgorithm();
m_dispatcher->freeCollisionAlgorithm(m_childCollisionAlgorithms[i]);
m_childCollisionAlgorithms[i] = 0;
}
}
}
}
}
btScalar btCompoundCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
btCollisionObject* colObj = m_isSwapped? body1 : body0;
btCollisionObject* otherObj = m_isSwapped? body0 : body1;
btAssert (colObj->getCollisionShape()->isCompound());
btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape());
//We will use the OptimizedBVH, AABB tree to cull potential child-overlaps
//If both proxies are Compound, we will deal with that directly, by performing sequential/parallel tree traversals
//given Proxy0 and Proxy1, if both have a tree, Tree0 and Tree1, this means:
//determine overlapping nodes of Proxy1 using Proxy0 AABB against Tree1
//then use each overlapping node AABB against Tree0
//and vise versa.
btScalar hitFraction = btScalar(1.);
int numChildren = m_childCollisionAlgorithms.size();
int i;
btTransform orgTrans;
btScalar frac;
for (i=0;i<numChildren;i++)
{
//temporarily exchange parent btCollisionShape with childShape, and recurse
btCollisionShape* childShape = compoundShape->getChildShape(i);
//backup
orgTrans = colObj->getWorldTransform();
const btTransform& childTrans = compoundShape->getChildTransform(i);
//btTransform newChildWorldTrans = orgTrans*childTrans ;
colObj->setWorldTransform( orgTrans*childTrans );
btCollisionShape* tmpShape = colObj->getCollisionShape();
colObj->internalSetTemporaryCollisionShape( childShape );
frac = m_childCollisionAlgorithms[i]->calculateTimeOfImpact(colObj,otherObj,dispatchInfo,resultOut);
if (frac<hitFraction)
{
hitFraction = frac;
}
//revert back
colObj->internalSetTemporaryCollisionShape( tmpShape);
colObj->setWorldTransform( orgTrans);
}
return hitFraction;
}

View File

@ -0,0 +1,86 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef COMPOUND_COLLISION_ALGORITHM_H
#define COMPOUND_COLLISION_ALGORITHM_H
#include "btActivatingCollisionAlgorithm.h"
#include "BulletCollision/BroadphaseCollision/btDispatcher.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
class btDispatcher;
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "btCollisionCreateFunc.h"
#include "LinearMath/btAlignedObjectArray.h"
class btDispatcher;
class btCollisionObject;
/// btCompoundCollisionAlgorithm supports collision between CompoundCollisionShapes and other collision shapes
class btCompoundCollisionAlgorithm : public btActivatingCollisionAlgorithm
{
btAlignedObjectArray<btCollisionAlgorithm*> m_childCollisionAlgorithms;
bool m_isSwapped;
class btPersistentManifold* m_sharedManifold;
bool m_ownsManifold;
int m_compoundShapeRevision;//to keep track of changes, so that childAlgorithm array can be updated
void removeChildAlgorithms();
void preallocateChildAlgorithms(btCollisionObject* body0,btCollisionObject* body1);
public:
btCompoundCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,bool isSwapped);
virtual ~btCompoundCollisionAlgorithm();
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual void getAllContactManifolds(btManifoldArray& manifoldArray)
{
int i;
for (i=0;i<m_childCollisionAlgorithms.size();i++)
{
if (m_childCollisionAlgorithms[i])
m_childCollisionAlgorithms[i]->getAllContactManifolds(manifoldArray);
}
}
struct CreateFunc :public btCollisionAlgorithmCreateFunc
{
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
{
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btCompoundCollisionAlgorithm));
return new(mem) btCompoundCollisionAlgorithm(ci,body0,body1,false);
}
};
struct SwappedCreateFunc :public btCollisionAlgorithmCreateFunc
{
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
{
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btCompoundCollisionAlgorithm));
return new(mem) btCompoundCollisionAlgorithm(ci,body0,body1,true);
}
};
};
#endif //COMPOUND_COLLISION_ALGORITHM_H

View File

@ -0,0 +1,247 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btConvex2dConvex2dAlgorithm.h"
//#include <stdio.h>
#include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/CollisionShapes/btCapsuleShape.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"
#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
btConvex2dConvex2dAlgorithm::CreateFunc::CreateFunc(btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver)
{
m_numPerturbationIterations = 0;
m_minimumPointsPerturbationThreshold = 3;
m_simplexSolver = simplexSolver;
m_pdSolver = pdSolver;
}
btConvex2dConvex2dAlgorithm::CreateFunc::~CreateFunc()
{
}
btConvex2dConvex2dAlgorithm::btConvex2dConvex2dAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver,int numPerturbationIterations, int minimumPointsPerturbationThreshold)
: btActivatingCollisionAlgorithm(ci,body0,body1),
m_simplexSolver(simplexSolver),
m_pdSolver(pdSolver),
m_ownManifold (false),
m_manifoldPtr(mf),
m_lowLevelOfDetail(false),
m_numPerturbationIterations(numPerturbationIterations),
m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold)
{
(void)body0;
(void)body1;
}
btConvex2dConvex2dAlgorithm::~btConvex2dConvex2dAlgorithm()
{
if (m_ownManifold)
{
if (m_manifoldPtr)
m_dispatcher->releaseManifold(m_manifoldPtr);
}
}
void btConvex2dConvex2dAlgorithm ::setLowLevelOfDetail(bool useLowLevel)
{
m_lowLevelOfDetail = useLowLevel;
}
extern btScalar gContactBreakingThreshold;
//
// Convex-Convex collision algorithm
//
void btConvex2dConvex2dAlgorithm ::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
if (!m_manifoldPtr)
{
//swapped?
m_manifoldPtr = m_dispatcher->getNewManifold(body0,body1);
m_ownManifold = true;
}
resultOut->setPersistentManifold(m_manifoldPtr);
//comment-out next line to test multi-contact generation
//resultOut->getPersistentManifold()->clearManifold();
btConvexShape* min0 = static_cast<btConvexShape*>(body0->getCollisionShape());
btConvexShape* min1 = static_cast<btConvexShape*>(body1->getCollisionShape());
btVector3 normalOnB;
btVector3 pointOnBWorld;
{
btGjkPairDetector::ClosestPointInput input;
btGjkPairDetector gjkPairDetector(min0,min1,m_simplexSolver,m_pdSolver);
//TODO: if (dispatchInfo.m_useContinuous)
gjkPairDetector.setMinkowskiA(min0);
gjkPairDetector.setMinkowskiB(min1);
{
input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
}
input.m_stackAlloc = dispatchInfo.m_stackAllocator;
input.m_transformA = body0->getWorldTransform();
input.m_transformB = body1->getWorldTransform();
gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
btVector3 v0,v1;
btVector3 sepNormalWorldSpace;
}
if (m_ownManifold)
{
resultOut->refreshContactPoints();
}
}
btScalar btConvex2dConvex2dAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
(void)resultOut;
(void)dispatchInfo;
///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold
///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
///col0->m_worldTransform,
btScalar resultFraction = btScalar(1.);
btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2();
btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2();
if (squareMot0 < col0->getCcdSquareMotionThreshold() &&
squareMot1 < col1->getCcdSquareMotionThreshold())
return resultFraction;
//An adhoc way of testing the Continuous Collision Detection algorithms
//One object is approximated as a sphere, to simplify things
//Starting in penetration should report no time of impact
//For proper CCD, better accuracy and handling of 'allowed' penetration should be added
//also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
/// Convex0 against sphere for Convex1
{
btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape());
btSphereShape sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
btConvexCast::CastResult result;
btVoronoiSimplexSolver voronoiSimplex;
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
///Simplification, one object is simplified as a sphere
btGjkConvexCast ccd1( convex0 ,&sphere1,&voronoiSimplex);
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
{
//store result.m_fraction in both bodies
if (col0->getHitFraction()> result.m_fraction)
col0->setHitFraction( result.m_fraction );
if (col1->getHitFraction() > result.m_fraction)
col1->setHitFraction( result.m_fraction);
if (resultFraction > result.m_fraction)
resultFraction = result.m_fraction;
}
}
/// Sphere (for convex0) against Convex1
{
btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape());
btSphereShape sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
btConvexCast::CastResult result;
btVoronoiSimplexSolver voronoiSimplex;
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
///Simplification, one object is simplified as a sphere
btGjkConvexCast ccd1(&sphere0,convex1,&voronoiSimplex);
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
{
//store result.m_fraction in both bodies
if (col0->getHitFraction() > result.m_fraction)
col0->setHitFraction( result.m_fraction);
if (col1->getHitFraction() > result.m_fraction)
col1->setHitFraction( result.m_fraction);
if (resultFraction > result.m_fraction)
resultFraction = result.m_fraction;
}
}
return resultFraction;
}

View File

@ -0,0 +1,95 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef CONVEX_2D_CONVEX_2D_ALGORITHM_H
#define CONVEX_2D_CONVEX_2D_ALGORITHM_H
#include "BulletCollision/CollisionDispatch/btActivatingCollisionAlgorithm.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "LinearMath/btTransformUtil.h" //for btConvexSeparatingDistanceUtil
class btConvexPenetrationDepthSolver;
///The convex2dConvex2dAlgorithm collision algorithm support 2d collision detection for btConvex2dShape
///Currently it requires the btMinkowskiPenetrationDepthSolver, it has support for 2d penetration depth computation
class btConvex2dConvex2dAlgorithm : public btActivatingCollisionAlgorithm
{
btSimplexSolverInterface* m_simplexSolver;
btConvexPenetrationDepthSolver* m_pdSolver;
bool m_ownManifold;
btPersistentManifold* m_manifoldPtr;
bool m_lowLevelOfDetail;
int m_numPerturbationIterations;
int m_minimumPointsPerturbationThreshold;
public:
btConvex2dConvex2dAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1, btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver, int numPerturbationIterations, int minimumPointsPerturbationThreshold);
virtual ~btConvex2dConvex2dAlgorithm();
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual void getAllContactManifolds(btManifoldArray& manifoldArray)
{
///should we use m_ownManifold to avoid adding duplicates?
if (m_manifoldPtr && m_ownManifold)
manifoldArray.push_back(m_manifoldPtr);
}
void setLowLevelOfDetail(bool useLowLevel);
const btPersistentManifold* getManifold()
{
return m_manifoldPtr;
}
struct CreateFunc :public btCollisionAlgorithmCreateFunc
{
btConvexPenetrationDepthSolver* m_pdSolver;
btSimplexSolverInterface* m_simplexSolver;
int m_numPerturbationIterations;
int m_minimumPointsPerturbationThreshold;
CreateFunc(btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver);
virtual ~CreateFunc();
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
{
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btConvex2dConvex2dAlgorithm));
return new(mem) btConvex2dConvex2dAlgorithm(ci.m_manifold,ci,body0,body1,m_simplexSolver,m_pdSolver,m_numPerturbationIterations,m_minimumPointsPerturbationThreshold);
}
};
};
#endif //CONVEX_2D_CONVEX_2D_ALGORITHM_H

View File

@ -0,0 +1,321 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btConvexConcaveCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btMultiSphereShape.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/CollisionShapes/btConcaveShape.h"
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"
#include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h"
#include "BulletCollision/CollisionShapes/btTriangleShape.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "LinearMath/btIDebugDraw.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
btConvexConcaveCollisionAlgorithm::btConvexConcaveCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1,bool isSwapped)
: btActivatingCollisionAlgorithm(ci,body0,body1),
m_isSwapped(isSwapped),
m_btConvexTriangleCallback(ci.m_dispatcher1,body0,body1,isSwapped)
{
}
btConvexConcaveCollisionAlgorithm::~btConvexConcaveCollisionAlgorithm()
{
}
void btConvexConcaveCollisionAlgorithm::getAllContactManifolds(btManifoldArray& manifoldArray)
{
if (m_btConvexTriangleCallback.m_manifoldPtr)
{
manifoldArray.push_back(m_btConvexTriangleCallback.m_manifoldPtr);
}
}
btConvexTriangleCallback::btConvexTriangleCallback(btDispatcher* dispatcher,btCollisionObject* body0,btCollisionObject* body1,bool isSwapped):
m_dispatcher(dispatcher),
m_dispatchInfoPtr(0)
{
m_convexBody = isSwapped? body1:body0;
m_triBody = isSwapped? body0:body1;
//
// create the manifold from the dispatcher 'manifold pool'
//
m_manifoldPtr = m_dispatcher->getNewManifold(m_convexBody,m_triBody);
clearCache();
}
btConvexTriangleCallback::~btConvexTriangleCallback()
{
clearCache();
m_dispatcher->releaseManifold( m_manifoldPtr );
}
void btConvexTriangleCallback::clearCache()
{
m_dispatcher->clearManifold(m_manifoldPtr);
}
void btConvexTriangleCallback::processTriangle(btVector3* triangle,int partId, int triangleIndex)
{
//just for debugging purposes
//printf("triangle %d",m_triangleCount++);
//aabb filter is already applied!
btCollisionAlgorithmConstructionInfo ci;
ci.m_dispatcher1 = m_dispatcher;
btCollisionObject* ob = static_cast<btCollisionObject*>(m_triBody);
///debug drawing of the overlapping triangles
if (m_dispatchInfoPtr && m_dispatchInfoPtr->m_debugDraw && (m_dispatchInfoPtr->m_debugDraw->getDebugMode() &btIDebugDraw::DBG_DrawWireframe ))
{
btVector3 color(1,1,0);
btTransform& tr = ob->getWorldTransform();
m_dispatchInfoPtr->m_debugDraw->drawLine(tr(triangle[0]),tr(triangle[1]),color);
m_dispatchInfoPtr->m_debugDraw->drawLine(tr(triangle[1]),tr(triangle[2]),color);
m_dispatchInfoPtr->m_debugDraw->drawLine(tr(triangle[2]),tr(triangle[0]),color);
//btVector3 center = triangle[0] + triangle[1]+triangle[2];
//center *= btScalar(0.333333);
//m_dispatchInfoPtr->m_debugDraw->drawLine(tr(triangle[0]),tr(center),color);
//m_dispatchInfoPtr->m_debugDraw->drawLine(tr(triangle[1]),tr(center),color);
//m_dispatchInfoPtr->m_debugDraw->drawLine(tr(triangle[2]),tr(center),color);
}
//btCollisionObject* colObj = static_cast<btCollisionObject*>(m_convexProxy->m_clientObject);
if (m_convexBody->getCollisionShape()->isConvex())
{
btTriangleShape tm(triangle[0],triangle[1],triangle[2]);
tm.setMargin(m_collisionMarginTriangle);
btCollisionShape* tmpShape = ob->getCollisionShape();
ob->internalSetTemporaryCollisionShape( &tm );
btCollisionAlgorithm* colAlgo = ci.m_dispatcher1->findAlgorithm(m_convexBody,m_triBody,m_manifoldPtr);
if (m_resultOut->getBody0Internal() == m_triBody)
{
m_resultOut->setShapeIdentifiersA(partId,triangleIndex);
}
else
{
m_resultOut->setShapeIdentifiersB(partId,triangleIndex);
}
colAlgo->processCollision(m_convexBody,m_triBody,*m_dispatchInfoPtr,m_resultOut);
colAlgo->~btCollisionAlgorithm();
ci.m_dispatcher1->freeCollisionAlgorithm(colAlgo);
ob->internalSetTemporaryCollisionShape( tmpShape);
}
}
void btConvexTriangleCallback::setTimeStepAndCounters(btScalar collisionMarginTriangle,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
m_dispatchInfoPtr = &dispatchInfo;
m_collisionMarginTriangle = collisionMarginTriangle;
m_resultOut = resultOut;
//recalc aabbs
btTransform convexInTriangleSpace;
convexInTriangleSpace = m_triBody->getWorldTransform().inverse() * m_convexBody->getWorldTransform();
btCollisionShape* convexShape = static_cast<btCollisionShape*>(m_convexBody->getCollisionShape());
//CollisionShape* triangleShape = static_cast<btCollisionShape*>(triBody->m_collisionShape);
convexShape->getAabb(convexInTriangleSpace,m_aabbMin,m_aabbMax);
btScalar extraMargin = collisionMarginTriangle;
btVector3 extra(extraMargin,extraMargin,extraMargin);
m_aabbMax += extra;
m_aabbMin -= extra;
}
void btConvexConcaveCollisionAlgorithm::clearCache()
{
m_btConvexTriangleCallback.clearCache();
}
void btConvexConcaveCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
btCollisionObject* convexBody = m_isSwapped ? body1 : body0;
btCollisionObject* triBody = m_isSwapped ? body0 : body1;
if (triBody->getCollisionShape()->isConcave())
{
btCollisionObject* triOb = triBody;
btConcaveShape* concaveShape = static_cast<btConcaveShape*>( triOb->getCollisionShape());
if (convexBody->getCollisionShape()->isConvex())
{
btScalar collisionMarginTriangle = concaveShape->getMargin();
resultOut->setPersistentManifold(m_btConvexTriangleCallback.m_manifoldPtr);
m_btConvexTriangleCallback.setTimeStepAndCounters(collisionMarginTriangle,dispatchInfo,resultOut);
//Disable persistency. previously, some older algorithm calculated all contacts in one go, so you can clear it here.
//m_dispatcher->clearManifold(m_btConvexTriangleCallback.m_manifoldPtr);
m_btConvexTriangleCallback.m_manifoldPtr->setBodies(convexBody,triBody);
concaveShape->processAllTriangles( &m_btConvexTriangleCallback,m_btConvexTriangleCallback.getAabbMin(),m_btConvexTriangleCallback.getAabbMax());
resultOut->refreshContactPoints();
}
}
}
btScalar btConvexConcaveCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
(void)resultOut;
(void)dispatchInfo;
btCollisionObject* convexbody = m_isSwapped ? body1 : body0;
btCollisionObject* triBody = m_isSwapped ? body0 : body1;
//quick approximation using raycast, todo: hook up to the continuous collision detection (one of the btConvexCast)
//only perform CCD above a certain threshold, this prevents blocking on the long run
//because object in a blocked ccd state (hitfraction<1) get their linear velocity halved each frame...
btScalar squareMot0 = (convexbody->getInterpolationWorldTransform().getOrigin() - convexbody->getWorldTransform().getOrigin()).length2();
if (squareMot0 < convexbody->getCcdSquareMotionThreshold())
{
return btScalar(1.);
}
//const btVector3& from = convexbody->m_worldTransform.getOrigin();
//btVector3 to = convexbody->m_interpolationWorldTransform.getOrigin();
//todo: only do if the motion exceeds the 'radius'
btTransform triInv = triBody->getWorldTransform().inverse();
btTransform convexFromLocal = triInv * convexbody->getWorldTransform();
btTransform convexToLocal = triInv * convexbody->getInterpolationWorldTransform();
struct LocalTriangleSphereCastCallback : public btTriangleCallback
{
btTransform m_ccdSphereFromTrans;
btTransform m_ccdSphereToTrans;
btTransform m_meshTransform;
btScalar m_ccdSphereRadius;
btScalar m_hitFraction;
LocalTriangleSphereCastCallback(const btTransform& from,const btTransform& to,btScalar ccdSphereRadius,btScalar hitFraction)
:m_ccdSphereFromTrans(from),
m_ccdSphereToTrans(to),
m_ccdSphereRadius(ccdSphereRadius),
m_hitFraction(hitFraction)
{
}
virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex)
{
(void)partId;
(void)triangleIndex;
//do a swept sphere for now
btTransform ident;
ident.setIdentity();
btConvexCast::CastResult castResult;
castResult.m_fraction = m_hitFraction;
btSphereShape pointShape(m_ccdSphereRadius);
btTriangleShape triShape(triangle[0],triangle[1],triangle[2]);
btVoronoiSimplexSolver simplexSolver;
btSubsimplexConvexCast convexCaster(&pointShape,&triShape,&simplexSolver);
//GjkConvexCast convexCaster(&pointShape,convexShape,&simplexSolver);
//ContinuousConvexCollision convexCaster(&pointShape,convexShape,&simplexSolver,0);
//local space?
if (convexCaster.calcTimeOfImpact(m_ccdSphereFromTrans,m_ccdSphereToTrans,
ident,ident,castResult))
{
if (m_hitFraction > castResult.m_fraction)
m_hitFraction = castResult.m_fraction;
}
}
};
if (triBody->getCollisionShape()->isConcave())
{
btVector3 rayAabbMin = convexFromLocal.getOrigin();
rayAabbMin.setMin(convexToLocal.getOrigin());
btVector3 rayAabbMax = convexFromLocal.getOrigin();
rayAabbMax.setMax(convexToLocal.getOrigin());
btScalar ccdRadius0 = convexbody->getCcdSweptSphereRadius();
rayAabbMin -= btVector3(ccdRadius0,ccdRadius0,ccdRadius0);
rayAabbMax += btVector3(ccdRadius0,ccdRadius0,ccdRadius0);
btScalar curHitFraction = btScalar(1.); //is this available?
LocalTriangleSphereCastCallback raycastCallback(convexFromLocal,convexToLocal,
convexbody->getCcdSweptSphereRadius(),curHitFraction);
raycastCallback.m_hitFraction = convexbody->getHitFraction();
btCollisionObject* concavebody = triBody;
btConcaveShape* triangleMesh = (btConcaveShape*) concavebody->getCollisionShape();
if (triangleMesh)
{
triangleMesh->processAllTriangles(&raycastCallback,rayAabbMin,rayAabbMax);
}
if (raycastCallback.m_hitFraction < convexbody->getHitFraction())
{
convexbody->setHitFraction( raycastCallback.m_hitFraction);
return raycastCallback.m_hitFraction;
}
}
return btScalar(1.);
}

View File

@ -0,0 +1,116 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef CONVEX_CONCAVE_COLLISION_ALGORITHM_H
#define CONVEX_CONCAVE_COLLISION_ALGORITHM_H
#include "btActivatingCollisionAlgorithm.h"
#include "BulletCollision/BroadphaseCollision/btDispatcher.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
#include "BulletCollision/CollisionShapes/btTriangleCallback.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
class btDispatcher;
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "btCollisionCreateFunc.h"
///For each triangle in the concave mesh that overlaps with the AABB of a convex (m_convexProxy), processTriangle is called.
class btConvexTriangleCallback : public btTriangleCallback
{
btCollisionObject* m_convexBody;
btCollisionObject* m_triBody;
btVector3 m_aabbMin;
btVector3 m_aabbMax ;
btManifoldResult* m_resultOut;
btDispatcher* m_dispatcher;
const btDispatcherInfo* m_dispatchInfoPtr;
btScalar m_collisionMarginTriangle;
public:
int m_triangleCount;
btPersistentManifold* m_manifoldPtr;
btConvexTriangleCallback(btDispatcher* dispatcher,btCollisionObject* body0,btCollisionObject* body1,bool isSwapped);
void setTimeStepAndCounters(btScalar collisionMarginTriangle,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual ~btConvexTriangleCallback();
virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex);
void clearCache();
SIMD_FORCE_INLINE const btVector3& getAabbMin() const
{
return m_aabbMin;
}
SIMD_FORCE_INLINE const btVector3& getAabbMax() const
{
return m_aabbMax;
}
};
/// btConvexConcaveCollisionAlgorithm supports collision between convex shapes and (concave) trianges meshes.
class btConvexConcaveCollisionAlgorithm : public btActivatingCollisionAlgorithm
{
bool m_isSwapped;
btConvexTriangleCallback m_btConvexTriangleCallback;
public:
btConvexConcaveCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,bool isSwapped);
virtual ~btConvexConcaveCollisionAlgorithm();
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual void getAllContactManifolds(btManifoldArray& manifoldArray);
void clearCache();
struct CreateFunc :public btCollisionAlgorithmCreateFunc
{
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
{
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btConvexConcaveCollisionAlgorithm));
return new(mem) btConvexConcaveCollisionAlgorithm(ci,body0,body1,false);
}
};
struct SwappedCreateFunc :public btCollisionAlgorithmCreateFunc
{
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
{
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btConvexConcaveCollisionAlgorithm));
return new(mem) btConvexConcaveCollisionAlgorithm(ci,body0,body1,true);
}
};
};
#endif //CONVEX_CONCAVE_COLLISION_ALGORITHM_H

View File

@ -0,0 +1,580 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///Specialized capsule-capsule collision algorithm has been added for Bullet 2.75 release to increase ragdoll performance
///If you experience problems with capsule-capsule collision, try to define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER and report it in the Bullet forums
///with reproduction case
//define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER 1
#include "btConvexConvexAlgorithm.h"
//#include <stdio.h>
#include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/CollisionShapes/btCapsuleShape.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"
#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
///////////
static SIMD_FORCE_INLINE void segmentsClosestPoints(
btVector3& ptsVector,
btVector3& offsetA,
btVector3& offsetB,
btScalar& tA, btScalar& tB,
const btVector3& translation,
const btVector3& dirA, btScalar hlenA,
const btVector3& dirB, btScalar hlenB )
{
// compute the parameters of the closest points on each line segment
btScalar dirA_dot_dirB = btDot(dirA,dirB);
btScalar dirA_dot_trans = btDot(dirA,translation);
btScalar dirB_dot_trans = btDot(dirB,translation);
btScalar denom = 1.0f - dirA_dot_dirB * dirA_dot_dirB;
if ( denom == 0.0f ) {
tA = 0.0f;
} else {
tA = ( dirA_dot_trans - dirB_dot_trans * dirA_dot_dirB ) / denom;
if ( tA < -hlenA )
tA = -hlenA;
else if ( tA > hlenA )
tA = hlenA;
}
tB = tA * dirA_dot_dirB - dirB_dot_trans;
if ( tB < -hlenB ) {
tB = -hlenB;
tA = tB * dirA_dot_dirB + dirA_dot_trans;
if ( tA < -hlenA )
tA = -hlenA;
else if ( tA > hlenA )
tA = hlenA;
} else if ( tB > hlenB ) {
tB = hlenB;
tA = tB * dirA_dot_dirB + dirA_dot_trans;
if ( tA < -hlenA )
tA = -hlenA;
else if ( tA > hlenA )
tA = hlenA;
}
// compute the closest points relative to segment centers.
offsetA = dirA * tA;
offsetB = dirB * tB;
ptsVector = translation - offsetA + offsetB;
}
static SIMD_FORCE_INLINE btScalar capsuleCapsuleDistance(
btVector3& normalOnB,
btVector3& pointOnB,
btScalar capsuleLengthA,
btScalar capsuleRadiusA,
btScalar capsuleLengthB,
btScalar capsuleRadiusB,
int capsuleAxisA,
int capsuleAxisB,
const btTransform& transformA,
const btTransform& transformB,
btScalar distanceThreshold )
{
btVector3 directionA = transformA.getBasis().getColumn(capsuleAxisA);
btVector3 translationA = transformA.getOrigin();
btVector3 directionB = transformB.getBasis().getColumn(capsuleAxisB);
btVector3 translationB = transformB.getOrigin();
// translation between centers
btVector3 translation = translationB - translationA;
// compute the closest points of the capsule line segments
btVector3 ptsVector; // the vector between the closest points
btVector3 offsetA, offsetB; // offsets from segment centers to their closest points
btScalar tA, tB; // parameters on line segment
segmentsClosestPoints( ptsVector, offsetA, offsetB, tA, tB, translation,
directionA, capsuleLengthA, directionB, capsuleLengthB );
btScalar distance = ptsVector.length() - capsuleRadiusA - capsuleRadiusB;
if ( distance > distanceThreshold )
return distance;
btScalar lenSqr = ptsVector.length2();
if (lenSqr<= (SIMD_EPSILON*SIMD_EPSILON))
{
//degenerate case where 2 capsules are likely at the same location: take a vector tangential to 'directionA'
btVector3 q;
btPlaneSpace1(directionA,normalOnB,q);
} else
{
// compute the contact normal
normalOnB = ptsVector*-btRecipSqrt(lenSqr);
}
pointOnB = transformB.getOrigin()+offsetB + normalOnB * capsuleRadiusB;
return distance;
}
//////////
btConvexConvexAlgorithm::CreateFunc::CreateFunc(btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver)
{
m_numPerturbationIterations = 0;
m_minimumPointsPerturbationThreshold = 3;
m_simplexSolver = simplexSolver;
m_pdSolver = pdSolver;
}
btConvexConvexAlgorithm::CreateFunc::~CreateFunc()
{
}
btConvexConvexAlgorithm::btConvexConvexAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver,int numPerturbationIterations, int minimumPointsPerturbationThreshold)
: btActivatingCollisionAlgorithm(ci,body0,body1),
m_simplexSolver(simplexSolver),
m_pdSolver(pdSolver),
m_ownManifold (false),
m_manifoldPtr(mf),
m_lowLevelOfDetail(false),
#ifdef USE_SEPDISTANCE_UTIL2
m_sepDistance((static_cast<btConvexShape*>(body0->getCollisionShape()))->getAngularMotionDisc(),
(static_cast<btConvexShape*>(body1->getCollisionShape()))->getAngularMotionDisc()),
#endif
m_numPerturbationIterations(numPerturbationIterations),
m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold)
{
(void)body0;
(void)body1;
}
btConvexConvexAlgorithm::~btConvexConvexAlgorithm()
{
if (m_ownManifold)
{
if (m_manifoldPtr)
m_dispatcher->releaseManifold(m_manifoldPtr);
}
}
void btConvexConvexAlgorithm ::setLowLevelOfDetail(bool useLowLevel)
{
m_lowLevelOfDetail = useLowLevel;
}
struct btPerturbedContactResult : public btManifoldResult
{
btManifoldResult* m_originalManifoldResult;
btTransform m_transformA;
btTransform m_transformB;
btTransform m_unPerturbedTransform;
bool m_perturbA;
btIDebugDraw* m_debugDrawer;
btPerturbedContactResult(btManifoldResult* originalResult,const btTransform& transformA,const btTransform& transformB,const btTransform& unPerturbedTransform,bool perturbA,btIDebugDraw* debugDrawer)
:m_originalManifoldResult(originalResult),
m_transformA(transformA),
m_transformB(transformB),
m_unPerturbedTransform(unPerturbedTransform),
m_perturbA(perturbA),
m_debugDrawer(debugDrawer)
{
}
virtual ~ btPerturbedContactResult()
{
}
virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar orgDepth)
{
btVector3 endPt,startPt;
btScalar newDepth;
btVector3 newNormal;
if (m_perturbA)
{
btVector3 endPtOrg = pointInWorld + normalOnBInWorld*orgDepth;
endPt = (m_unPerturbedTransform*m_transformA.inverse())(endPtOrg);
newDepth = (endPt - pointInWorld).dot(normalOnBInWorld);
startPt = endPt+normalOnBInWorld*newDepth;
} else
{
endPt = pointInWorld + normalOnBInWorld*orgDepth;
startPt = (m_unPerturbedTransform*m_transformB.inverse())(pointInWorld);
newDepth = (endPt - startPt).dot(normalOnBInWorld);
}
//#define DEBUG_CONTACTS 1
#ifdef DEBUG_CONTACTS
m_debugDrawer->drawLine(startPt,endPt,btVector3(1,0,0));
m_debugDrawer->drawSphere(startPt,0.05,btVector3(0,1,0));
m_debugDrawer->drawSphere(endPt,0.05,btVector3(0,0,1));
#endif //DEBUG_CONTACTS
m_originalManifoldResult->addContactPoint(normalOnBInWorld,startPt,newDepth);
}
};
extern btScalar gContactBreakingThreshold;
//
// Convex-Convex collision algorithm
//
void btConvexConvexAlgorithm ::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
if (!m_manifoldPtr)
{
//swapped?
m_manifoldPtr = m_dispatcher->getNewManifold(body0,body1);
m_ownManifold = true;
}
resultOut->setPersistentManifold(m_manifoldPtr);
//comment-out next line to test multi-contact generation
//resultOut->getPersistentManifold()->clearManifold();
btConvexShape* min0 = static_cast<btConvexShape*>(body0->getCollisionShape());
btConvexShape* min1 = static_cast<btConvexShape*>(body1->getCollisionShape());
btVector3 normalOnB;
btVector3 pointOnBWorld;
#ifndef BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
if ((min0->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) && (min1->getShapeType() == CAPSULE_SHAPE_PROXYTYPE))
{
btCapsuleShape* capsuleA = (btCapsuleShape*) min0;
btCapsuleShape* capsuleB = (btCapsuleShape*) min1;
btVector3 localScalingA = capsuleA->getLocalScaling();
btVector3 localScalingB = capsuleB->getLocalScaling();
btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld,capsuleA->getHalfHeight(),capsuleA->getRadius(),
capsuleB->getHalfHeight(),capsuleB->getRadius(),capsuleA->getUpAxis(),capsuleB->getUpAxis(),
body0->getWorldTransform(),body1->getWorldTransform(),threshold);
if (dist<threshold)
{
btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON));
resultOut->addContactPoint(normalOnB,pointOnBWorld,dist);
}
resultOut->refreshContactPoints();
return;
}
#endif //BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
#ifdef USE_SEPDISTANCE_UTIL2
if (dispatchInfo.m_useConvexConservativeDistanceUtil)
{
m_sepDistance.updateSeparatingDistance(body0->getWorldTransform(),body1->getWorldTransform());
}
if (!dispatchInfo.m_useConvexConservativeDistanceUtil || m_sepDistance.getConservativeSeparatingDistance()<=0.f)
#endif //USE_SEPDISTANCE_UTIL2
{
btGjkPairDetector::ClosestPointInput input;
btGjkPairDetector gjkPairDetector(min0,min1,m_simplexSolver,m_pdSolver);
//TODO: if (dispatchInfo.m_useContinuous)
gjkPairDetector.setMinkowskiA(min0);
gjkPairDetector.setMinkowskiB(min1);
#ifdef USE_SEPDISTANCE_UTIL2
if (dispatchInfo.m_useConvexConservativeDistanceUtil)
{
input.m_maximumDistanceSquared = BT_LARGE_FLOAT;
} else
#endif //USE_SEPDISTANCE_UTIL2
{
if (dispatchInfo.m_convexMaxDistanceUseCPT)
{
input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactProcessingThreshold();
} else
{
input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
}
input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
}
input.m_stackAlloc = dispatchInfo.m_stackAllocator;
input.m_transformA = body0->getWorldTransform();
input.m_transformB = body1->getWorldTransform();
gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
#ifdef USE_SEPDISTANCE_UTIL2
btScalar sepDist = 0.f;
if (dispatchInfo.m_useConvexConservativeDistanceUtil)
{
sepDist = gjkPairDetector.getCachedSeparatingDistance();
if (sepDist>SIMD_EPSILON)
{
sepDist += dispatchInfo.m_convexConservativeDistanceThreshold;
//now perturbe directions to get multiple contact points
}
}
#endif //USE_SEPDISTANCE_UTIL2
//now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects
//perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points
if (m_numPerturbationIterations && resultOut->getPersistentManifold()->getNumContacts() < m_minimumPointsPerturbationThreshold)
{
int i;
btVector3 v0,v1;
btVector3 sepNormalWorldSpace;
sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis().normalized();
btPlaneSpace1(sepNormalWorldSpace,v0,v1);
bool perturbeA = true;
const btScalar angleLimit = 0.125f * SIMD_PI;
btScalar perturbeAngle;
btScalar radiusA = min0->getAngularMotionDisc();
btScalar radiusB = min1->getAngularMotionDisc();
if (radiusA < radiusB)
{
perturbeAngle = gContactBreakingThreshold /radiusA;
perturbeA = true;
} else
{
perturbeAngle = gContactBreakingThreshold / radiusB;
perturbeA = false;
}
if ( perturbeAngle > angleLimit )
perturbeAngle = angleLimit;
btTransform unPerturbedTransform;
if (perturbeA)
{
unPerturbedTransform = input.m_transformA;
} else
{
unPerturbedTransform = input.m_transformB;
}
for ( i=0;i<m_numPerturbationIterations;i++)
{
if (v0.length2()>SIMD_EPSILON)
{
btQuaternion perturbeRot(v0,perturbeAngle);
btScalar iterationAngle = i*(SIMD_2_PI/btScalar(m_numPerturbationIterations));
btQuaternion rotq(sepNormalWorldSpace,iterationAngle);
if (perturbeA)
{
input.m_transformA.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body0->getWorldTransform().getBasis());
input.m_transformB = body1->getWorldTransform();
#ifdef DEBUG_CONTACTS
dispatchInfo.m_debugDraw->drawTransform(input.m_transformA,10.0);
#endif //DEBUG_CONTACTS
} else
{
input.m_transformA = body0->getWorldTransform();
input.m_transformB.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body1->getWorldTransform().getBasis());
#ifdef DEBUG_CONTACTS
dispatchInfo.m_debugDraw->drawTransform(input.m_transformB,10.0);
#endif
}
btPerturbedContactResult perturbedResultOut(resultOut,input.m_transformA,input.m_transformB,unPerturbedTransform,perturbeA,dispatchInfo.m_debugDraw);
gjkPairDetector.getClosestPoints(input,perturbedResultOut,dispatchInfo.m_debugDraw);
}
}
}
#ifdef USE_SEPDISTANCE_UTIL2
if (dispatchInfo.m_useConvexConservativeDistanceUtil && (sepDist>SIMD_EPSILON))
{
m_sepDistance.initSeparatingDistance(gjkPairDetector.getCachedSeparatingAxis(),sepDist,body0->getWorldTransform(),body1->getWorldTransform());
}
#endif //USE_SEPDISTANCE_UTIL2
}
if (m_ownManifold)
{
resultOut->refreshContactPoints();
}
}
bool disableCcd = false;
btScalar btConvexConvexAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
(void)resultOut;
(void)dispatchInfo;
///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold
///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
///col0->m_worldTransform,
btScalar resultFraction = btScalar(1.);
btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2();
btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2();
if (squareMot0 < col0->getCcdSquareMotionThreshold() &&
squareMot1 < col1->getCcdSquareMotionThreshold())
return resultFraction;
if (disableCcd)
return btScalar(1.);
//An adhoc way of testing the Continuous Collision Detection algorithms
//One object is approximated as a sphere, to simplify things
//Starting in penetration should report no time of impact
//For proper CCD, better accuracy and handling of 'allowed' penetration should be added
//also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
/// Convex0 against sphere for Convex1
{
btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape());
btSphereShape sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
btConvexCast::CastResult result;
btVoronoiSimplexSolver voronoiSimplex;
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
///Simplification, one object is simplified as a sphere
btGjkConvexCast ccd1( convex0 ,&sphere1,&voronoiSimplex);
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
{
//store result.m_fraction in both bodies
if (col0->getHitFraction()> result.m_fraction)
col0->setHitFraction( result.m_fraction );
if (col1->getHitFraction() > result.m_fraction)
col1->setHitFraction( result.m_fraction);
if (resultFraction > result.m_fraction)
resultFraction = result.m_fraction;
}
}
/// Sphere (for convex0) against Convex1
{
btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape());
btSphereShape sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
btConvexCast::CastResult result;
btVoronoiSimplexSolver voronoiSimplex;
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
///Simplification, one object is simplified as a sphere
btGjkConvexCast ccd1(&sphere0,convex1,&voronoiSimplex);
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
{
//store result.m_fraction in both bodies
if (col0->getHitFraction() > result.m_fraction)
col0->setHitFraction( result.m_fraction);
if (col1->getHitFraction() > result.m_fraction)
col1->setHitFraction( result.m_fraction);
if (resultFraction > result.m_fraction)
resultFraction = result.m_fraction;
}
}
return resultFraction;
}

View File

@ -0,0 +1,109 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef CONVEX_CONVEX_ALGORITHM_H
#define CONVEX_CONVEX_ALGORITHM_H
#include "btActivatingCollisionAlgorithm.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "btCollisionCreateFunc.h"
#include "btCollisionDispatcher.h"
#include "LinearMath/btTransformUtil.h" //for btConvexSeparatingDistanceUtil
class btConvexPenetrationDepthSolver;
///Enabling USE_SEPDISTANCE_UTIL2 requires 100% reliable distance computation. However, when using large size ratios GJK can be imprecise
///so the distance is not conservative. In that case, enabling this USE_SEPDISTANCE_UTIL2 would result in failing/missing collisions.
///Either improve GJK for large size ratios (testing a 100 units versus a 0.1 unit object) or only enable the util
///for certain pairs that have a small size ratio
//#define USE_SEPDISTANCE_UTIL2 1
///The convexConvexAlgorithm collision algorithm implements time of impact, convex closest points and penetration depth calculations between two convex objects.
///Multiple contact points are calculated by perturbing the orientation of the smallest object orthogonal to the separating normal.
///This idea was described by Gino van den Bergen in this forum topic http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=4&t=288&p=888#p888
class btConvexConvexAlgorithm : public btActivatingCollisionAlgorithm
{
#ifdef USE_SEPDISTANCE_UTIL2
btConvexSeparatingDistanceUtil m_sepDistance;
#endif
btSimplexSolverInterface* m_simplexSolver;
btConvexPenetrationDepthSolver* m_pdSolver;
bool m_ownManifold;
btPersistentManifold* m_manifoldPtr;
bool m_lowLevelOfDetail;
int m_numPerturbationIterations;
int m_minimumPointsPerturbationThreshold;
///cache separating vector to speedup collision detection
public:
btConvexConvexAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1, btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver, int numPerturbationIterations, int minimumPointsPerturbationThreshold);
virtual ~btConvexConvexAlgorithm();
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual void getAllContactManifolds(btManifoldArray& manifoldArray)
{
///should we use m_ownManifold to avoid adding duplicates?
if (m_manifoldPtr && m_ownManifold)
manifoldArray.push_back(m_manifoldPtr);
}
void setLowLevelOfDetail(bool useLowLevel);
const btPersistentManifold* getManifold()
{
return m_manifoldPtr;
}
struct CreateFunc :public btCollisionAlgorithmCreateFunc
{
btConvexPenetrationDepthSolver* m_pdSolver;
btSimplexSolverInterface* m_simplexSolver;
int m_numPerturbationIterations;
int m_minimumPointsPerturbationThreshold;
CreateFunc(btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver);
virtual ~CreateFunc();
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
{
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btConvexConvexAlgorithm));
return new(mem) btConvexConvexAlgorithm(ci.m_manifold,ci,body0,body1,m_simplexSolver,m_pdSolver,m_numPerturbationIterations,m_minimumPointsPerturbationThreshold);
}
};
};
#endif //CONVEX_CONVEX_ALGORITHM_H

View File

@ -0,0 +1,155 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btConvexPlaneCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
//#include <stdio.h>
btConvexPlaneCollisionAlgorithm::btConvexPlaneCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1, bool isSwapped, int numPerturbationIterations,int minimumPointsPerturbationThreshold)
: btCollisionAlgorithm(ci),
m_ownManifold(false),
m_manifoldPtr(mf),
m_isSwapped(isSwapped),
m_numPerturbationIterations(numPerturbationIterations),
m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold)
{
btCollisionObject* convexObj = m_isSwapped? col1 : col0;
btCollisionObject* planeObj = m_isSwapped? col0 : col1;
if (!m_manifoldPtr && m_dispatcher->needsCollision(convexObj,planeObj))
{
m_manifoldPtr = m_dispatcher->getNewManifold(convexObj,planeObj);
m_ownManifold = true;
}
}
btConvexPlaneCollisionAlgorithm::~btConvexPlaneCollisionAlgorithm()
{
if (m_ownManifold)
{
if (m_manifoldPtr)
m_dispatcher->releaseManifold(m_manifoldPtr);
}
}
void btConvexPlaneCollisionAlgorithm::collideSingleContact (const btQuaternion& perturbeRot, btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
btCollisionObject* convexObj = m_isSwapped? body1 : body0;
btCollisionObject* planeObj = m_isSwapped? body0: body1;
btConvexShape* convexShape = (btConvexShape*) convexObj->getCollisionShape();
btStaticPlaneShape* planeShape = (btStaticPlaneShape*) planeObj->getCollisionShape();
bool hasCollision = false;
const btVector3& planeNormal = planeShape->getPlaneNormal();
const btScalar& planeConstant = planeShape->getPlaneConstant();
btTransform convexWorldTransform = convexObj->getWorldTransform();
btTransform convexInPlaneTrans;
convexInPlaneTrans= planeObj->getWorldTransform().inverse() * convexWorldTransform;
//now perturbe the convex-world transform
convexWorldTransform.getBasis()*=btMatrix3x3(perturbeRot);
btTransform planeInConvex;
planeInConvex= convexWorldTransform.inverse() * planeObj->getWorldTransform();
btVector3 vtx = convexShape->localGetSupportingVertex(planeInConvex.getBasis()*-planeNormal);
btVector3 vtxInPlane = convexInPlaneTrans(vtx);
btScalar distance = (planeNormal.dot(vtxInPlane) - planeConstant);
btVector3 vtxInPlaneProjected = vtxInPlane - distance*planeNormal;
btVector3 vtxInPlaneWorld = planeObj->getWorldTransform() * vtxInPlaneProjected;
hasCollision = distance < m_manifoldPtr->getContactBreakingThreshold();
resultOut->setPersistentManifold(m_manifoldPtr);
if (hasCollision)
{
/// report a contact. internally this will be kept persistent, and contact reduction is done
btVector3 normalOnSurfaceB = planeObj->getWorldTransform().getBasis() * planeNormal;
btVector3 pOnB = vtxInPlaneWorld;
resultOut->addContactPoint(normalOnSurfaceB,pOnB,distance);
}
}
void btConvexPlaneCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
(void)dispatchInfo;
if (!m_manifoldPtr)
return;
btCollisionObject* convexObj = m_isSwapped? body1 : body0;
btCollisionObject* planeObj = m_isSwapped? body0: body1;
btConvexShape* convexShape = (btConvexShape*) convexObj->getCollisionShape();
btStaticPlaneShape* planeShape = (btStaticPlaneShape*) planeObj->getCollisionShape();
const btVector3& planeNormal = planeShape->getPlaneNormal();
//const btScalar& planeConstant = planeShape->getPlaneConstant();
//first perform a collision query with the non-perturbated collision objects
{
btQuaternion rotq(0,0,0,1);
collideSingleContact(rotq,body0,body1,dispatchInfo,resultOut);
}
if (resultOut->getPersistentManifold()->getNumContacts()<m_minimumPointsPerturbationThreshold)
{
btVector3 v0,v1;
btPlaneSpace1(planeNormal,v0,v1);
//now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects
const btScalar angleLimit = 0.125f * SIMD_PI;
btScalar perturbeAngle;
btScalar radius = convexShape->getAngularMotionDisc();
perturbeAngle = gContactBreakingThreshold / radius;
if ( perturbeAngle > angleLimit )
perturbeAngle = angleLimit;
btQuaternion perturbeRot(v0,perturbeAngle);
for (int i=0;i<m_numPerturbationIterations;i++)
{
btScalar iterationAngle = i*(SIMD_2_PI/btScalar(m_numPerturbationIterations));
btQuaternion rotq(planeNormal,iterationAngle);
collideSingleContact(rotq.inverse()*perturbeRot*rotq,body0,body1,dispatchInfo,resultOut);
}
}
if (m_ownManifold)
{
if (m_manifoldPtr->getNumContacts())
{
resultOut->refreshContactPoints();
}
}
}
btScalar btConvexPlaneCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
(void)resultOut;
(void)dispatchInfo;
(void)col0;
(void)col1;
//not yet
return btScalar(1.);
}

View File

@ -0,0 +1,84 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef CONVEX_PLANE_COLLISION_ALGORITHM_H
#define CONVEX_PLANE_COLLISION_ALGORITHM_H
#include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
class btPersistentManifold;
#include "btCollisionDispatcher.h"
#include "LinearMath/btVector3.h"
/// btSphereBoxCollisionAlgorithm provides sphere-box collision detection.
/// Other features are frame-coherency (persistent data) and collision response.
class btConvexPlaneCollisionAlgorithm : public btCollisionAlgorithm
{
bool m_ownManifold;
btPersistentManifold* m_manifoldPtr;
bool m_isSwapped;
int m_numPerturbationIterations;
int m_minimumPointsPerturbationThreshold;
public:
btConvexPlaneCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1, bool isSwapped, int numPerturbationIterations,int minimumPointsPerturbationThreshold);
virtual ~btConvexPlaneCollisionAlgorithm();
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
void collideSingleContact (const btQuaternion& perturbeRot, btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual void getAllContactManifolds(btManifoldArray& manifoldArray)
{
if (m_manifoldPtr && m_ownManifold)
{
manifoldArray.push_back(m_manifoldPtr);
}
}
struct CreateFunc :public btCollisionAlgorithmCreateFunc
{
int m_numPerturbationIterations;
int m_minimumPointsPerturbationThreshold;
CreateFunc()
: m_numPerturbationIterations(1),
m_minimumPointsPerturbationThreshold(1)
{
}
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
{
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btConvexPlaneCollisionAlgorithm));
if (!m_swapped)
{
return new(mem) btConvexPlaneCollisionAlgorithm(0,ci,body0,body1,false,m_numPerturbationIterations,m_minimumPointsPerturbationThreshold);
} else
{
return new(mem) btConvexPlaneCollisionAlgorithm(0,ci,body0,body1,true,m_numPerturbationIterations,m_minimumPointsPerturbationThreshold);
}
}
};
};
#endif //CONVEX_PLANE_COLLISION_ALGORITHM_H

View File

@ -0,0 +1,298 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btDefaultCollisionConfiguration.h"
#include "BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btEmptyCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btConvexConcaveCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCompoundCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btConvexPlaneCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btBoxBoxCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btSphereSphereCollisionAlgorithm.h"
#ifdef USE_BUGGY_SPHERE_BOX_ALGORITHM
#include "BulletCollision/CollisionDispatch/btSphereBoxCollisionAlgorithm.h"
#endif //USE_BUGGY_SPHERE_BOX_ALGORITHM
#include "BulletCollision/CollisionDispatch/btSphereTriangleCollisionAlgorithm.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "LinearMath/btStackAlloc.h"
#include "LinearMath/btPoolAllocator.h"
btDefaultCollisionConfiguration::btDefaultCollisionConfiguration(const btDefaultCollisionConstructionInfo& constructionInfo)
//btDefaultCollisionConfiguration::btDefaultCollisionConfiguration(btStackAlloc* stackAlloc,btPoolAllocator* persistentManifoldPool,btPoolAllocator* collisionAlgorithmPool)
{
void* mem = btAlignedAlloc(sizeof(btVoronoiSimplexSolver),16);
m_simplexSolver = new (mem)btVoronoiSimplexSolver();
if (constructionInfo.m_useEpaPenetrationAlgorithm)
{
mem = btAlignedAlloc(sizeof(btGjkEpaPenetrationDepthSolver),16);
m_pdSolver = new (mem)btGjkEpaPenetrationDepthSolver;
}else
{
mem = btAlignedAlloc(sizeof(btMinkowskiPenetrationDepthSolver),16);
m_pdSolver = new (mem)btMinkowskiPenetrationDepthSolver;
}
//default CreationFunctions, filling the m_doubleDispatch table
mem = btAlignedAlloc(sizeof(btConvexConvexAlgorithm::CreateFunc),16);
m_convexConvexCreateFunc = new(mem) btConvexConvexAlgorithm::CreateFunc(m_simplexSolver,m_pdSolver);
mem = btAlignedAlloc(sizeof(btConvexConcaveCollisionAlgorithm::CreateFunc),16);
m_convexConcaveCreateFunc = new (mem)btConvexConcaveCollisionAlgorithm::CreateFunc;
mem = btAlignedAlloc(sizeof(btConvexConcaveCollisionAlgorithm::CreateFunc),16);
m_swappedConvexConcaveCreateFunc = new (mem)btConvexConcaveCollisionAlgorithm::SwappedCreateFunc;
mem = btAlignedAlloc(sizeof(btCompoundCollisionAlgorithm::CreateFunc),16);
m_compoundCreateFunc = new (mem)btCompoundCollisionAlgorithm::CreateFunc;
mem = btAlignedAlloc(sizeof(btCompoundCollisionAlgorithm::SwappedCreateFunc),16);
m_swappedCompoundCreateFunc = new (mem)btCompoundCollisionAlgorithm::SwappedCreateFunc;
mem = btAlignedAlloc(sizeof(btEmptyAlgorithm::CreateFunc),16);
m_emptyCreateFunc = new(mem) btEmptyAlgorithm::CreateFunc;
mem = btAlignedAlloc(sizeof(btSphereSphereCollisionAlgorithm::CreateFunc),16);
m_sphereSphereCF = new(mem) btSphereSphereCollisionAlgorithm::CreateFunc;
#ifdef USE_BUGGY_SPHERE_BOX_ALGORITHM
mem = btAlignedAlloc(sizeof(btSphereBoxCollisionAlgorithm::CreateFunc),16);
m_sphereBoxCF = new(mem) btSphereBoxCollisionAlgorithm::CreateFunc;
mem = btAlignedAlloc(sizeof(btSphereBoxCollisionAlgorithm::CreateFunc),16);
m_boxSphereCF = new (mem)btSphereBoxCollisionAlgorithm::CreateFunc;
m_boxSphereCF->m_swapped = true;
#endif //USE_BUGGY_SPHERE_BOX_ALGORITHM
mem = btAlignedAlloc(sizeof(btSphereTriangleCollisionAlgorithm::CreateFunc),16);
m_sphereTriangleCF = new (mem)btSphereTriangleCollisionAlgorithm::CreateFunc;
mem = btAlignedAlloc(sizeof(btSphereTriangleCollisionAlgorithm::CreateFunc),16);
m_triangleSphereCF = new (mem)btSphereTriangleCollisionAlgorithm::CreateFunc;
m_triangleSphereCF->m_swapped = true;
mem = btAlignedAlloc(sizeof(btBoxBoxCollisionAlgorithm::CreateFunc),16);
m_boxBoxCF = new(mem)btBoxBoxCollisionAlgorithm::CreateFunc;
//convex versus plane
mem = btAlignedAlloc (sizeof(btConvexPlaneCollisionAlgorithm::CreateFunc),16);
m_convexPlaneCF = new (mem) btConvexPlaneCollisionAlgorithm::CreateFunc;
mem = btAlignedAlloc (sizeof(btConvexPlaneCollisionAlgorithm::CreateFunc),16);
m_planeConvexCF = new (mem) btConvexPlaneCollisionAlgorithm::CreateFunc;
m_planeConvexCF->m_swapped = true;
///calculate maximum element size, big enough to fit any collision algorithm in the memory pool
int maxSize = sizeof(btConvexConvexAlgorithm);
int maxSize2 = sizeof(btConvexConcaveCollisionAlgorithm);
int maxSize3 = sizeof(btCompoundCollisionAlgorithm);
int sl = sizeof(btConvexSeparatingDistanceUtil);
sl = sizeof(btGjkPairDetector);
int collisionAlgorithmMaxElementSize = btMax(maxSize,constructionInfo.m_customCollisionAlgorithmMaxElementSize);
collisionAlgorithmMaxElementSize = btMax(collisionAlgorithmMaxElementSize,maxSize2);
collisionAlgorithmMaxElementSize = btMax(collisionAlgorithmMaxElementSize,maxSize3);
if (constructionInfo.m_stackAlloc)
{
m_ownsStackAllocator = false;
this->m_stackAlloc = constructionInfo.m_stackAlloc;
} else
{
m_ownsStackAllocator = true;
void* mem = btAlignedAlloc(sizeof(btStackAlloc),16);
m_stackAlloc = new(mem)btStackAlloc(constructionInfo.m_defaultStackAllocatorSize);
}
if (constructionInfo.m_persistentManifoldPool)
{
m_ownsPersistentManifoldPool = false;
m_persistentManifoldPool = constructionInfo.m_persistentManifoldPool;
} else
{
m_ownsPersistentManifoldPool = true;
void* mem = btAlignedAlloc(sizeof(btPoolAllocator),16);
m_persistentManifoldPool = new (mem) btPoolAllocator(sizeof(btPersistentManifold),constructionInfo.m_defaultMaxPersistentManifoldPoolSize);
}
if (constructionInfo.m_collisionAlgorithmPool)
{
m_ownsCollisionAlgorithmPool = false;
m_collisionAlgorithmPool = constructionInfo.m_collisionAlgorithmPool;
} else
{
m_ownsCollisionAlgorithmPool = true;
void* mem = btAlignedAlloc(sizeof(btPoolAllocator),16);
m_collisionAlgorithmPool = new(mem) btPoolAllocator(collisionAlgorithmMaxElementSize,constructionInfo.m_defaultMaxCollisionAlgorithmPoolSize);
}
}
btDefaultCollisionConfiguration::~btDefaultCollisionConfiguration()
{
if (m_ownsStackAllocator)
{
m_stackAlloc->destroy();
m_stackAlloc->~btStackAlloc();
btAlignedFree(m_stackAlloc);
}
if (m_ownsCollisionAlgorithmPool)
{
m_collisionAlgorithmPool->~btPoolAllocator();
btAlignedFree(m_collisionAlgorithmPool);
}
if (m_ownsPersistentManifoldPool)
{
m_persistentManifoldPool->~btPoolAllocator();
btAlignedFree(m_persistentManifoldPool);
}
m_convexConvexCreateFunc->~btCollisionAlgorithmCreateFunc();
btAlignedFree( m_convexConvexCreateFunc);
m_convexConcaveCreateFunc->~btCollisionAlgorithmCreateFunc();
btAlignedFree( m_convexConcaveCreateFunc);
m_swappedConvexConcaveCreateFunc->~btCollisionAlgorithmCreateFunc();
btAlignedFree( m_swappedConvexConcaveCreateFunc);
m_compoundCreateFunc->~btCollisionAlgorithmCreateFunc();
btAlignedFree( m_compoundCreateFunc);
m_swappedCompoundCreateFunc->~btCollisionAlgorithmCreateFunc();
btAlignedFree( m_swappedCompoundCreateFunc);
m_emptyCreateFunc->~btCollisionAlgorithmCreateFunc();
btAlignedFree( m_emptyCreateFunc);
m_sphereSphereCF->~btCollisionAlgorithmCreateFunc();
btAlignedFree( m_sphereSphereCF);
#ifdef USE_BUGGY_SPHERE_BOX_ALGORITHM
m_sphereBoxCF->~btCollisionAlgorithmCreateFunc();
btAlignedFree( m_sphereBoxCF);
m_boxSphereCF->~btCollisionAlgorithmCreateFunc();
btAlignedFree( m_boxSphereCF);
#endif //USE_BUGGY_SPHERE_BOX_ALGORITHM
m_sphereTriangleCF->~btCollisionAlgorithmCreateFunc();
btAlignedFree( m_sphereTriangleCF);
m_triangleSphereCF->~btCollisionAlgorithmCreateFunc();
btAlignedFree( m_triangleSphereCF);
m_boxBoxCF->~btCollisionAlgorithmCreateFunc();
btAlignedFree( m_boxBoxCF);
m_convexPlaneCF->~btCollisionAlgorithmCreateFunc();
btAlignedFree( m_convexPlaneCF);
m_planeConvexCF->~btCollisionAlgorithmCreateFunc();
btAlignedFree( m_planeConvexCF);
m_simplexSolver->~btVoronoiSimplexSolver();
btAlignedFree(m_simplexSolver);
m_pdSolver->~btConvexPenetrationDepthSolver();
btAlignedFree(m_pdSolver);
}
btCollisionAlgorithmCreateFunc* btDefaultCollisionConfiguration::getCollisionAlgorithmCreateFunc(int proxyType0,int proxyType1)
{
if ((proxyType0 == SPHERE_SHAPE_PROXYTYPE) && (proxyType1==SPHERE_SHAPE_PROXYTYPE))
{
return m_sphereSphereCF;
}
#ifdef USE_BUGGY_SPHERE_BOX_ALGORITHM
if ((proxyType0 == SPHERE_SHAPE_PROXYTYPE) && (proxyType1==BOX_SHAPE_PROXYTYPE))
{
return m_sphereBoxCF;
}
if ((proxyType0 == BOX_SHAPE_PROXYTYPE ) && (proxyType1==SPHERE_SHAPE_PROXYTYPE))
{
return m_boxSphereCF;
}
#endif //USE_BUGGY_SPHERE_BOX_ALGORITHM
if ((proxyType0 == SPHERE_SHAPE_PROXYTYPE ) && (proxyType1==TRIANGLE_SHAPE_PROXYTYPE))
{
return m_sphereTriangleCF;
}
if ((proxyType0 == TRIANGLE_SHAPE_PROXYTYPE ) && (proxyType1==SPHERE_SHAPE_PROXYTYPE))
{
return m_triangleSphereCF;
}
if ((proxyType0 == BOX_SHAPE_PROXYTYPE) && (proxyType1 == BOX_SHAPE_PROXYTYPE))
{
return m_boxBoxCF;
}
if (btBroadphaseProxy::isConvex(proxyType0) && (proxyType1 == STATIC_PLANE_PROXYTYPE))
{
return m_convexPlaneCF;
}
if (btBroadphaseProxy::isConvex(proxyType1) && (proxyType0 == STATIC_PLANE_PROXYTYPE))
{
return m_planeConvexCF;
}
if (btBroadphaseProxy::isConvex(proxyType0) && btBroadphaseProxy::isConvex(proxyType1))
{
return m_convexConvexCreateFunc;
}
if (btBroadphaseProxy::isConvex(proxyType0) && btBroadphaseProxy::isConcave(proxyType1))
{
return m_convexConcaveCreateFunc;
}
if (btBroadphaseProxy::isConvex(proxyType1) && btBroadphaseProxy::isConcave(proxyType0))
{
return m_swappedConvexConcaveCreateFunc;
}
if (btBroadphaseProxy::isCompound(proxyType0))
{
return m_compoundCreateFunc;
} else
{
if (btBroadphaseProxy::isCompound(proxyType1))
{
return m_swappedCompoundCreateFunc;
}
}
//failed to find an algorithm
return m_emptyCreateFunc;
}
void btDefaultCollisionConfiguration::setConvexConvexMultipointIterations(int numPerturbationIterations, int minimumPointsPerturbationThreshold)
{
btConvexConvexAlgorithm::CreateFunc* convexConvex = (btConvexConvexAlgorithm::CreateFunc*) m_convexConvexCreateFunc;
convexConvex->m_numPerturbationIterations = numPerturbationIterations;
convexConvex->m_minimumPointsPerturbationThreshold = minimumPointsPerturbationThreshold;
}

View File

@ -0,0 +1,135 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_DEFAULT_COLLISION_CONFIGURATION
#define BT_DEFAULT_COLLISION_CONFIGURATION
#include "btCollisionConfiguration.h"
class btVoronoiSimplexSolver;
class btConvexPenetrationDepthSolver;
struct btDefaultCollisionConstructionInfo
{
btStackAlloc* m_stackAlloc;
btPoolAllocator* m_persistentManifoldPool;
btPoolAllocator* m_collisionAlgorithmPool;
int m_defaultMaxPersistentManifoldPoolSize;
int m_defaultMaxCollisionAlgorithmPoolSize;
int m_customCollisionAlgorithmMaxElementSize;
int m_defaultStackAllocatorSize;
int m_useEpaPenetrationAlgorithm;
btDefaultCollisionConstructionInfo()
:m_stackAlloc(0),
m_persistentManifoldPool(0),
m_collisionAlgorithmPool(0),
m_defaultMaxPersistentManifoldPoolSize(4096),
m_defaultMaxCollisionAlgorithmPoolSize(4096),
m_customCollisionAlgorithmMaxElementSize(0),
m_defaultStackAllocatorSize(0),
m_useEpaPenetrationAlgorithm(true)
{
}
};
///btCollisionConfiguration allows to configure Bullet collision detection
///stack allocator, pool memory allocators
///@todo: describe the meaning
class btDefaultCollisionConfiguration : public btCollisionConfiguration
{
protected:
int m_persistentManifoldPoolSize;
btStackAlloc* m_stackAlloc;
bool m_ownsStackAllocator;
btPoolAllocator* m_persistentManifoldPool;
bool m_ownsPersistentManifoldPool;
btPoolAllocator* m_collisionAlgorithmPool;
bool m_ownsCollisionAlgorithmPool;
//default simplex/penetration depth solvers
btVoronoiSimplexSolver* m_simplexSolver;
btConvexPenetrationDepthSolver* m_pdSolver;
//default CreationFunctions, filling the m_doubleDispatch table
btCollisionAlgorithmCreateFunc* m_convexConvexCreateFunc;
btCollisionAlgorithmCreateFunc* m_convexConcaveCreateFunc;
btCollisionAlgorithmCreateFunc* m_swappedConvexConcaveCreateFunc;
btCollisionAlgorithmCreateFunc* m_compoundCreateFunc;
btCollisionAlgorithmCreateFunc* m_swappedCompoundCreateFunc;
btCollisionAlgorithmCreateFunc* m_emptyCreateFunc;
btCollisionAlgorithmCreateFunc* m_sphereSphereCF;
#ifdef USE_BUGGY_SPHERE_BOX_ALGORITHM
btCollisionAlgorithmCreateFunc* m_sphereBoxCF;
btCollisionAlgorithmCreateFunc* m_boxSphereCF;
#endif //USE_BUGGY_SPHERE_BOX_ALGORITHM
btCollisionAlgorithmCreateFunc* m_boxBoxCF;
btCollisionAlgorithmCreateFunc* m_sphereTriangleCF;
btCollisionAlgorithmCreateFunc* m_triangleSphereCF;
btCollisionAlgorithmCreateFunc* m_planeConvexCF;
btCollisionAlgorithmCreateFunc* m_convexPlaneCF;
public:
btDefaultCollisionConfiguration(const btDefaultCollisionConstructionInfo& constructionInfo = btDefaultCollisionConstructionInfo());
virtual ~btDefaultCollisionConfiguration();
///memory pools
virtual btPoolAllocator* getPersistentManifoldPool()
{
return m_persistentManifoldPool;
}
virtual btPoolAllocator* getCollisionAlgorithmPool()
{
return m_collisionAlgorithmPool;
}
virtual btStackAlloc* getStackAllocator()
{
return m_stackAlloc;
}
virtual btVoronoiSimplexSolver* getSimplexSolver()
{
return m_simplexSolver;
}
virtual btCollisionAlgorithmCreateFunc* getCollisionAlgorithmCreateFunc(int proxyType0,int proxyType1);
///Use this method to allow to generate multiple contact points between at once, between two objects using the generic convex-convex algorithm.
///By default, this feature is disabled for best performance.
///@param numPerturbationIterations controls the number of collision queries. Set it to zero to disable the feature.
///@param minimumPointsPerturbationThreshold is the minimum number of points in the contact cache, above which the feature is disabled
///3 is a good value for both params, if you want to enable the feature. This is because the default contact cache contains a maximum of 4 points, and one collision query at the unperturbed orientation is performed first.
///See Bullet/Demos/CollisionDemo for an example how this feature gathers multiple points.
///@todo we could add a per-object setting of those parameters, for level-of-detail collision detection.
void setConvexConvexMultipointIterations(int numPerturbationIterations=3, int minimumPointsPerturbationThreshold = 3);
};
#endif //BT_DEFAULT_COLLISION_CONFIGURATION

View File

@ -0,0 +1,34 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btEmptyCollisionAlgorithm.h"
btEmptyAlgorithm::btEmptyAlgorithm(const btCollisionAlgorithmConstructionInfo& ci)
: btCollisionAlgorithm(ci)
{
}
void btEmptyAlgorithm::processCollision (btCollisionObject* ,btCollisionObject* ,const btDispatcherInfo& ,btManifoldResult* )
{
}
btScalar btEmptyAlgorithm::calculateTimeOfImpact(btCollisionObject* ,btCollisionObject* ,const btDispatcherInfo& ,btManifoldResult* )
{
return btScalar(1.);
}

View File

@ -0,0 +1,54 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef EMPTY_ALGORITH
#define EMPTY_ALGORITH
#include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h"
#include "btCollisionCreateFunc.h"
#include "btCollisionDispatcher.h"
#define ATTRIBUTE_ALIGNED(a)
///EmptyAlgorithm is a stub for unsupported collision pairs.
///The dispatcher can dispatch a persistent btEmptyAlgorithm to avoid a search every frame.
class btEmptyAlgorithm : public btCollisionAlgorithm
{
public:
btEmptyAlgorithm(const btCollisionAlgorithmConstructionInfo& ci);
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual void getAllContactManifolds(btManifoldArray& manifoldArray)
{
}
struct CreateFunc :public btCollisionAlgorithmCreateFunc
{
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
{
(void)body0;
(void)body1;
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btEmptyAlgorithm));
return new(mem) btEmptyAlgorithm(ci);
}
};
} ATTRIBUTE_ALIGNED(16);
#endif //EMPTY_ALGORITH

View File

@ -0,0 +1,171 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2008 Erwin Coumans http://bulletphysics.com
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btGhostObject.h"
#include "btCollisionWorld.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "LinearMath/btAabbUtil2.h"
btGhostObject::btGhostObject()
{
m_internalType = CO_GHOST_OBJECT;
}
btGhostObject::~btGhostObject()
{
///btGhostObject should have been removed from the world, so no overlapping objects
btAssert(!m_overlappingObjects.size());
}
void btGhostObject::addOverlappingObjectInternal(btBroadphaseProxy* otherProxy,btBroadphaseProxy* thisProxy)
{
btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
btAssert(otherObject);
///if this linearSearch becomes too slow (too many overlapping objects) we should add a more appropriate data structure
int index = m_overlappingObjects.findLinearSearch(otherObject);
if (index==m_overlappingObjects.size())
{
//not found
m_overlappingObjects.push_back(otherObject);
}
}
void btGhostObject::removeOverlappingObjectInternal(btBroadphaseProxy* otherProxy,btDispatcher* dispatcher,btBroadphaseProxy* thisProxy)
{
btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
btAssert(otherObject);
int index = m_overlappingObjects.findLinearSearch(otherObject);
if (index<m_overlappingObjects.size())
{
m_overlappingObjects[index] = m_overlappingObjects[m_overlappingObjects.size()-1];
m_overlappingObjects.pop_back();
}
}
btPairCachingGhostObject::btPairCachingGhostObject()
{
m_hashPairCache = new (btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16)) btHashedOverlappingPairCache();
}
btPairCachingGhostObject::~btPairCachingGhostObject()
{
m_hashPairCache->~btHashedOverlappingPairCache();
btAlignedFree( m_hashPairCache );
}
void btPairCachingGhostObject::addOverlappingObjectInternal(btBroadphaseProxy* otherProxy,btBroadphaseProxy* thisProxy)
{
btBroadphaseProxy*actualThisProxy = thisProxy ? thisProxy : getBroadphaseHandle();
btAssert(actualThisProxy);
btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
btAssert(otherObject);
int index = m_overlappingObjects.findLinearSearch(otherObject);
if (index==m_overlappingObjects.size())
{
m_overlappingObjects.push_back(otherObject);
m_hashPairCache->addOverlappingPair(actualThisProxy,otherProxy);
}
}
void btPairCachingGhostObject::removeOverlappingObjectInternal(btBroadphaseProxy* otherProxy,btDispatcher* dispatcher,btBroadphaseProxy* thisProxy1)
{
btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
btBroadphaseProxy* actualThisProxy = thisProxy1 ? thisProxy1 : getBroadphaseHandle();
btAssert(actualThisProxy);
btAssert(otherObject);
int index = m_overlappingObjects.findLinearSearch(otherObject);
if (index<m_overlappingObjects.size())
{
m_overlappingObjects[index] = m_overlappingObjects[m_overlappingObjects.size()-1];
m_overlappingObjects.pop_back();
m_hashPairCache->removeOverlappingPair(actualThisProxy,otherProxy,dispatcher);
}
}
void btGhostObject::convexSweepTest(const btConvexShape* castShape, const btTransform& convexFromWorld, const btTransform& convexToWorld, btCollisionWorld::ConvexResultCallback& resultCallback, btScalar allowedCcdPenetration) const
{
btTransform convexFromTrans,convexToTrans;
convexFromTrans = convexFromWorld;
convexToTrans = convexToWorld;
btVector3 castShapeAabbMin, castShapeAabbMax;
/* Compute AABB that encompasses angular movement */
{
btVector3 linVel, angVel;
btTransformUtil::calculateVelocity (convexFromTrans, convexToTrans, 1.0, linVel, angVel);
btTransform R;
R.setIdentity ();
R.setRotation (convexFromTrans.getRotation());
castShape->calculateTemporalAabb (R, linVel, angVel, 1.0, castShapeAabbMin, castShapeAabbMax);
}
/// go over all objects, and if the ray intersects their aabb + cast shape aabb,
// do a ray-shape query using convexCaster (CCD)
int i;
for (i=0;i<m_overlappingObjects.size();i++)
{
btCollisionObject* collisionObject= m_overlappingObjects[i];
//only perform raycast if filterMask matches
if(resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) {
//RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
AabbExpand (collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax);
btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing
btVector3 hitNormal;
if (btRayAabb(convexFromWorld.getOrigin(),convexToWorld.getOrigin(),collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,hitNormal))
{
btCollisionWorld::objectQuerySingle(castShape, convexFromTrans,convexToTrans,
collisionObject,
collisionObject->getCollisionShape(),
collisionObject->getWorldTransform(),
resultCallback,
allowedCcdPenetration);
}
}
}
}
void btGhostObject::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, btCollisionWorld::RayResultCallback& resultCallback) const
{
btTransform rayFromTrans;
rayFromTrans.setIdentity();
rayFromTrans.setOrigin(rayFromWorld);
btTransform rayToTrans;
rayToTrans.setIdentity();
rayToTrans.setOrigin(rayToWorld);
int i;
for (i=0;i<m_overlappingObjects.size();i++)
{
btCollisionObject* collisionObject= m_overlappingObjects[i];
//only perform raycast if filterMask matches
if(resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
{
btCollisionWorld::rayTestSingle(rayFromTrans,rayToTrans,
collisionObject,
collisionObject->getCollisionShape(),
collisionObject->getWorldTransform(),
resultCallback);
}
}
}

View File

@ -0,0 +1,175 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2008 Erwin Coumans http://bulletphysics.com
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_GHOST_OBJECT_H
#define BT_GHOST_OBJECT_H
#include "btCollisionObject.h"
#include "BulletCollision/BroadphaseCollision/btOverlappingPairCallback.h"
#include "LinearMath/btAlignedAllocator.h"
#include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h"
#include "btCollisionWorld.h"
class btConvexShape;
class btDispatcher;
///The btGhostObject can keep track of all objects that are overlapping
///By default, this overlap is based on the AABB
///This is useful for creating a character controller, collision sensors/triggers, explosions etc.
///We plan on adding rayTest and other queries for the btGhostObject
ATTRIBUTE_ALIGNED16(class) btGhostObject : public btCollisionObject
{
protected:
btAlignedObjectArray<btCollisionObject*> m_overlappingObjects;
public:
btGhostObject();
virtual ~btGhostObject();
void convexSweepTest(const class btConvexShape* castShape, const btTransform& convexFromWorld, const btTransform& convexToWorld, btCollisionWorld::ConvexResultCallback& resultCallback, btScalar allowedCcdPenetration = 0.f) const;
void rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, btCollisionWorld::RayResultCallback& resultCallback) const;
///this method is mainly for expert/internal use only.
virtual void addOverlappingObjectInternal(btBroadphaseProxy* otherProxy, btBroadphaseProxy* thisProxy=0);
///this method is mainly for expert/internal use only.
virtual void removeOverlappingObjectInternal(btBroadphaseProxy* otherProxy,btDispatcher* dispatcher,btBroadphaseProxy* thisProxy=0);
int getNumOverlappingObjects() const
{
return m_overlappingObjects.size();
}
btCollisionObject* getOverlappingObject(int index)
{
return m_overlappingObjects[index];
}
const btCollisionObject* getOverlappingObject(int index) const
{
return m_overlappingObjects[index];
}
btAlignedObjectArray<btCollisionObject*>& getOverlappingPairs()
{
return m_overlappingObjects;
}
const btAlignedObjectArray<btCollisionObject*> getOverlappingPairs() const
{
return m_overlappingObjects;
}
//
// internal cast
//
static const btGhostObject* upcast(const btCollisionObject* colObj)
{
if (colObj->getInternalType()==CO_GHOST_OBJECT)
return (const btGhostObject*)colObj;
return 0;
}
static btGhostObject* upcast(btCollisionObject* colObj)
{
if (colObj->getInternalType()==CO_GHOST_OBJECT)
return (btGhostObject*)colObj;
return 0;
}
};
class btPairCachingGhostObject : public btGhostObject
{
btHashedOverlappingPairCache* m_hashPairCache;
public:
btPairCachingGhostObject();
virtual ~btPairCachingGhostObject();
///this method is mainly for expert/internal use only.
virtual void addOverlappingObjectInternal(btBroadphaseProxy* otherProxy, btBroadphaseProxy* thisProxy=0);
virtual void removeOverlappingObjectInternal(btBroadphaseProxy* otherProxy,btDispatcher* dispatcher,btBroadphaseProxy* thisProxy=0);
btHashedOverlappingPairCache* getOverlappingPairCache()
{
return m_hashPairCache;
}
};
///The btGhostPairCallback interfaces and forwards adding and removal of overlapping pairs from the btBroadphaseInterface to btGhostObject.
class btGhostPairCallback : public btOverlappingPairCallback
{
public:
btGhostPairCallback()
{
}
virtual ~btGhostPairCallback()
{
}
virtual btBroadphasePair* addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
{
btCollisionObject* colObj0 = (btCollisionObject*) proxy0->m_clientObject;
btCollisionObject* colObj1 = (btCollisionObject*) proxy1->m_clientObject;
btGhostObject* ghost0 = btGhostObject::upcast(colObj0);
btGhostObject* ghost1 = btGhostObject::upcast(colObj1);
if (ghost0)
ghost0->addOverlappingObjectInternal(proxy1, proxy0);
if (ghost1)
ghost1->addOverlappingObjectInternal(proxy0, proxy1);
return 0;
}
virtual void* removeOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1,btDispatcher* dispatcher)
{
btCollisionObject* colObj0 = (btCollisionObject*) proxy0->m_clientObject;
btCollisionObject* colObj1 = (btCollisionObject*) proxy1->m_clientObject;
btGhostObject* ghost0 = btGhostObject::upcast(colObj0);
btGhostObject* ghost1 = btGhostObject::upcast(colObj1);
if (ghost0)
ghost0->removeOverlappingObjectInternal(proxy1,dispatcher,proxy0);
if (ghost1)
ghost1->removeOverlappingObjectInternal(proxy0,dispatcher,proxy1);
return 0;
}
virtual void removeOverlappingPairsContainingProxy(btBroadphaseProxy* /*proxy0*/,btDispatcher* /*dispatcher*/)
{
btAssert(0);
//need to keep track of all ghost objects and call them here
//m_hashPairCache->removeOverlappingPairsContainingProxy(proxy0,dispatcher);
}
};
#endif

View File

@ -0,0 +1,772 @@
#include "btInternalEdgeUtility.h"
#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h"
#include "BulletCollision/CollisionShapes/btTriangleShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h"
#include "LinearMath/btIDebugDraw.h"
//#define DEBUG_INTERNAL_EDGE
#ifdef DEBUG_INTERNAL_EDGE
#include <stdio.h>
#endif //DEBUG_INTERNAL_EDGE
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
static btIDebugDraw* gDebugDrawer = 0;
void btSetDebugDrawer(btIDebugDraw* debugDrawer)
{
gDebugDrawer = debugDrawer;
}
static void btDebugDrawLine(const btVector3& from,const btVector3& to, const btVector3& color)
{
if (gDebugDrawer)
gDebugDrawer->drawLine(from,to,color);
}
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
static int btGetHash(int partId, int triangleIndex)
{
int hash = (partId<<(31-MAX_NUM_PARTS_IN_BITS)) | triangleIndex;
return hash;
}
static btScalar btGetAngle(const btVector3& edgeA, const btVector3& normalA,const btVector3& normalB)
{
const btVector3 refAxis0 = edgeA;
const btVector3 refAxis1 = normalA;
const btVector3 swingAxis = normalB;
btScalar angle = btAtan2(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
return angle;
}
struct btConnectivityProcessor : public btTriangleCallback
{
int m_partIdA;
int m_triangleIndexA;
btVector3* m_triangleVerticesA;
btTriangleInfoMap* m_triangleInfoMap;
virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex)
{
//skip self-collisions
if ((m_partIdA == partId) && (m_triangleIndexA == triangleIndex))
return;
//skip duplicates (disabled for now)
//if ((m_partIdA <= partId) && (m_triangleIndexA <= triangleIndex))
// return;
//search for shared vertices and edges
int numshared = 0;
int sharedVertsA[3]={-1,-1,-1};
int sharedVertsB[3]={-1,-1,-1};
///skip degenerate triangles
btScalar crossBSqr = ((triangle[1]-triangle[0]).cross(triangle[2]-triangle[0])).length2();
if (crossBSqr < m_triangleInfoMap->m_equalVertexThreshold)
return;
btScalar crossASqr = ((m_triangleVerticesA[1]-m_triangleVerticesA[0]).cross(m_triangleVerticesA[2]-m_triangleVerticesA[0])).length2();
///skip degenerate triangles
if (crossASqr< m_triangleInfoMap->m_equalVertexThreshold)
return;
#if 0
printf("triangle A[0] = (%f,%f,%f)\ntriangle A[1] = (%f,%f,%f)\ntriangle A[2] = (%f,%f,%f)\n",
m_triangleVerticesA[0].getX(),m_triangleVerticesA[0].getY(),m_triangleVerticesA[0].getZ(),
m_triangleVerticesA[1].getX(),m_triangleVerticesA[1].getY(),m_triangleVerticesA[1].getZ(),
m_triangleVerticesA[2].getX(),m_triangleVerticesA[2].getY(),m_triangleVerticesA[2].getZ());
printf("partId=%d, triangleIndex=%d\n",partId,triangleIndex);
printf("triangle B[0] = (%f,%f,%f)\ntriangle B[1] = (%f,%f,%f)\ntriangle B[2] = (%f,%f,%f)\n",
triangle[0].getX(),triangle[0].getY(),triangle[0].getZ(),
triangle[1].getX(),triangle[1].getY(),triangle[1].getZ(),
triangle[2].getX(),triangle[2].getY(),triangle[2].getZ());
#endif
for (int i=0;i<3;i++)
{
for (int j=0;j<3;j++)
{
if ( (m_triangleVerticesA[i]-triangle[j]).length2() < m_triangleInfoMap->m_equalVertexThreshold)
{
sharedVertsA[numshared] = i;
sharedVertsB[numshared] = j;
numshared++;
///degenerate case
if(numshared >= 3)
return;
}
}
///degenerate case
if(numshared >= 3)
return;
}
switch (numshared)
{
case 0:
{
break;
}
case 1:
{
//shared vertex
break;
}
case 2:
{
//shared edge
//we need to make sure the edge is in the order V2V0 and not V0V2 so that the signs are correct
if (sharedVertsA[0] == 0 && sharedVertsA[1] == 2)
{
sharedVertsA[0] = 2;
sharedVertsA[1] = 0;
int tmp = sharedVertsB[1];
sharedVertsB[1] = sharedVertsB[0];
sharedVertsB[0] = tmp;
}
int hash = btGetHash(m_partIdA,m_triangleIndexA);
btTriangleInfo* info = m_triangleInfoMap->find(hash);
if (!info)
{
btTriangleInfo tmp;
m_triangleInfoMap->insert(hash,tmp);
info = m_triangleInfoMap->find(hash);
}
int sumvertsA = sharedVertsA[0]+sharedVertsA[1];
int otherIndexA = 3-sumvertsA;
btVector3 edge(m_triangleVerticesA[sharedVertsA[1]]-m_triangleVerticesA[sharedVertsA[0]]);
btTriangleShape tA(m_triangleVerticesA[0],m_triangleVerticesA[1],m_triangleVerticesA[2]);
int otherIndexB = 3-(sharedVertsB[0]+sharedVertsB[1]);
btTriangleShape tB(triangle[sharedVertsB[1]],triangle[sharedVertsB[0]],triangle[otherIndexB]);
//btTriangleShape tB(triangle[0],triangle[1],triangle[2]);
btVector3 normalA;
btVector3 normalB;
tA.calcNormal(normalA);
tB.calcNormal(normalB);
edge.normalize();
btVector3 edgeCrossA = edge.cross(normalA).normalize();
{
btVector3 tmp = m_triangleVerticesA[otherIndexA]-m_triangleVerticesA[sharedVertsA[0]];
if (edgeCrossA.dot(tmp) < 0)
{
edgeCrossA*=-1;
}
}
btVector3 edgeCrossB = edge.cross(normalB).normalize();
{
btVector3 tmp = triangle[otherIndexB]-triangle[sharedVertsB[0]];
if (edgeCrossB.dot(tmp) < 0)
{
edgeCrossB*=-1;
}
}
btScalar angle2 = 0;
btScalar ang4 = 0.f;
btVector3 calculatedEdge = edgeCrossA.cross(edgeCrossB);
btScalar len2 = calculatedEdge.length2();
btScalar correctedAngle(0);
btVector3 calculatedNormalB = normalA;
bool isConvex = false;
if (len2<m_triangleInfoMap->m_planarEpsilon)
{
angle2 = 0.f;
ang4 = 0.f;
} else
{
calculatedEdge.normalize();
btVector3 calculatedNormalA = calculatedEdge.cross(edgeCrossA);
calculatedNormalA.normalize();
angle2 = btGetAngle(calculatedNormalA,edgeCrossA,edgeCrossB);
ang4 = SIMD_PI-angle2;
btScalar dotA = normalA.dot(edgeCrossB);
///@todo: check if we need some epsilon, due to floating point imprecision
isConvex = (dotA<0.);
correctedAngle = isConvex ? ang4 : -ang4;
btQuaternion orn2(calculatedEdge,-correctedAngle);
calculatedNormalB = btMatrix3x3(orn2)*normalA;
}
//alternatively use
//btVector3 calculatedNormalB2 = quatRotate(orn,normalA);
switch (sumvertsA)
{
case 1:
{
btVector3 edge = m_triangleVerticesA[0]-m_triangleVerticesA[1];
btQuaternion orn(edge,-correctedAngle);
btVector3 computedNormalB = quatRotate(orn,normalA);
btScalar bla = computedNormalB.dot(normalB);
if (bla<0)
{
computedNormalB*=-1;
info->m_flags |= TRI_INFO_V0V1_SWAP_NORMALB;
}
#ifdef DEBUG_INTERNAL_EDGE
if ((computedNormalB-normalB).length()>0.0001)
{
printf("warning: normals not identical\n");
}
#endif//DEBUG_INTERNAL_EDGE
info->m_edgeV0V1Angle = -correctedAngle;
if (isConvex)
info->m_flags |= TRI_INFO_V0V1_CONVEX;
break;
}
case 2:
{
btVector3 edge = m_triangleVerticesA[2]-m_triangleVerticesA[0];
btQuaternion orn(edge,-correctedAngle);
btVector3 computedNormalB = quatRotate(orn,normalA);
if (computedNormalB.dot(normalB)<0)
{
computedNormalB*=-1;
info->m_flags |= TRI_INFO_V2V0_SWAP_NORMALB;
}
#ifdef DEBUG_INTERNAL_EDGE
if ((computedNormalB-normalB).length()>0.0001)
{
printf("warning: normals not identical\n");
}
#endif //DEBUG_INTERNAL_EDGE
info->m_edgeV2V0Angle = -correctedAngle;
if (isConvex)
info->m_flags |= TRI_INFO_V2V0_CONVEX;
break;
}
case 3:
{
btVector3 edge = m_triangleVerticesA[1]-m_triangleVerticesA[2];
btQuaternion orn(edge,-correctedAngle);
btVector3 computedNormalB = quatRotate(orn,normalA);
if (computedNormalB.dot(normalB)<0)
{
info->m_flags |= TRI_INFO_V1V2_SWAP_NORMALB;
computedNormalB*=-1;
}
#ifdef DEBUG_INTERNAL_EDGE
if ((computedNormalB-normalB).length()>0.0001)
{
printf("warning: normals not identical\n");
}
#endif //DEBUG_INTERNAL_EDGE
info->m_edgeV1V2Angle = -correctedAngle;
if (isConvex)
info->m_flags |= TRI_INFO_V1V2_CONVEX;
break;
}
}
break;
}
default:
{
// printf("warning: duplicate triangle\n");
}
}
}
};
/////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////
void btGenerateInternalEdgeInfo (btBvhTriangleMeshShape*trimeshShape, btTriangleInfoMap* triangleInfoMap)
{
//the user pointer shouldn't already be used for other purposes, we intend to store connectivity info there!
if (trimeshShape->getTriangleInfoMap())
return;
trimeshShape->setTriangleInfoMap(triangleInfoMap);
btStridingMeshInterface* meshInterface = trimeshShape->getMeshInterface();
const btVector3& meshScaling = meshInterface->getScaling();
for (int partId = 0; partId< meshInterface->getNumSubParts();partId++)
{
const unsigned char *vertexbase = 0;
int numverts = 0;
PHY_ScalarType type = PHY_INTEGER;
int stride = 0;
const unsigned char *indexbase = 0;
int indexstride = 0;
int numfaces = 0;
PHY_ScalarType indicestype = PHY_INTEGER;
//PHY_ScalarType indexType=0;
btVector3 triangleVerts[3];
meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts, type,stride,&indexbase,indexstride,numfaces,indicestype,partId);
btVector3 aabbMin,aabbMax;
for (int triangleIndex = 0 ; triangleIndex < numfaces;triangleIndex++)
{
unsigned int* gfxbase = (unsigned int*)(indexbase+triangleIndex*indexstride);
for (int j=2;j>=0;j--)
{
int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
if (type == PHY_FLOAT)
{
float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
triangleVerts[j] = btVector3(
graphicsbase[0]*meshScaling.getX(),
graphicsbase[1]*meshScaling.getY(),
graphicsbase[2]*meshScaling.getZ());
}
else
{
double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
triangleVerts[j] = btVector3( btScalar(graphicsbase[0]*meshScaling.getX()), btScalar(graphicsbase[1]*meshScaling.getY()), btScalar(graphicsbase[2]*meshScaling.getZ()));
}
}
aabbMin.setValue(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));
aabbMax.setValue(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT));
aabbMin.setMin(triangleVerts[0]);
aabbMax.setMax(triangleVerts[0]);
aabbMin.setMin(triangleVerts[1]);
aabbMax.setMax(triangleVerts[1]);
aabbMin.setMin(triangleVerts[2]);
aabbMax.setMax(triangleVerts[2]);
btConnectivityProcessor connectivityProcessor;
connectivityProcessor.m_partIdA = partId;
connectivityProcessor.m_triangleIndexA = triangleIndex;
connectivityProcessor.m_triangleVerticesA = &triangleVerts[0];
connectivityProcessor.m_triangleInfoMap = triangleInfoMap;
trimeshShape->processAllTriangles(&connectivityProcessor,aabbMin,aabbMax);
}
}
}
// Given a point and a line segment (defined by two points), compute the closest point
// in the line. Cap the point at the endpoints of the line segment.
void btNearestPointInLineSegment(const btVector3 &point, const btVector3& line0, const btVector3& line1, btVector3& nearestPoint)
{
btVector3 lineDelta = line1 - line0;
// Handle degenerate lines
if ( lineDelta.fuzzyZero())
{
nearestPoint = line0;
}
else
{
btScalar delta = (point-line0).dot(lineDelta) / (lineDelta).dot(lineDelta);
// Clamp the point to conform to the segment's endpoints
if ( delta < 0 )
delta = 0;
else if ( delta > 1 )
delta = 1;
nearestPoint = line0 + lineDelta*delta;
}
}
bool btClampNormal(const btVector3& edge,const btVector3& tri_normal_org,const btVector3& localContactNormalOnB, btScalar correctedEdgeAngle, btVector3 & clampedLocalNormal)
{
btVector3 tri_normal = tri_normal_org;
//we only have a local triangle normal, not a local contact normal -> only normal in world space...
//either compute the current angle all in local space, or all in world space
btVector3 edgeCross = edge.cross(tri_normal).normalize();
btScalar curAngle = btGetAngle(edgeCross,tri_normal,localContactNormalOnB);
if (correctedEdgeAngle<0)
{
if (curAngle < correctedEdgeAngle)
{
btScalar diffAngle = correctedEdgeAngle-curAngle;
btQuaternion rotation(edge,diffAngle );
clampedLocalNormal = btMatrix3x3(rotation)*localContactNormalOnB;
return true;
}
}
if (correctedEdgeAngle>=0)
{
if (curAngle > correctedEdgeAngle)
{
btScalar diffAngle = correctedEdgeAngle-curAngle;
btQuaternion rotation(edge,diffAngle );
clampedLocalNormal = btMatrix3x3(rotation)*localContactNormalOnB;
return true;
}
}
return false;
}
/// Changes a btManifoldPoint collision normal to the normal from the mesh.
void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObject* colObj0,const btCollisionObject* colObj1, int partId0, int index0, int normalAdjustFlags)
{
//btAssert(colObj0->getCollisionShape()->getShapeType() == TRIANGLE_SHAPE_PROXYTYPE);
if (colObj0->getCollisionShape()->getShapeType() != TRIANGLE_SHAPE_PROXYTYPE)
return;
btBvhTriangleMeshShape* trimesh = (btBvhTriangleMeshShape*)colObj0->getRootCollisionShape();
btTriangleInfoMap* triangleInfoMapPtr = (btTriangleInfoMap*) trimesh->getTriangleInfoMap();
if (!triangleInfoMapPtr)
return;
int hash = btGetHash(partId0,index0);
btTriangleInfo* info = triangleInfoMapPtr->find(hash);
if (!info)
return;
btScalar frontFacing = (normalAdjustFlags & BT_TRIANGLE_CONVEX_BACKFACE_MODE)==0? 1.f : -1.f;
const btTriangleShape* tri_shape = static_cast<const btTriangleShape*>(colObj0->getCollisionShape());
btVector3 v0,v1,v2;
tri_shape->getVertex(0,v0);
tri_shape->getVertex(1,v1);
tri_shape->getVertex(2,v2);
btVector3 center = (v0+v1+v2)*btScalar(1./3.);
btVector3 red(1,0,0), green(0,1,0),blue(0,0,1),white(1,1,1),black(0,0,0);
btVector3 tri_normal;
tri_shape->calcNormal(tri_normal);
//btScalar dot = tri_normal.dot(cp.m_normalWorldOnB);
btVector3 nearest;
btNearestPointInLineSegment(cp.m_localPointB,v0,v1,nearest);
btVector3 contact = cp.m_localPointB;
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
const btTransform& tr = colObj0->getWorldTransform();
btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,red);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
bool isNearEdge = false;
int numConcaveEdgeHits = 0;
int numConvexEdgeHits = 0;
btVector3 localContactNormalOnB = colObj0->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB;
localContactNormalOnB.normalize();//is this necessary?
if ((info->m_edgeV0V1Angle)< SIMD_2_PI)
{
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black);
#endif
btScalar len = (contact-nearest).length();
if(len<triangleInfoMapPtr->m_edgeDistanceThreshold)
{
btVector3 edge(v0-v1);
isNearEdge = true;
if (info->m_edgeV0V1Angle==btScalar(0))
{
numConcaveEdgeHits++;
} else
{
bool isEdgeConvex = (info->m_flags & TRI_INFO_V0V1_CONVEX);
btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1);
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
btVector3 nA = swapFactor * tri_normal;
btQuaternion orn(edge,info->m_edgeV0V1Angle);
btVector3 computedNormalB = quatRotate(orn,tri_normal);
if (info->m_flags & TRI_INFO_V0V1_SWAP_NORMALB)
computedNormalB*=-1;
btVector3 nB = swapFactor*computedNormalB;
btScalar NdotA = localContactNormalOnB.dot(nA);
btScalar NdotB = localContactNormalOnB.dot(nB);
bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon);
#ifdef DEBUG_INTERNAL_EDGE
{
btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red);
}
#endif //DEBUG_INTERNAL_EDGE
if (backFacingNormal)
{
numConcaveEdgeHits++;
}
else
{
numConvexEdgeHits++;
btVector3 clampedLocalNormal;
bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB, info->m_edgeV0V1Angle,clampedLocalNormal);
if (isClamped)
{
if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0))
{
btVector3 newNormal = colObj0->getWorldTransform().getBasis() * clampedLocalNormal;
// cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
cp.m_normalWorldOnB = newNormal;
// Reproject collision point along normal. (what about cp.m_distance1?)
cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB);
}
}
}
}
}
}
btNearestPointInLineSegment(contact,v1,v2,nearest);
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,green);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
if ((info->m_edgeV1V2Angle)< SIMD_2_PI)
{
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
btScalar len = (contact-nearest).length();
if(len<triangleInfoMapPtr->m_edgeDistanceThreshold)
{
isNearEdge = true;
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
btDebugDrawLine(tr*nearest,tr*(nearest+tri_normal*10),white);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
btVector3 edge(v1-v2);
isNearEdge = true;
if (info->m_edgeV1V2Angle == btScalar(0))
{
numConcaveEdgeHits++;
} else
{
bool isEdgeConvex = (info->m_flags & TRI_INFO_V1V2_CONVEX)!=0;
btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1);
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
btVector3 nA = swapFactor * tri_normal;
btQuaternion orn(edge,info->m_edgeV1V2Angle);
btVector3 computedNormalB = quatRotate(orn,tri_normal);
if (info->m_flags & TRI_INFO_V1V2_SWAP_NORMALB)
computedNormalB*=-1;
btVector3 nB = swapFactor*computedNormalB;
#ifdef DEBUG_INTERNAL_EDGE
{
btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red);
}
#endif //DEBUG_INTERNAL_EDGE
btScalar NdotA = localContactNormalOnB.dot(nA);
btScalar NdotB = localContactNormalOnB.dot(nB);
bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon);
if (backFacingNormal)
{
numConcaveEdgeHits++;
}
else
{
numConvexEdgeHits++;
btVector3 localContactNormalOnB = colObj0->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB;
btVector3 clampedLocalNormal;
bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB, info->m_edgeV1V2Angle,clampedLocalNormal);
if (isClamped)
{
if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0))
{
btVector3 newNormal = colObj0->getWorldTransform().getBasis() * clampedLocalNormal;
// cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
cp.m_normalWorldOnB = newNormal;
// Reproject collision point along normal.
cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB);
}
}
}
}
}
}
btNearestPointInLineSegment(contact,v2,v0,nearest);
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,blue);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
if ((info->m_edgeV2V0Angle)< SIMD_2_PI)
{
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
btScalar len = (contact-nearest).length();
if(len<triangleInfoMapPtr->m_edgeDistanceThreshold)
{
isNearEdge = true;
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
btDebugDrawLine(tr*nearest,tr*(nearest+tri_normal*10),white);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
btVector3 edge(v2-v0);
if (info->m_edgeV2V0Angle==btScalar(0))
{
numConcaveEdgeHits++;
} else
{
bool isEdgeConvex = (info->m_flags & TRI_INFO_V2V0_CONVEX)!=0;
btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1);
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
btVector3 nA = swapFactor * tri_normal;
btQuaternion orn(edge,info->m_edgeV2V0Angle);
btVector3 computedNormalB = quatRotate(orn,tri_normal);
if (info->m_flags & TRI_INFO_V2V0_SWAP_NORMALB)
computedNormalB*=-1;
btVector3 nB = swapFactor*computedNormalB;
#ifdef DEBUG_INTERNAL_EDGE
{
btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red);
}
#endif //DEBUG_INTERNAL_EDGE
btScalar NdotA = localContactNormalOnB.dot(nA);
btScalar NdotB = localContactNormalOnB.dot(nB);
bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon);
if (backFacingNormal)
{
numConcaveEdgeHits++;
}
else
{
numConvexEdgeHits++;
// printf("hitting convex edge\n");
btVector3 localContactNormalOnB = colObj0->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB;
btVector3 clampedLocalNormal;
bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB,info->m_edgeV2V0Angle,clampedLocalNormal);
if (isClamped)
{
if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0))
{
btVector3 newNormal = colObj0->getWorldTransform().getBasis() * clampedLocalNormal;
// cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
cp.m_normalWorldOnB = newNormal;
// Reproject collision point along normal.
cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB);
}
}
}
}
}
}
#ifdef DEBUG_INTERNAL_EDGE
{
btVector3 color(0,1,1);
btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+cp.m_normalWorldOnB*10,color);
}
#endif //DEBUG_INTERNAL_EDGE
if (isNearEdge)
{
if (numConcaveEdgeHits>0)
{
if ((normalAdjustFlags & BT_TRIANGLE_CONCAVE_DOUBLE_SIDED)!=0)
{
//fix tri_normal so it pointing the same direction as the current local contact normal
if (tri_normal.dot(localContactNormalOnB) < 0)
{
tri_normal *= -1;
}
cp.m_normalWorldOnB = colObj0->getWorldTransform().getBasis()*tri_normal;
} else
{
//modify the normal to be the triangle normal (or backfacing normal)
cp.m_normalWorldOnB = colObj0->getWorldTransform().getBasis() *(tri_normal *frontFacing);
}
// Reproject collision point along normal.
cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB);
}
}
}

View File

@ -0,0 +1,46 @@
#ifndef BT_INTERNAL_EDGE_UTILITY_H
#define BT_INTERNAL_EDGE_UTILITY_H
#include "LinearMath/btHashMap.h"
#include "LinearMath/btVector3.h"
#include "BulletCollision/CollisionShapes/btTriangleInfoMap.h"
///The btInternalEdgeUtility helps to avoid or reduce artifacts due to wrong collision normals caused by internal edges.
///See also http://code.google.com/p/bullet/issues/detail?id=27
class btBvhTriangleMeshShape;
class btCollisionObject;
class btManifoldPoint;
class btIDebugDraw;
enum btInternalEdgeAdjustFlags
{
BT_TRIANGLE_CONVEX_BACKFACE_MODE = 1,
BT_TRIANGLE_CONCAVE_DOUBLE_SIDED = 2, //double sided options are experimental, single sided is recommended
BT_TRIANGLE_CONVEX_DOUBLE_SIDED = 4
};
///Call btGenerateInternalEdgeInfo to create triangle info, store in the shape 'userInfo'
void btGenerateInternalEdgeInfo (btBvhTriangleMeshShape*trimeshShape, btTriangleInfoMap* triangleInfoMap);
///Call the btFixMeshNormal to adjust the collision normal, using the triangle info map (generated using btGenerateInternalEdgeInfo)
///If this info map is missing, or the triangle is not store in this map, nothing will be done
void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObject* trimeshColObj0,const btCollisionObject* otherColObj1, int partId0, int index0, int normalAdjustFlags = 0);
///Enable the BT_INTERNAL_EDGE_DEBUG_DRAW define and call btSetDebugDrawer, to get visual info to see if the internal edge utility works properly.
///If the utility doesn't work properly, you might have to adjust the threshold values in btTriangleInfoMap
//#define BT_INTERNAL_EDGE_DEBUG_DRAW
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
void btSetDebugDrawer(btIDebugDraw* debugDrawer);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
#endif //BT_INTERNAL_EDGE_UTILITY_H

View File

@ -0,0 +1,134 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btManifoldResult.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
///This is to allow MaterialCombiner/Custom Friction/Restitution values
ContactAddedCallback gContactAddedCallback=0;
///User can override this material combiner by implementing gContactAddedCallback and setting body0->m_collisionFlags |= btCollisionObject::customMaterialCallback;
inline btScalar calculateCombinedFriction(const btCollisionObject* body0,const btCollisionObject* body1)
{
btScalar friction = body0->getFriction() * body1->getFriction();
const btScalar MAX_FRICTION = btScalar(10.);
if (friction < -MAX_FRICTION)
friction = -MAX_FRICTION;
if (friction > MAX_FRICTION)
friction = MAX_FRICTION;
return friction;
}
inline btScalar calculateCombinedRestitution(const btCollisionObject* body0,const btCollisionObject* body1)
{
return body0->getRestitution() * body1->getRestitution();
}
btManifoldResult::btManifoldResult(btCollisionObject* body0,btCollisionObject* body1)
:m_manifoldPtr(0),
m_body0(body0),
m_body1(body1)
#ifdef DEBUG_PART_INDEX
,m_partId0(-1),
m_partId1(-1),
m_index0(-1),
m_index1(-1)
#endif //DEBUG_PART_INDEX
{
m_rootTransA = body0->getWorldTransform();
m_rootTransB = body1->getWorldTransform();
}
void btManifoldResult::addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth)
{
btAssert(m_manifoldPtr);
//order in manifold needs to match
if (depth > m_manifoldPtr->getContactBreakingThreshold())
return;
bool isSwapped = m_manifoldPtr->getBody0() != m_body0;
btVector3 pointA = pointInWorld + normalOnBInWorld * depth;
btVector3 localA;
btVector3 localB;
if (isSwapped)
{
localA = m_rootTransB.invXform(pointA );
localB = m_rootTransA.invXform(pointInWorld);
} else
{
localA = m_rootTransA.invXform(pointA );
localB = m_rootTransB.invXform(pointInWorld);
}
btManifoldPoint newPt(localA,localB,normalOnBInWorld,depth);
newPt.m_positionWorldOnA = pointA;
newPt.m_positionWorldOnB = pointInWorld;
int insertIndex = m_manifoldPtr->getCacheEntry(newPt);
newPt.m_combinedFriction = calculateCombinedFriction(m_body0,m_body1);
newPt.m_combinedRestitution = calculateCombinedRestitution(m_body0,m_body1);
//BP mod, store contact triangles.
if (isSwapped)
{
newPt.m_partId0 = m_partId1;
newPt.m_partId1 = m_partId0;
newPt.m_index0 = m_index1;
newPt.m_index1 = m_index0;
} else
{
newPt.m_partId0 = m_partId0;
newPt.m_partId1 = m_partId1;
newPt.m_index0 = m_index0;
newPt.m_index1 = m_index1;
}
//printf("depth=%f\n",depth);
///@todo, check this for any side effects
if (insertIndex >= 0)
{
//const btManifoldPoint& oldPoint = m_manifoldPtr->getContactPoint(insertIndex);
m_manifoldPtr->replaceContactPoint(newPt,insertIndex);
} else
{
insertIndex = m_manifoldPtr->addManifoldPoint(newPt);
}
//User can override friction and/or restitution
if (gContactAddedCallback &&
//and if either of the two bodies requires custom material
((m_body0->getCollisionFlags() & btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK) ||
(m_body1->getCollisionFlags() & btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK)))
{
//experimental feature info, for per-triangle material etc.
btCollisionObject* obj0 = isSwapped? m_body1 : m_body0;
btCollisionObject* obj1 = isSwapped? m_body0 : m_body1;
(*gContactAddedCallback)(m_manifoldPtr->getContactPoint(insertIndex),obj0,newPt.m_partId0,newPt.m_index0,obj1,newPt.m_partId1,newPt.m_index1);
}
}

View File

@ -0,0 +1,128 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef MANIFOLD_RESULT_H
#define MANIFOLD_RESULT_H
class btCollisionObject;
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
class btManifoldPoint;
#include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
#include "LinearMath/btTransform.h"
typedef bool (*ContactAddedCallback)(btManifoldPoint& cp, const btCollisionObject* colObj0,int partId0,int index0,const btCollisionObject* colObj1,int partId1,int index1);
extern ContactAddedCallback gContactAddedCallback;
//#define DEBUG_PART_INDEX 1
///btManifoldResult is a helper class to manage contact results.
class btManifoldResult : public btDiscreteCollisionDetectorInterface::Result
{
protected:
btPersistentManifold* m_manifoldPtr;
//we need this for compounds
btTransform m_rootTransA;
btTransform m_rootTransB;
btCollisionObject* m_body0;
btCollisionObject* m_body1;
int m_partId0;
int m_partId1;
int m_index0;
int m_index1;
public:
btManifoldResult()
#ifdef DEBUG_PART_INDEX
:
m_partId0(-1),
m_partId1(-1),
m_index0(-1),
m_index1(-1)
#endif //DEBUG_PART_INDEX
{
}
btManifoldResult(btCollisionObject* body0,btCollisionObject* body1);
virtual ~btManifoldResult() {};
void setPersistentManifold(btPersistentManifold* manifoldPtr)
{
m_manifoldPtr = manifoldPtr;
}
const btPersistentManifold* getPersistentManifold() const
{
return m_manifoldPtr;
}
btPersistentManifold* getPersistentManifold()
{
return m_manifoldPtr;
}
virtual void setShapeIdentifiersA(int partId0,int index0)
{
m_partId0=partId0;
m_index0=index0;
}
virtual void setShapeIdentifiersB( int partId1,int index1)
{
m_partId1=partId1;
m_index1=index1;
}
virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth);
SIMD_FORCE_INLINE void refreshContactPoints()
{
btAssert(m_manifoldPtr);
if (!m_manifoldPtr->getNumContacts())
return;
bool isSwapped = m_manifoldPtr->getBody0() != m_body0;
if (isSwapped)
{
m_manifoldPtr->refreshContactPoints(m_rootTransB,m_rootTransA);
} else
{
m_manifoldPtr->refreshContactPoints(m_rootTransA,m_rootTransB);
}
}
const btCollisionObject* getBody0Internal() const
{
return m_body0;
}
const btCollisionObject* getBody1Internal() const
{
return m_body1;
}
};
#endif //MANIFOLD_RESULT_H

View File

@ -0,0 +1,443 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "LinearMath/btScalar.h"
#include "btSimulationIslandManager.h"
#include "BulletCollision/BroadphaseCollision/btDispatcher.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionDispatch/btCollisionWorld.h"
//#include <stdio.h>
#include "LinearMath/btQuickprof.h"
btSimulationIslandManager::btSimulationIslandManager():
m_splitIslands(true)
{
}
btSimulationIslandManager::~btSimulationIslandManager()
{
}
void btSimulationIslandManager::initUnionFind(int n)
{
m_unionFind.reset(n);
}
void btSimulationIslandManager::findUnions(btDispatcher* /* dispatcher */,btCollisionWorld* colWorld)
{
{
btOverlappingPairCache* pairCachePtr = colWorld->getPairCache();
const int numOverlappingPairs = pairCachePtr->getNumOverlappingPairs();
btBroadphasePair* pairPtr = pairCachePtr->getOverlappingPairArrayPtr();
for (int i=0;i<numOverlappingPairs;i++)
{
const btBroadphasePair& collisionPair = pairPtr[i];
btCollisionObject* colObj0 = (btCollisionObject*)collisionPair.m_pProxy0->m_clientObject;
btCollisionObject* colObj1 = (btCollisionObject*)collisionPair.m_pProxy1->m_clientObject;
if (((colObj0) && ((colObj0)->mergesSimulationIslands())) &&
((colObj1) && ((colObj1)->mergesSimulationIslands())))
{
m_unionFind.unite((colObj0)->getIslandTag(),
(colObj1)->getIslandTag());
}
}
}
}
#ifdef STATIC_SIMULATION_ISLAND_OPTIMIZATION
void btSimulationIslandManager::updateActivationState(btCollisionWorld* colWorld,btDispatcher* dispatcher)
{
// put the index into m_controllers into m_tag
int index = 0;
{
int i;
for (i=0;i<colWorld->getCollisionObjectArray().size(); i++)
{
btCollisionObject* collisionObject= colWorld->getCollisionObjectArray()[i];
//Adding filtering here
if (!collisionObject->isStaticOrKinematicObject())
{
collisionObject->setIslandTag(index++);
}
collisionObject->setCompanionId(-1);
collisionObject->setHitFraction(btScalar(1.));
}
}
// do the union find
initUnionFind( index );
findUnions(dispatcher,colWorld);
}
void btSimulationIslandManager::storeIslandActivationState(btCollisionWorld* colWorld)
{
// put the islandId ('find' value) into m_tag
{
int index = 0;
int i;
for (i=0;i<colWorld->getCollisionObjectArray().size();i++)
{
btCollisionObject* collisionObject= colWorld->getCollisionObjectArray()[i];
if (!collisionObject->isStaticOrKinematicObject())
{
collisionObject->setIslandTag( m_unionFind.find(index) );
//Set the correct object offset in Collision Object Array
m_unionFind.getElement(index).m_sz = i;
collisionObject->setCompanionId(-1);
index++;
} else
{
collisionObject->setIslandTag(-1);
collisionObject->setCompanionId(-2);
}
}
}
}
#else //STATIC_SIMULATION_ISLAND_OPTIMIZATION
void btSimulationIslandManager::updateActivationState(btCollisionWorld* colWorld,btDispatcher* dispatcher)
{
initUnionFind( int (colWorld->getCollisionObjectArray().size()));
// put the index into m_controllers into m_tag
{
int index = 0;
int i;
for (i=0;i<colWorld->getCollisionObjectArray().size(); i++)
{
btCollisionObject* collisionObject= colWorld->getCollisionObjectArray()[i];
collisionObject->setIslandTag(index);
collisionObject->setCompanionId(-1);
collisionObject->setHitFraction(btScalar(1.));
index++;
}
}
// do the union find
findUnions(dispatcher,colWorld);
}
void btSimulationIslandManager::storeIslandActivationState(btCollisionWorld* colWorld)
{
// put the islandId ('find' value) into m_tag
{
int index = 0;
int i;
for (i=0;i<colWorld->getCollisionObjectArray().size();i++)
{
btCollisionObject* collisionObject= colWorld->getCollisionObjectArray()[i];
if (!collisionObject->isStaticOrKinematicObject())
{
collisionObject->setIslandTag( m_unionFind.find(index) );
collisionObject->setCompanionId(-1);
} else
{
collisionObject->setIslandTag(-1);
collisionObject->setCompanionId(-2);
}
index++;
}
}
}
#endif //STATIC_SIMULATION_ISLAND_OPTIMIZATION
inline int getIslandId(const btPersistentManifold* lhs)
{
int islandId;
const btCollisionObject* rcolObj0 = static_cast<const btCollisionObject*>(lhs->getBody0());
const btCollisionObject* rcolObj1 = static_cast<const btCollisionObject*>(lhs->getBody1());
islandId= rcolObj0->getIslandTag()>=0?rcolObj0->getIslandTag():rcolObj1->getIslandTag();
return islandId;
}
/// function object that routes calls to operator<
class btPersistentManifoldSortPredicate
{
public:
SIMD_FORCE_INLINE bool operator() ( const btPersistentManifold* lhs, const btPersistentManifold* rhs )
{
return getIslandId(lhs) < getIslandId(rhs);
}
};
void btSimulationIslandManager::buildIslands(btDispatcher* dispatcher,btCollisionWorld* collisionWorld)
{
BT_PROFILE("islandUnionFindAndQuickSort");
btCollisionObjectArray& collisionObjects = collisionWorld->getCollisionObjectArray();
m_islandmanifold.resize(0);
//we are going to sort the unionfind array, and store the element id in the size
//afterwards, we clean unionfind, to make sure no-one uses it anymore
getUnionFind().sortIslands();
int numElem = getUnionFind().getNumElements();
int endIslandIndex=1;
int startIslandIndex;
//update the sleeping state for bodies, if all are sleeping
for ( startIslandIndex=0;startIslandIndex<numElem;startIslandIndex = endIslandIndex)
{
int islandId = getUnionFind().getElement(startIslandIndex).m_id;
for (endIslandIndex = startIslandIndex+1;(endIslandIndex<numElem) && (getUnionFind().getElement(endIslandIndex).m_id == islandId);endIslandIndex++)
{
}
//int numSleeping = 0;
bool allSleeping = true;
int idx;
for (idx=startIslandIndex;idx<endIslandIndex;idx++)
{
int i = getUnionFind().getElement(idx).m_sz;
btCollisionObject* colObj0 = collisionObjects[i];
if ((colObj0->getIslandTag() != islandId) && (colObj0->getIslandTag() != -1))
{
// printf("error in island management\n");
}
btAssert((colObj0->getIslandTag() == islandId) || (colObj0->getIslandTag() == -1));
if (colObj0->getIslandTag() == islandId)
{
if (colObj0->getActivationState()== ACTIVE_TAG)
{
allSleeping = false;
}
if (colObj0->getActivationState()== DISABLE_DEACTIVATION)
{
allSleeping = false;
}
}
}
if (allSleeping)
{
int idx;
for (idx=startIslandIndex;idx<endIslandIndex;idx++)
{
int i = getUnionFind().getElement(idx).m_sz;
btCollisionObject* colObj0 = collisionObjects[i];
if ((colObj0->getIslandTag() != islandId) && (colObj0->getIslandTag() != -1))
{
// printf("error in island management\n");
}
btAssert((colObj0->getIslandTag() == islandId) || (colObj0->getIslandTag() == -1));
if (colObj0->getIslandTag() == islandId)
{
colObj0->setActivationState( ISLAND_SLEEPING );
}
}
} else
{
int idx;
for (idx=startIslandIndex;idx<endIslandIndex;idx++)
{
int i = getUnionFind().getElement(idx).m_sz;
btCollisionObject* colObj0 = collisionObjects[i];
if ((colObj0->getIslandTag() != islandId) && (colObj0->getIslandTag() != -1))
{
// printf("error in island management\n");
}
btAssert((colObj0->getIslandTag() == islandId) || (colObj0->getIslandTag() == -1));
if (colObj0->getIslandTag() == islandId)
{
if ( colObj0->getActivationState() == ISLAND_SLEEPING)
{
colObj0->setActivationState( WANTS_DEACTIVATION);
colObj0->setDeactivationTime(0.f);
}
}
}
}
}
int i;
int maxNumManifolds = dispatcher->getNumManifolds();
//#define SPLIT_ISLANDS 1
//#ifdef SPLIT_ISLANDS
//#endif //SPLIT_ISLANDS
for (i=0;i<maxNumManifolds ;i++)
{
btPersistentManifold* manifold = dispatcher->getManifoldByIndexInternal(i);
btCollisionObject* colObj0 = static_cast<btCollisionObject*>(manifold->getBody0());
btCollisionObject* colObj1 = static_cast<btCollisionObject*>(manifold->getBody1());
///@todo: check sleeping conditions!
if (((colObj0) && colObj0->getActivationState() != ISLAND_SLEEPING) ||
((colObj1) && colObj1->getActivationState() != ISLAND_SLEEPING))
{
//kinematic objects don't merge islands, but wake up all connected objects
if (colObj0->isKinematicObject() && colObj0->getActivationState() != ISLAND_SLEEPING)
{
colObj1->activate();
}
if (colObj1->isKinematicObject() && colObj1->getActivationState() != ISLAND_SLEEPING)
{
colObj0->activate();
}
if(m_splitIslands)
{
//filtering for response
if (dispatcher->needsResponse(colObj0,colObj1))
m_islandmanifold.push_back(manifold);
}
}
}
}
///@todo: this is random access, it can be walked 'cache friendly'!
void btSimulationIslandManager::buildAndProcessIslands(btDispatcher* dispatcher,btCollisionWorld* collisionWorld, IslandCallback* callback)
{
btCollisionObjectArray& collisionObjects = collisionWorld->getCollisionObjectArray();
buildIslands(dispatcher,collisionWorld);
int endIslandIndex=1;
int startIslandIndex;
int numElem = getUnionFind().getNumElements();
BT_PROFILE("processIslands");
if(!m_splitIslands)
{
btPersistentManifold** manifold = dispatcher->getInternalManifoldPointer();
int maxNumManifolds = dispatcher->getNumManifolds();
callback->ProcessIsland(&collisionObjects[0],collisionObjects.size(),manifold,maxNumManifolds, -1);
}
else
{
// Sort manifolds, based on islands
// Sort the vector using predicate and std::sort
//std::sort(islandmanifold.begin(), islandmanifold.end(), btPersistentManifoldSortPredicate);
int numManifolds = int (m_islandmanifold.size());
//we should do radix sort, it it much faster (O(n) instead of O (n log2(n))
m_islandmanifold.quickSort(btPersistentManifoldSortPredicate());
//now process all active islands (sets of manifolds for now)
int startManifoldIndex = 0;
int endManifoldIndex = 1;
//int islandId;
// printf("Start Islands\n");
//traverse the simulation islands, and call the solver, unless all objects are sleeping/deactivated
for ( startIslandIndex=0;startIslandIndex<numElem;startIslandIndex = endIslandIndex)
{
int islandId = getUnionFind().getElement(startIslandIndex).m_id;
bool islandSleeping = false;
for (endIslandIndex = startIslandIndex;(endIslandIndex<numElem) && (getUnionFind().getElement(endIslandIndex).m_id == islandId);endIslandIndex++)
{
int i = getUnionFind().getElement(endIslandIndex).m_sz;
btCollisionObject* colObj0 = collisionObjects[i];
m_islandBodies.push_back(colObj0);
if (!colObj0->isActive())
islandSleeping = true;
}
//find the accompanying contact manifold for this islandId
int numIslandManifolds = 0;
btPersistentManifold** startManifold = 0;
if (startManifoldIndex<numManifolds)
{
int curIslandId = getIslandId(m_islandmanifold[startManifoldIndex]);
if (curIslandId == islandId)
{
startManifold = &m_islandmanifold[startManifoldIndex];
for (endManifoldIndex = startManifoldIndex+1;(endManifoldIndex<numManifolds) && (islandId == getIslandId(m_islandmanifold[endManifoldIndex]));endManifoldIndex++)
{
}
/// Process the actual simulation, only if not sleeping/deactivated
numIslandManifolds = endManifoldIndex-startManifoldIndex;
}
}
if (!islandSleeping)
{
callback->ProcessIsland(&m_islandBodies[0],m_islandBodies.size(),startManifold,numIslandManifolds, islandId);
// printf("Island callback of size:%d bodies, %d manifolds\n",islandBodies.size(),numIslandManifolds);
}
if (numIslandManifolds)
{
startManifoldIndex = endManifoldIndex;
}
m_islandBodies.resize(0);
}
} // else if(!splitIslands)
}

View File

@ -0,0 +1,81 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef SIMULATION_ISLAND_MANAGER_H
#define SIMULATION_ISLAND_MANAGER_H
#include "BulletCollision/CollisionDispatch/btUnionFind.h"
#include "btCollisionCreateFunc.h"
#include "LinearMath/btAlignedObjectArray.h"
#include "btCollisionObject.h"
class btCollisionObject;
class btCollisionWorld;
class btDispatcher;
class btPersistentManifold;
///SimulationIslandManager creates and handles simulation islands, using btUnionFind
class btSimulationIslandManager
{
btUnionFind m_unionFind;
btAlignedObjectArray<btPersistentManifold*> m_islandmanifold;
btAlignedObjectArray<btCollisionObject* > m_islandBodies;
bool m_splitIslands;
public:
btSimulationIslandManager();
virtual ~btSimulationIslandManager();
void initUnionFind(int n);
btUnionFind& getUnionFind() { return m_unionFind;}
virtual void updateActivationState(btCollisionWorld* colWorld,btDispatcher* dispatcher);
virtual void storeIslandActivationState(btCollisionWorld* world);
void findUnions(btDispatcher* dispatcher,btCollisionWorld* colWorld);
struct IslandCallback
{
virtual ~IslandCallback() {};
virtual void ProcessIsland(btCollisionObject** bodies,int numBodies,class btPersistentManifold** manifolds,int numManifolds, int islandId) = 0;
};
void buildAndProcessIslands(btDispatcher* dispatcher,btCollisionWorld* collisionWorld, IslandCallback* callback);
void buildIslands(btDispatcher* dispatcher,btCollisionWorld* colWorld);
bool getSplitIslands()
{
return m_splitIslands;
}
void setSplitIslands(bool doSplitIslands)
{
m_splitIslands = doSplitIslands;
}
};
#endif //SIMULATION_ISLAND_MANAGER_H

View File

@ -0,0 +1,260 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btSphereBoxCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
//#include <stdio.h>
btSphereBoxCollisionAlgorithm::btSphereBoxCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1, bool isSwapped)
: btActivatingCollisionAlgorithm(ci,col0,col1),
m_ownManifold(false),
m_manifoldPtr(mf),
m_isSwapped(isSwapped)
{
btCollisionObject* sphereObj = m_isSwapped? col1 : col0;
btCollisionObject* boxObj = m_isSwapped? col0 : col1;
if (!m_manifoldPtr && m_dispatcher->needsCollision(sphereObj,boxObj))
{
m_manifoldPtr = m_dispatcher->getNewManifold(sphereObj,boxObj);
m_ownManifold = true;
}
}
btSphereBoxCollisionAlgorithm::~btSphereBoxCollisionAlgorithm()
{
if (m_ownManifold)
{
if (m_manifoldPtr)
m_dispatcher->releaseManifold(m_manifoldPtr);
}
}
void btSphereBoxCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
(void)dispatchInfo;
(void)resultOut;
if (!m_manifoldPtr)
return;
btCollisionObject* sphereObj = m_isSwapped? body1 : body0;
btCollisionObject* boxObj = m_isSwapped? body0 : body1;
btSphereShape* sphere0 = (btSphereShape*)sphereObj->getCollisionShape();
btVector3 normalOnSurfaceB;
btVector3 pOnBox,pOnSphere;
btVector3 sphereCenter = sphereObj->getWorldTransform().getOrigin();
btScalar radius = sphere0->getRadius();
btScalar dist = getSphereDistance(boxObj,pOnBox,pOnSphere,sphereCenter,radius);
resultOut->setPersistentManifold(m_manifoldPtr);
if (dist < SIMD_EPSILON)
{
btVector3 normalOnSurfaceB = (pOnBox- pOnSphere).normalize();
/// report a contact. internally this will be kept persistent, and contact reduction is done
resultOut->addContactPoint(normalOnSurfaceB,pOnBox,dist);
}
if (m_ownManifold)
{
if (m_manifoldPtr->getNumContacts())
{
resultOut->refreshContactPoints();
}
}
}
btScalar btSphereBoxCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
(void)resultOut;
(void)dispatchInfo;
(void)col0;
(void)col1;
//not yet
return btScalar(1.);
}
btScalar btSphereBoxCollisionAlgorithm::getSphereDistance(btCollisionObject* boxObj, btVector3& pointOnBox, btVector3& v3PointOnSphere, const btVector3& sphereCenter, btScalar fRadius )
{
btScalar margins;
btVector3 bounds[2];
btBoxShape* boxShape= (btBoxShape*)boxObj->getCollisionShape();
bounds[0] = -boxShape->getHalfExtentsWithoutMargin();
bounds[1] = boxShape->getHalfExtentsWithoutMargin();
margins = boxShape->getMargin();//also add sphereShape margin?
const btTransform& m44T = boxObj->getWorldTransform();
btVector3 boundsVec[2];
btScalar fPenetration;
boundsVec[0] = bounds[0];
boundsVec[1] = bounds[1];
btVector3 marginsVec( margins, margins, margins );
// add margins
bounds[0] += marginsVec;
bounds[1] -= marginsVec;
/////////////////////////////////////////////////
btVector3 tmp, prel, n[6], normal, v3P;
btScalar fSep = btScalar(10000000.0), fSepThis;
n[0].setValue( btScalar(-1.0), btScalar(0.0), btScalar(0.0) );
n[1].setValue( btScalar(0.0), btScalar(-1.0), btScalar(0.0) );
n[2].setValue( btScalar(0.0), btScalar(0.0), btScalar(-1.0) );
n[3].setValue( btScalar(1.0), btScalar(0.0), btScalar(0.0) );
n[4].setValue( btScalar(0.0), btScalar(1.0), btScalar(0.0) );
n[5].setValue( btScalar(0.0), btScalar(0.0), btScalar(1.0) );
// convert point in local space
prel = m44T.invXform( sphereCenter);
bool bFound = false;
v3P = prel;
for (int i=0;i<6;i++)
{
int j = i<3? 0:1;
if ( (fSepThis = ((v3P-bounds[j]) .dot(n[i]))) > btScalar(0.0) )
{
v3P = v3P - n[i]*fSepThis;
bFound = true;
}
}
//
if ( bFound )
{
bounds[0] = boundsVec[0];
bounds[1] = boundsVec[1];
normal = (prel - v3P).normalize();
pointOnBox = v3P + normal*margins;
v3PointOnSphere = prel - normal*fRadius;
if ( ((v3PointOnSphere - pointOnBox) .dot (normal)) > btScalar(0.0) )
{
return btScalar(1.0);
}
// transform back in world space
tmp = m44T( pointOnBox);
pointOnBox = tmp;
tmp = m44T( v3PointOnSphere);
v3PointOnSphere = tmp;
btScalar fSeps2 = (pointOnBox-v3PointOnSphere).length2();
//if this fails, fallback into deeper penetration case, below
if (fSeps2 > SIMD_EPSILON)
{
fSep = - btSqrt(fSeps2);
normal = (pointOnBox-v3PointOnSphere);
normal *= btScalar(1.)/fSep;
}
return fSep;
}
//////////////////////////////////////////////////
// Deep penetration case
fPenetration = getSpherePenetration( boxObj,pointOnBox, v3PointOnSphere, sphereCenter, fRadius,bounds[0],bounds[1] );
bounds[0] = boundsVec[0];
bounds[1] = boundsVec[1];
if ( fPenetration <= btScalar(0.0) )
return (fPenetration-margins);
else
return btScalar(1.0);
}
btScalar btSphereBoxCollisionAlgorithm::getSpherePenetration( btCollisionObject* boxObj,btVector3& pointOnBox, btVector3& v3PointOnSphere, const btVector3& sphereCenter, btScalar fRadius, const btVector3& aabbMin, const btVector3& aabbMax)
{
btVector3 bounds[2];
bounds[0] = aabbMin;
bounds[1] = aabbMax;
btVector3 p0, tmp, prel, n[6], normal;
btScalar fSep = btScalar(-10000000.0), fSepThis;
// set p0 and normal to a default value to shup up GCC
p0.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
normal.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
n[0].setValue( btScalar(-1.0), btScalar(0.0), btScalar(0.0) );
n[1].setValue( btScalar(0.0), btScalar(-1.0), btScalar(0.0) );
n[2].setValue( btScalar(0.0), btScalar(0.0), btScalar(-1.0) );
n[3].setValue( btScalar(1.0), btScalar(0.0), btScalar(0.0) );
n[4].setValue( btScalar(0.0), btScalar(1.0), btScalar(0.0) );
n[5].setValue( btScalar(0.0), btScalar(0.0), btScalar(1.0) );
const btTransform& m44T = boxObj->getWorldTransform();
// convert point in local space
prel = m44T.invXform( sphereCenter);
///////////
for (int i=0;i<6;i++)
{
int j = i<3 ? 0:1;
if ( (fSepThis = ((prel-bounds[j]) .dot( n[i]))-fRadius) > btScalar(0.0) ) return btScalar(1.0);
if ( fSepThis > fSep )
{
p0 = bounds[j]; normal = (btVector3&)n[i];
fSep = fSepThis;
}
}
pointOnBox = prel - normal*(normal.dot((prel-p0)));
v3PointOnSphere = pointOnBox + normal*fSep;
// transform back in world space
tmp = m44T( pointOnBox);
pointOnBox = tmp;
tmp = m44T( v3PointOnSphere); v3PointOnSphere = tmp;
normal = (pointOnBox-v3PointOnSphere).normalize();
return fSep;
}

View File

@ -0,0 +1,75 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef SPHERE_BOX_COLLISION_ALGORITHM_H
#define SPHERE_BOX_COLLISION_ALGORITHM_H
#include "btActivatingCollisionAlgorithm.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
class btPersistentManifold;
#include "btCollisionDispatcher.h"
#include "LinearMath/btVector3.h"
/// btSphereBoxCollisionAlgorithm provides sphere-box collision detection.
/// Other features are frame-coherency (persistent data) and collision response.
class btSphereBoxCollisionAlgorithm : public btActivatingCollisionAlgorithm
{
bool m_ownManifold;
btPersistentManifold* m_manifoldPtr;
bool m_isSwapped;
public:
btSphereBoxCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1, bool isSwapped);
virtual ~btSphereBoxCollisionAlgorithm();
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual void getAllContactManifolds(btManifoldArray& manifoldArray)
{
if (m_manifoldPtr && m_ownManifold)
{
manifoldArray.push_back(m_manifoldPtr);
}
}
btScalar getSphereDistance( btCollisionObject* boxObj,btVector3& v3PointOnBox, btVector3& v3PointOnSphere, const btVector3& v3SphereCenter, btScalar fRadius );
btScalar getSpherePenetration( btCollisionObject* boxObj, btVector3& v3PointOnBox, btVector3& v3PointOnSphere, const btVector3& v3SphereCenter, btScalar fRadius, const btVector3& aabbMin, const btVector3& aabbMax);
struct CreateFunc :public btCollisionAlgorithmCreateFunc
{
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
{
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btSphereBoxCollisionAlgorithm));
if (!m_swapped)
{
return new(mem) btSphereBoxCollisionAlgorithm(0,ci,body0,body1,false);
} else
{
return new(mem) btSphereBoxCollisionAlgorithm(0,ci,body0,body1,true);
}
}
};
};
#endif //SPHERE_BOX_COLLISION_ALGORITHM_H

View File

@ -0,0 +1,105 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btSphereSphereCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
btSphereSphereCollisionAlgorithm::btSphereSphereCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1)
: btActivatingCollisionAlgorithm(ci,col0,col1),
m_ownManifold(false),
m_manifoldPtr(mf)
{
if (!m_manifoldPtr)
{
m_manifoldPtr = m_dispatcher->getNewManifold(col0,col1);
m_ownManifold = true;
}
}
btSphereSphereCollisionAlgorithm::~btSphereSphereCollisionAlgorithm()
{
if (m_ownManifold)
{
if (m_manifoldPtr)
m_dispatcher->releaseManifold(m_manifoldPtr);
}
}
void btSphereSphereCollisionAlgorithm::processCollision (btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
(void)dispatchInfo;
if (!m_manifoldPtr)
return;
resultOut->setPersistentManifold(m_manifoldPtr);
btSphereShape* sphere0 = (btSphereShape*)col0->getCollisionShape();
btSphereShape* sphere1 = (btSphereShape*)col1->getCollisionShape();
btVector3 diff = col0->getWorldTransform().getOrigin()- col1->getWorldTransform().getOrigin();
btScalar len = diff.length();
btScalar radius0 = sphere0->getRadius();
btScalar radius1 = sphere1->getRadius();
#ifdef CLEAR_MANIFOLD
m_manifoldPtr->clearManifold(); //don't do this, it disables warmstarting
#endif
///iff distance positive, don't generate a new contact
if ( len > (radius0+radius1))
{
#ifndef CLEAR_MANIFOLD
resultOut->refreshContactPoints();
#endif //CLEAR_MANIFOLD
return;
}
///distance (negative means penetration)
btScalar dist = len - (radius0+radius1);
btVector3 normalOnSurfaceB(1,0,0);
if (len > SIMD_EPSILON)
{
normalOnSurfaceB = diff / len;
}
///point on A (worldspace)
///btVector3 pos0 = col0->getWorldTransform().getOrigin() - radius0 * normalOnSurfaceB;
///point on B (worldspace)
btVector3 pos1 = col1->getWorldTransform().getOrigin() + radius1* normalOnSurfaceB;
/// report a contact. internally this will be kept persistent, and contact reduction is done
resultOut->addContactPoint(normalOnSurfaceB,pos1,dist);
#ifndef CLEAR_MANIFOLD
resultOut->refreshContactPoints();
#endif //CLEAR_MANIFOLD
}
btScalar btSphereSphereCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
(void)col0;
(void)col1;
(void)dispatchInfo;
(void)resultOut;
//not yet
return btScalar(1.);
}

View File

@ -0,0 +1,66 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef SPHERE_SPHERE_COLLISION_ALGORITHM_H
#define SPHERE_SPHERE_COLLISION_ALGORITHM_H
#include "btActivatingCollisionAlgorithm.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
#include "btCollisionDispatcher.h"
class btPersistentManifold;
/// btSphereSphereCollisionAlgorithm provides sphere-sphere collision detection.
/// Other features are frame-coherency (persistent data) and collision response.
/// Also provides the most basic sample for custom/user btCollisionAlgorithm
class btSphereSphereCollisionAlgorithm : public btActivatingCollisionAlgorithm
{
bool m_ownManifold;
btPersistentManifold* m_manifoldPtr;
public:
btSphereSphereCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1);
btSphereSphereCollisionAlgorithm(const btCollisionAlgorithmConstructionInfo& ci)
: btActivatingCollisionAlgorithm(ci) {}
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual void getAllContactManifolds(btManifoldArray& manifoldArray)
{
if (m_manifoldPtr && m_ownManifold)
{
manifoldArray.push_back(m_manifoldPtr);
}
}
virtual ~btSphereSphereCollisionAlgorithm();
struct CreateFunc :public btCollisionAlgorithmCreateFunc
{
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
{
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btSphereSphereCollisionAlgorithm));
return new(mem) btSphereSphereCollisionAlgorithm(0,ci,body0,body1);
}
};
};
#endif //SPHERE_SPHERE_COLLISION_ALGORITHM_H

View File

@ -0,0 +1,84 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btSphereTriangleCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "SphereTriangleDetector.h"
btSphereTriangleCollisionAlgorithm::btSphereTriangleCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1,bool swapped)
: btActivatingCollisionAlgorithm(ci,col0,col1),
m_ownManifold(false),
m_manifoldPtr(mf),
m_swapped(swapped)
{
if (!m_manifoldPtr)
{
m_manifoldPtr = m_dispatcher->getNewManifold(col0,col1);
m_ownManifold = true;
}
}
btSphereTriangleCollisionAlgorithm::~btSphereTriangleCollisionAlgorithm()
{
if (m_ownManifold)
{
if (m_manifoldPtr)
m_dispatcher->releaseManifold(m_manifoldPtr);
}
}
void btSphereTriangleCollisionAlgorithm::processCollision (btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
if (!m_manifoldPtr)
return;
btCollisionObject* sphereObj = m_swapped? col1 : col0;
btCollisionObject* triObj = m_swapped? col0 : col1;
btSphereShape* sphere = (btSphereShape*)sphereObj->getCollisionShape();
btTriangleShape* triangle = (btTriangleShape*)triObj->getCollisionShape();
/// report a contact. internally this will be kept persistent, and contact reduction is done
resultOut->setPersistentManifold(m_manifoldPtr);
SphereTriangleDetector detector(sphere,triangle, m_manifoldPtr->getContactBreakingThreshold());
btDiscreteCollisionDetectorInterface::ClosestPointInput input;
input.m_maximumDistanceSquared = btScalar(BT_LARGE_FLOAT);///@todo: tighter bounds
input.m_transformA = sphereObj->getWorldTransform();
input.m_transformB = triObj->getWorldTransform();
bool swapResults = m_swapped;
detector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw,swapResults);
if (m_ownManifold)
resultOut->refreshContactPoints();
}
btScalar btSphereTriangleCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
(void)resultOut;
(void)dispatchInfo;
(void)col0;
(void)col1;
//not yet
return btScalar(1.);
}

View File

@ -0,0 +1,69 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef SPHERE_TRIANGLE_COLLISION_ALGORITHM_H
#define SPHERE_TRIANGLE_COLLISION_ALGORITHM_H
#include "btActivatingCollisionAlgorithm.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
class btPersistentManifold;
#include "btCollisionDispatcher.h"
/// btSphereSphereCollisionAlgorithm provides sphere-sphere collision detection.
/// Other features are frame-coherency (persistent data) and collision response.
/// Also provides the most basic sample for custom/user btCollisionAlgorithm
class btSphereTriangleCollisionAlgorithm : public btActivatingCollisionAlgorithm
{
bool m_ownManifold;
btPersistentManifold* m_manifoldPtr;
bool m_swapped;
public:
btSphereTriangleCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,bool swapped);
btSphereTriangleCollisionAlgorithm(const btCollisionAlgorithmConstructionInfo& ci)
: btActivatingCollisionAlgorithm(ci) {}
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual void getAllContactManifolds(btManifoldArray& manifoldArray)
{
if (m_manifoldPtr && m_ownManifold)
{
manifoldArray.push_back(m_manifoldPtr);
}
}
virtual ~btSphereTriangleCollisionAlgorithm();
struct CreateFunc :public btCollisionAlgorithmCreateFunc
{
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
{
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btSphereTriangleCollisionAlgorithm));
return new(mem) btSphereTriangleCollisionAlgorithm(ci.m_manifold,ci,body0,body1,m_swapped);
}
};
};
#endif //SPHERE_TRIANGLE_COLLISION_ALGORITHM_H

View File

@ -0,0 +1,82 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btUnionFind.h"
btUnionFind::~btUnionFind()
{
Free();
}
btUnionFind::btUnionFind()
{
}
void btUnionFind::allocate(int N)
{
m_elements.resize(N);
}
void btUnionFind::Free()
{
m_elements.clear();
}
void btUnionFind::reset(int N)
{
allocate(N);
for (int i = 0; i < N; i++)
{
m_elements[i].m_id = i; m_elements[i].m_sz = 1;
}
}
class btUnionFindElementSortPredicate
{
public:
bool operator() ( const btElement& lhs, const btElement& rhs )
{
return lhs.m_id < rhs.m_id;
}
};
///this is a special operation, destroying the content of btUnionFind.
///it sorts the elements, based on island id, in order to make it easy to iterate over islands
void btUnionFind::sortIslands()
{
//first store the original body index, and islandId
int numElements = m_elements.size();
for (int i=0;i<numElements;i++)
{
m_elements[i].m_id = find(i);
#ifndef STATIC_SIMULATION_ISLAND_OPTIMIZATION
m_elements[i].m_sz = i;
#endif //STATIC_SIMULATION_ISLAND_OPTIMIZATION
}
// Sort the vector using predicate and std::sort
//std::sort(m_elements.begin(), m_elements.end(), btUnionFindElementSortPredicate);
m_elements.quickSort(btUnionFindElementSortPredicate());
}

View File

@ -0,0 +1,129 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef UNION_FIND_H
#define UNION_FIND_H
#include "LinearMath/btAlignedObjectArray.h"
#define USE_PATH_COMPRESSION 1
///see for discussion of static island optimizations by Vroonsh here: http://code.google.com/p/bullet/issues/detail?id=406
#define STATIC_SIMULATION_ISLAND_OPTIMIZATION 1
struct btElement
{
int m_id;
int m_sz;
};
///UnionFind calculates connected subsets
// Implements weighted Quick Union with path compression
// optimization: could use short ints instead of ints (halving memory, would limit the number of rigid bodies to 64k, sounds reasonable)
class btUnionFind
{
private:
btAlignedObjectArray<btElement> m_elements;
public:
btUnionFind();
~btUnionFind();
//this is a special operation, destroying the content of btUnionFind.
//it sorts the elements, based on island id, in order to make it easy to iterate over islands
void sortIslands();
void reset(int N);
SIMD_FORCE_INLINE int getNumElements() const
{
return int(m_elements.size());
}
SIMD_FORCE_INLINE bool isRoot(int x) const
{
return (x == m_elements[x].m_id);
}
btElement& getElement(int index)
{
return m_elements[index];
}
const btElement& getElement(int index) const
{
return m_elements[index];
}
void allocate(int N);
void Free();
int find(int p, int q)
{
return (find(p) == find(q));
}
void unite(int p, int q)
{
int i = find(p), j = find(q);
if (i == j)
return;
#ifndef USE_PATH_COMPRESSION
//weighted quick union, this keeps the 'trees' balanced, and keeps performance of unite O( log(n) )
if (m_elements[i].m_sz < m_elements[j].m_sz)
{
m_elements[i].m_id = j; m_elements[j].m_sz += m_elements[i].m_sz;
}
else
{
m_elements[j].m_id = i; m_elements[i].m_sz += m_elements[j].m_sz;
}
#else
m_elements[i].m_id = j; m_elements[j].m_sz += m_elements[i].m_sz;
#endif //USE_PATH_COMPRESSION
}
int find(int x)
{
//btAssert(x < m_N);
//btAssert(x >= 0);
while (x != m_elements[x].m_id)
{
//not really a reason not to use path compression, and it flattens the trees/improves find performance dramatically
#ifdef USE_PATH_COMPRESSION
const btElement* elementPtr = &m_elements[m_elements[x].m_id];
m_elements[x].m_id = elementPtr->m_id;
x = elementPtr->m_id;
#else//
x = m_elements[x].m_id;
#endif
//btAssert(x < m_N);
//btAssert(x >= 0);
}
return x;
}
};
#endif //UNION_FIND_H