354 lines
13 KiB
C++
354 lines
13 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "BulletCollision/CollisionDispatch/btCompoundCollisionAlgorithm.h"
|
|
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
|
|
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
|
|
#include "BulletCollision/BroadphaseCollision/btDbvt.h"
|
|
#include "LinearMath/btIDebugDraw.h"
|
|
#include "LinearMath/btAabbUtil2.h"
|
|
#include "btManifoldResult.h"
|
|
|
|
btCompoundCollisionAlgorithm::btCompoundCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,bool isSwapped)
|
|
:btActivatingCollisionAlgorithm(ci,body0,body1),
|
|
m_isSwapped(isSwapped),
|
|
m_sharedManifold(ci.m_manifold)
|
|
{
|
|
m_ownsManifold = false;
|
|
|
|
btCollisionObject* colObj = m_isSwapped? body1 : body0;
|
|
btAssert (colObj->getCollisionShape()->isCompound());
|
|
|
|
btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape());
|
|
m_compoundShapeRevision = compoundShape->getUpdateRevision();
|
|
|
|
preallocateChildAlgorithms(body0,body1);
|
|
}
|
|
|
|
void btCompoundCollisionAlgorithm::preallocateChildAlgorithms(btCollisionObject* body0,btCollisionObject* body1)
|
|
{
|
|
btCollisionObject* colObj = m_isSwapped? body1 : body0;
|
|
btCollisionObject* otherObj = m_isSwapped? body0 : body1;
|
|
btAssert (colObj->getCollisionShape()->isCompound());
|
|
|
|
btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape());
|
|
|
|
int numChildren = compoundShape->getNumChildShapes();
|
|
int i;
|
|
|
|
m_childCollisionAlgorithms.resize(numChildren);
|
|
for (i=0;i<numChildren;i++)
|
|
{
|
|
if (compoundShape->getDynamicAabbTree())
|
|
{
|
|
m_childCollisionAlgorithms[i] = 0;
|
|
} else
|
|
{
|
|
btCollisionShape* tmpShape = colObj->getCollisionShape();
|
|
btCollisionShape* childShape = compoundShape->getChildShape(i);
|
|
colObj->internalSetTemporaryCollisionShape( childShape );
|
|
m_childCollisionAlgorithms[i] = m_dispatcher->findAlgorithm(colObj,otherObj,m_sharedManifold);
|
|
colObj->internalSetTemporaryCollisionShape( tmpShape );
|
|
}
|
|
}
|
|
}
|
|
|
|
void btCompoundCollisionAlgorithm::removeChildAlgorithms()
|
|
{
|
|
int numChildren = m_childCollisionAlgorithms.size();
|
|
int i;
|
|
for (i=0;i<numChildren;i++)
|
|
{
|
|
if (m_childCollisionAlgorithms[i])
|
|
{
|
|
m_childCollisionAlgorithms[i]->~btCollisionAlgorithm();
|
|
m_dispatcher->freeCollisionAlgorithm(m_childCollisionAlgorithms[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
btCompoundCollisionAlgorithm::~btCompoundCollisionAlgorithm()
|
|
{
|
|
removeChildAlgorithms();
|
|
}
|
|
|
|
|
|
|
|
|
|
struct btCompoundLeafCallback : btDbvt::ICollide
|
|
{
|
|
|
|
public:
|
|
|
|
btCollisionObject* m_compoundColObj;
|
|
btCollisionObject* m_otherObj;
|
|
btDispatcher* m_dispatcher;
|
|
const btDispatcherInfo& m_dispatchInfo;
|
|
btManifoldResult* m_resultOut;
|
|
btCollisionAlgorithm** m_childCollisionAlgorithms;
|
|
btPersistentManifold* m_sharedManifold;
|
|
|
|
|
|
|
|
|
|
btCompoundLeafCallback (btCollisionObject* compoundObj,btCollisionObject* otherObj,btDispatcher* dispatcher,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut,btCollisionAlgorithm** childCollisionAlgorithms,btPersistentManifold* sharedManifold)
|
|
:m_compoundColObj(compoundObj),m_otherObj(otherObj),m_dispatcher(dispatcher),m_dispatchInfo(dispatchInfo),m_resultOut(resultOut),
|
|
m_childCollisionAlgorithms(childCollisionAlgorithms),
|
|
m_sharedManifold(sharedManifold)
|
|
{
|
|
|
|
}
|
|
|
|
|
|
void ProcessChildShape(btCollisionShape* childShape,int index)
|
|
{
|
|
btAssert(index>=0);
|
|
btCompoundShape* compoundShape = static_cast<btCompoundShape*>(m_compoundColObj->getCollisionShape());
|
|
btAssert(index<compoundShape->getNumChildShapes());
|
|
|
|
|
|
//backup
|
|
btTransform orgTrans = m_compoundColObj->getWorldTransform();
|
|
btTransform orgInterpolationTrans = m_compoundColObj->getInterpolationWorldTransform();
|
|
const btTransform& childTrans = compoundShape->getChildTransform(index);
|
|
btTransform newChildWorldTrans = orgTrans*childTrans ;
|
|
|
|
//perform an AABB check first
|
|
btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
|
|
childShape->getAabb(newChildWorldTrans,aabbMin0,aabbMax0);
|
|
m_otherObj->getCollisionShape()->getAabb(m_otherObj->getWorldTransform(),aabbMin1,aabbMax1);
|
|
|
|
if (TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
|
|
{
|
|
|
|
m_compoundColObj->setWorldTransform( newChildWorldTrans);
|
|
m_compoundColObj->setInterpolationWorldTransform(newChildWorldTrans);
|
|
|
|
//the contactpoint is still projected back using the original inverted worldtrans
|
|
btCollisionShape* tmpShape = m_compoundColObj->getCollisionShape();
|
|
m_compoundColObj->internalSetTemporaryCollisionShape( childShape );
|
|
|
|
if (!m_childCollisionAlgorithms[index])
|
|
m_childCollisionAlgorithms[index] = m_dispatcher->findAlgorithm(m_compoundColObj,m_otherObj,m_sharedManifold);
|
|
|
|
///detect swapping case
|
|
if (m_resultOut->getBody0Internal() == m_compoundColObj)
|
|
{
|
|
m_resultOut->setShapeIdentifiersA(-1,index);
|
|
} else
|
|
{
|
|
m_resultOut->setShapeIdentifiersB(-1,index);
|
|
}
|
|
|
|
m_childCollisionAlgorithms[index]->processCollision(m_compoundColObj,m_otherObj,m_dispatchInfo,m_resultOut);
|
|
if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
|
|
{
|
|
btVector3 worldAabbMin,worldAabbMax;
|
|
m_dispatchInfo.m_debugDraw->drawAabb(aabbMin0,aabbMax0,btVector3(1,1,1));
|
|
m_dispatchInfo.m_debugDraw->drawAabb(aabbMin1,aabbMax1,btVector3(1,1,1));
|
|
}
|
|
|
|
//revert back transform
|
|
m_compoundColObj->internalSetTemporaryCollisionShape( tmpShape);
|
|
m_compoundColObj->setWorldTransform( orgTrans );
|
|
m_compoundColObj->setInterpolationWorldTransform(orgInterpolationTrans);
|
|
}
|
|
}
|
|
void Process(const btDbvtNode* leaf)
|
|
{
|
|
int index = leaf->dataAsInt;
|
|
|
|
btCompoundShape* compoundShape = static_cast<btCompoundShape*>(m_compoundColObj->getCollisionShape());
|
|
btCollisionShape* childShape = compoundShape->getChildShape(index);
|
|
if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
|
|
{
|
|
btVector3 worldAabbMin,worldAabbMax;
|
|
btTransform orgTrans = m_compoundColObj->getWorldTransform();
|
|
btTransformAabb(leaf->volume.Mins(),leaf->volume.Maxs(),0.,orgTrans,worldAabbMin,worldAabbMax);
|
|
m_dispatchInfo.m_debugDraw->drawAabb(worldAabbMin,worldAabbMax,btVector3(1,0,0));
|
|
}
|
|
ProcessChildShape(childShape,index);
|
|
|
|
}
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void btCompoundCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
|
{
|
|
btCollisionObject* colObj = m_isSwapped? body1 : body0;
|
|
btCollisionObject* otherObj = m_isSwapped? body0 : body1;
|
|
|
|
|
|
|
|
btAssert (colObj->getCollisionShape()->isCompound());
|
|
btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape());
|
|
|
|
///btCompoundShape might have changed:
|
|
////make sure the internal child collision algorithm caches are still valid
|
|
if (compoundShape->getUpdateRevision() != m_compoundShapeRevision)
|
|
{
|
|
///clear and update all
|
|
removeChildAlgorithms();
|
|
|
|
preallocateChildAlgorithms(body0,body1);
|
|
}
|
|
|
|
|
|
btDbvt* tree = compoundShape->getDynamicAabbTree();
|
|
//use a dynamic aabb tree to cull potential child-overlaps
|
|
btCompoundLeafCallback callback(colObj,otherObj,m_dispatcher,dispatchInfo,resultOut,&m_childCollisionAlgorithms[0],m_sharedManifold);
|
|
|
|
///we need to refresh all contact manifolds
|
|
///note that we should actually recursively traverse all children, btCompoundShape can nested more then 1 level deep
|
|
///so we should add a 'refreshManifolds' in the btCollisionAlgorithm
|
|
{
|
|
int i;
|
|
btManifoldArray manifoldArray;
|
|
for (i=0;i<m_childCollisionAlgorithms.size();i++)
|
|
{
|
|
if (m_childCollisionAlgorithms[i])
|
|
{
|
|
m_childCollisionAlgorithms[i]->getAllContactManifolds(manifoldArray);
|
|
for (int m=0;m<manifoldArray.size();m++)
|
|
{
|
|
if (manifoldArray[m]->getNumContacts())
|
|
{
|
|
resultOut->setPersistentManifold(manifoldArray[m]);
|
|
resultOut->refreshContactPoints();
|
|
resultOut->setPersistentManifold(0);//??necessary?
|
|
}
|
|
}
|
|
manifoldArray.clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (tree)
|
|
{
|
|
|
|
btVector3 localAabbMin,localAabbMax;
|
|
btTransform otherInCompoundSpace;
|
|
otherInCompoundSpace = colObj->getWorldTransform().inverse() * otherObj->getWorldTransform();
|
|
otherObj->getCollisionShape()->getAabb(otherInCompoundSpace,localAabbMin,localAabbMax);
|
|
|
|
const ATTRIBUTE_ALIGNED16(btDbvtVolume) bounds=btDbvtVolume::FromMM(localAabbMin,localAabbMax);
|
|
//process all children, that overlap with the given AABB bounds
|
|
tree->collideTV(tree->m_root,bounds,callback);
|
|
|
|
} else
|
|
{
|
|
//iterate over all children, perform an AABB check inside ProcessChildShape
|
|
int numChildren = m_childCollisionAlgorithms.size();
|
|
int i;
|
|
for (i=0;i<numChildren;i++)
|
|
{
|
|
callback.ProcessChildShape(compoundShape->getChildShape(i),i);
|
|
}
|
|
}
|
|
|
|
{
|
|
//iterate over all children, perform an AABB check inside ProcessChildShape
|
|
int numChildren = m_childCollisionAlgorithms.size();
|
|
int i;
|
|
btManifoldArray manifoldArray;
|
|
btCollisionShape* childShape = 0;
|
|
btTransform orgTrans;
|
|
btTransform orgInterpolationTrans;
|
|
btTransform newChildWorldTrans;
|
|
btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
|
|
|
|
for (i=0;i<numChildren;i++)
|
|
{
|
|
if (m_childCollisionAlgorithms[i])
|
|
{
|
|
childShape = compoundShape->getChildShape(i);
|
|
//if not longer overlapping, remove the algorithm
|
|
orgTrans = colObj->getWorldTransform();
|
|
orgInterpolationTrans = colObj->getInterpolationWorldTransform();
|
|
const btTransform& childTrans = compoundShape->getChildTransform(i);
|
|
newChildWorldTrans = orgTrans*childTrans ;
|
|
|
|
//perform an AABB check first
|
|
childShape->getAabb(newChildWorldTrans,aabbMin0,aabbMax0);
|
|
otherObj->getCollisionShape()->getAabb(otherObj->getWorldTransform(),aabbMin1,aabbMax1);
|
|
|
|
if (!TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
|
|
{
|
|
m_childCollisionAlgorithms[i]->~btCollisionAlgorithm();
|
|
m_dispatcher->freeCollisionAlgorithm(m_childCollisionAlgorithms[i]);
|
|
m_childCollisionAlgorithms[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
btScalar btCompoundCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
|
{
|
|
|
|
btCollisionObject* colObj = m_isSwapped? body1 : body0;
|
|
btCollisionObject* otherObj = m_isSwapped? body0 : body1;
|
|
|
|
btAssert (colObj->getCollisionShape()->isCompound());
|
|
|
|
btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape());
|
|
|
|
//We will use the OptimizedBVH, AABB tree to cull potential child-overlaps
|
|
//If both proxies are Compound, we will deal with that directly, by performing sequential/parallel tree traversals
|
|
//given Proxy0 and Proxy1, if both have a tree, Tree0 and Tree1, this means:
|
|
//determine overlapping nodes of Proxy1 using Proxy0 AABB against Tree1
|
|
//then use each overlapping node AABB against Tree0
|
|
//and vise versa.
|
|
|
|
btScalar hitFraction = btScalar(1.);
|
|
|
|
int numChildren = m_childCollisionAlgorithms.size();
|
|
int i;
|
|
btTransform orgTrans;
|
|
btScalar frac;
|
|
for (i=0;i<numChildren;i++)
|
|
{
|
|
//temporarily exchange parent btCollisionShape with childShape, and recurse
|
|
btCollisionShape* childShape = compoundShape->getChildShape(i);
|
|
|
|
//backup
|
|
orgTrans = colObj->getWorldTransform();
|
|
|
|
const btTransform& childTrans = compoundShape->getChildTransform(i);
|
|
//btTransform newChildWorldTrans = orgTrans*childTrans ;
|
|
colObj->setWorldTransform( orgTrans*childTrans );
|
|
|
|
btCollisionShape* tmpShape = colObj->getCollisionShape();
|
|
colObj->internalSetTemporaryCollisionShape( childShape );
|
|
frac = m_childCollisionAlgorithms[i]->calculateTimeOfImpact(colObj,otherObj,dispatchInfo,resultOut);
|
|
if (frac<hitFraction)
|
|
{
|
|
hitFraction = frac;
|
|
}
|
|
//revert back
|
|
colObj->internalSetTemporaryCollisionShape( tmpShape);
|
|
colObj->setWorldTransform( orgTrans);
|
|
}
|
|
return hitFraction;
|
|
|
|
}
|
|
|
|
|
|
|