add bullet

This commit is contained in:
gmueller
2011-01-18 21:02:48 +01:00
parent 21985a4ea4
commit bf00db6c68
251 changed files with 59131 additions and 3 deletions

View File

@ -0,0 +1,236 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btContinuousConvexCollision.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
#include "LinearMath/btTransformUtil.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "btGjkPairDetector.h"
#include "btPointCollector.h"
btContinuousConvexCollision::btContinuousConvexCollision ( const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* penetrationDepthSolver)
:m_simplexSolver(simplexSolver),
m_penetrationDepthSolver(penetrationDepthSolver),
m_convexA(convexA),m_convexB(convexB)
{
}
/// This maximum should not be necessary. It allows for untested/degenerate cases in production code.
/// You don't want your game ever to lock-up.
#define MAX_ITERATIONS 64
bool btContinuousConvexCollision::calcTimeOfImpact(
const btTransform& fromA,
const btTransform& toA,
const btTransform& fromB,
const btTransform& toB,
CastResult& result)
{
m_simplexSolver->reset();
/// compute linear and angular velocity for this interval, to interpolate
btVector3 linVelA,angVelA,linVelB,angVelB;
btTransformUtil::calculateVelocity(fromA,toA,btScalar(1.),linVelA,angVelA);
btTransformUtil::calculateVelocity(fromB,toB,btScalar(1.),linVelB,angVelB);
btScalar boundingRadiusA = m_convexA->getAngularMotionDisc();
btScalar boundingRadiusB = m_convexB->getAngularMotionDisc();
btScalar maxAngularProjectedVelocity = angVelA.length() * boundingRadiusA + angVelB.length() * boundingRadiusB;
btVector3 relLinVel = (linVelB-linVelA);
btScalar relLinVelocLength = (linVelB-linVelA).length();
if ((relLinVelocLength+maxAngularProjectedVelocity) == 0.f)
return false;
btScalar radius = btScalar(0.001);
btScalar lambda = btScalar(0.);
btVector3 v(1,0,0);
int maxIter = MAX_ITERATIONS;
btVector3 n;
n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
bool hasResult = false;
btVector3 c;
btScalar lastLambda = lambda;
//btScalar epsilon = btScalar(0.001);
int numIter = 0;
//first solution, using GJK
btTransform identityTrans;
identityTrans.setIdentity();
btSphereShape raySphere(btScalar(0.0));
raySphere.setMargin(btScalar(0.));
// result.drawCoordSystem(sphereTr);
btPointCollector pointCollector1;
{
btGjkPairDetector gjk(m_convexA,m_convexB,m_convexA->getShapeType(),m_convexB->getShapeType(),m_convexA->getMargin(),m_convexB->getMargin(),m_simplexSolver,m_penetrationDepthSolver);
btGjkPairDetector::ClosestPointInput input;
//we don't use margins during CCD
// gjk.setIgnoreMargin(true);
input.m_transformA = fromA;
input.m_transformB = fromB;
gjk.getClosestPoints(input,pointCollector1,0);
hasResult = pointCollector1.m_hasResult;
c = pointCollector1.m_pointInWorld;
}
if (hasResult)
{
btScalar dist;
dist = pointCollector1.m_distance;
n = pointCollector1.m_normalOnBInWorld;
btScalar projectedLinearVelocity = relLinVel.dot(n);
//not close enough
while (dist > radius)
{
if (result.m_debugDrawer)
{
result.m_debugDrawer->drawSphere(c,0.2f,btVector3(1,1,1));
}
numIter++;
if (numIter > maxIter)
{
return false; //todo: report a failure
}
btScalar dLambda = btScalar(0.);
projectedLinearVelocity = relLinVel.dot(n);
//calculate safe moving fraction from distance / (linear+rotational velocity)
//btScalar clippedDist = GEN_min(angularConservativeRadius,dist);
//btScalar clippedDist = dist;
//don't report time of impact for motion away from the contact normal (or causes minor penetration)
if ((projectedLinearVelocity+ maxAngularProjectedVelocity)<=SIMD_EPSILON)
return false;
dLambda = dist / (projectedLinearVelocity+ maxAngularProjectedVelocity);
lambda = lambda + dLambda;
if (lambda > btScalar(1.))
return false;
if (lambda < btScalar(0.))
return false;
//todo: next check with relative epsilon
if (lambda <= lastLambda)
{
return false;
//n.setValue(0,0,0);
break;
}
lastLambda = lambda;
//interpolate to next lambda
btTransform interpolatedTransA,interpolatedTransB,relativeTrans;
btTransformUtil::integrateTransform(fromA,linVelA,angVelA,lambda,interpolatedTransA);
btTransformUtil::integrateTransform(fromB,linVelB,angVelB,lambda,interpolatedTransB);
relativeTrans = interpolatedTransB.inverseTimes(interpolatedTransA);
if (result.m_debugDrawer)
{
result.m_debugDrawer->drawSphere(interpolatedTransA.getOrigin(),0.2f,btVector3(1,0,0));
}
result.DebugDraw( lambda );
btPointCollector pointCollector;
btGjkPairDetector gjk(m_convexA,m_convexB,m_simplexSolver,m_penetrationDepthSolver);
btGjkPairDetector::ClosestPointInput input;
input.m_transformA = interpolatedTransA;
input.m_transformB = interpolatedTransB;
gjk.getClosestPoints(input,pointCollector,0);
if (pointCollector.m_hasResult)
{
if (pointCollector.m_distance < btScalar(0.))
{
//degenerate ?!
result.m_fraction = lastLambda;
n = pointCollector.m_normalOnBInWorld;
result.m_normal=n;//.setValue(1,1,1);// = n;
result.m_hitPoint = pointCollector.m_pointInWorld;
return true;
}
c = pointCollector.m_pointInWorld;
n = pointCollector.m_normalOnBInWorld;
dist = pointCollector.m_distance;
} else
{
//??
return false;
}
}
if ((projectedLinearVelocity+ maxAngularProjectedVelocity)<=result.m_allowedPenetration)//SIMD_EPSILON)
return false;
result.m_fraction = lambda;
result.m_normal = n;
result.m_hitPoint = c;
return true;
}
return false;
/*
//todo:
//if movement away from normal, discard result
btVector3 move = transBLocalTo.getOrigin() - transBLocalFrom.getOrigin();
if (result.m_fraction < btScalar(1.))
{
if (move.dot(result.m_normal) <= btScalar(0.))
{
}
}
*/
}

View File

@ -0,0 +1,52 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef CONTINUOUS_COLLISION_CONVEX_CAST_H
#define CONTINUOUS_COLLISION_CONVEX_CAST_H
#include "btConvexCast.h"
#include "btSimplexSolverInterface.h"
class btConvexPenetrationDepthSolver;
class btConvexShape;
/// btContinuousConvexCollision implements angular and linear time of impact for convex objects.
/// Based on Brian Mirtich's Conservative Advancement idea (PhD thesis).
/// Algorithm operates in worldspace, in order to keep inbetween motion globally consistent.
/// It uses GJK at the moment. Future improvement would use minkowski sum / supporting vertex, merging innerloops
class btContinuousConvexCollision : public btConvexCast
{
btSimplexSolverInterface* m_simplexSolver;
btConvexPenetrationDepthSolver* m_penetrationDepthSolver;
const btConvexShape* m_convexA;
const btConvexShape* m_convexB;
public:
btContinuousConvexCollision (const btConvexShape* shapeA,const btConvexShape* shapeB ,btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver* penetrationDepthSolver);
virtual bool calcTimeOfImpact(
const btTransform& fromA,
const btTransform& toA,
const btTransform& fromB,
const btTransform& toB,
CastResult& result);
};
#endif //CONTINUOUS_COLLISION_CONVEX_CAST_H

View File

@ -0,0 +1,20 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btConvexCast.h"
btConvexCast::~btConvexCast()
{
}

View File

@ -0,0 +1,73 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef CONVEX_CAST_H
#define CONVEX_CAST_H
#include "LinearMath/btTransform.h"
#include "LinearMath/btVector3.h"
#include "LinearMath/btScalar.h"
class btMinkowskiSumShape;
#include "LinearMath/btIDebugDraw.h"
/// btConvexCast is an interface for Casting
class btConvexCast
{
public:
virtual ~btConvexCast();
///RayResult stores the closest result
/// alternatively, add a callback method to decide about closest/all results
struct CastResult
{
//virtual bool addRayResult(const btVector3& normal,btScalar fraction) = 0;
virtual void DebugDraw(btScalar fraction) {(void)fraction;}
virtual void drawCoordSystem(const btTransform& trans) {(void)trans;}
CastResult()
:m_fraction(btScalar(BT_LARGE_FLOAT)),
m_debugDrawer(0),
m_allowedPenetration(btScalar(0))
{
}
virtual ~CastResult() {};
btTransform m_hitTransformA;
btTransform m_hitTransformB;
btVector3 m_normal;
btVector3 m_hitPoint;
btScalar m_fraction; //input and output
btIDebugDraw* m_debugDrawer;
btScalar m_allowedPenetration;
};
/// cast a convex against another convex object
virtual bool calcTimeOfImpact(
const btTransform& fromA,
const btTransform& toA,
const btTransform& fromB,
const btTransform& toB,
CastResult& result) = 0;
};
#endif //CONVEX_CAST_H

View File

@ -0,0 +1,42 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef __CONVEX_PENETRATION_DEPTH_H
#define __CONVEX_PENETRATION_DEPTH_H
class btStackAlloc;
class btVector3;
#include "btSimplexSolverInterface.h"
class btConvexShape;
class btTransform;
///ConvexPenetrationDepthSolver provides an interface for penetration depth calculation.
class btConvexPenetrationDepthSolver
{
public:
virtual ~btConvexPenetrationDepthSolver() {};
virtual bool calcPenDepth( btSimplexSolverInterface& simplexSolver,
const btConvexShape* convexA,const btConvexShape* convexB,
const btTransform& transA,const btTransform& transB,
btVector3& v, btVector3& pa, btVector3& pb,
class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc
) = 0;
};
#endif //CONVEX_PENETRATION_DEPTH_H

View File

@ -0,0 +1,89 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef DISCRETE_COLLISION_DETECTOR1_INTERFACE_H
#define DISCRETE_COLLISION_DETECTOR1_INTERFACE_H
#include "LinearMath/btTransform.h"
#include "LinearMath/btVector3.h"
class btStackAlloc;
/// This interface is made to be used by an iterative approach to do TimeOfImpact calculations
/// This interface allows to query for closest points and penetration depth between two (convex) objects
/// the closest point is on the second object (B), and the normal points from the surface on B towards A.
/// distance is between closest points on B and closest point on A. So you can calculate closest point on A
/// by taking closestPointInA = closestPointInB + m_distance * m_normalOnSurfaceB
struct btDiscreteCollisionDetectorInterface
{
struct Result
{
virtual ~Result(){}
///setShapeIdentifiersA/B provides experimental support for per-triangle material / custom material combiner
virtual void setShapeIdentifiersA(int partId0,int index0)=0;
virtual void setShapeIdentifiersB(int partId1,int index1)=0;
virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth)=0;
};
struct ClosestPointInput
{
ClosestPointInput()
:m_maximumDistanceSquared(btScalar(BT_LARGE_FLOAT)),
m_stackAlloc(0)
{
}
btTransform m_transformA;
btTransform m_transformB;
btScalar m_maximumDistanceSquared;
btStackAlloc* m_stackAlloc;
};
virtual ~btDiscreteCollisionDetectorInterface() {};
//
// give either closest points (distance > 0) or penetration (distance)
// the normal always points from B towards A
//
virtual void getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw,bool swapResults=false) = 0;
};
struct btStorageResult : public btDiscreteCollisionDetectorInterface::Result
{
btVector3 m_normalOnSurfaceB;
btVector3 m_closestPointInB;
btScalar m_distance; //negative means penetration !
btStorageResult() : m_distance(btScalar(BT_LARGE_FLOAT))
{
}
virtual ~btStorageResult() {};
virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth)
{
if (depth < m_distance)
{
m_normalOnSurfaceB = normalOnBInWorld;
m_closestPointInB = pointInWorld;
m_distance = depth;
}
}
};
#endif //DISCRETE_COLLISION_DETECTOR_INTERFACE1_H

View File

@ -0,0 +1,176 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btGjkConvexCast.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "btGjkPairDetector.h"
#include "btPointCollector.h"
#include "LinearMath/btTransformUtil.h"
#ifdef BT_USE_DOUBLE_PRECISION
#define MAX_ITERATIONS 64
#else
#define MAX_ITERATIONS 32
#endif
btGjkConvexCast::btGjkConvexCast(const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver)
:m_simplexSolver(simplexSolver),
m_convexA(convexA),
m_convexB(convexB)
{
}
bool btGjkConvexCast::calcTimeOfImpact(
const btTransform& fromA,
const btTransform& toA,
const btTransform& fromB,
const btTransform& toB,
CastResult& result)
{
m_simplexSolver->reset();
/// compute linear velocity for this interval, to interpolate
//assume no rotation/angular velocity, assert here?
btVector3 linVelA,linVelB;
linVelA = toA.getOrigin()-fromA.getOrigin();
linVelB = toB.getOrigin()-fromB.getOrigin();
btScalar radius = btScalar(0.001);
btScalar lambda = btScalar(0.);
btVector3 v(1,0,0);
int maxIter = MAX_ITERATIONS;
btVector3 n;
n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
bool hasResult = false;
btVector3 c;
btVector3 r = (linVelA-linVelB);
btScalar lastLambda = lambda;
//btScalar epsilon = btScalar(0.001);
int numIter = 0;
//first solution, using GJK
btTransform identityTrans;
identityTrans.setIdentity();
// result.drawCoordSystem(sphereTr);
btPointCollector pointCollector;
btGjkPairDetector gjk(m_convexA,m_convexB,m_simplexSolver,0);//m_penetrationDepthSolver);
btGjkPairDetector::ClosestPointInput input;
//we don't use margins during CCD
// gjk.setIgnoreMargin(true);
input.m_transformA = fromA;
input.m_transformB = fromB;
gjk.getClosestPoints(input,pointCollector,0);
hasResult = pointCollector.m_hasResult;
c = pointCollector.m_pointInWorld;
if (hasResult)
{
btScalar dist;
dist = pointCollector.m_distance;
n = pointCollector.m_normalOnBInWorld;
//not close enough
while (dist > radius)
{
numIter++;
if (numIter > maxIter)
{
return false; //todo: report a failure
}
btScalar dLambda = btScalar(0.);
btScalar projectedLinearVelocity = r.dot(n);
dLambda = dist / (projectedLinearVelocity);
lambda = lambda - dLambda;
if (lambda > btScalar(1.))
return false;
if (lambda < btScalar(0.))
return false;
//todo: next check with relative epsilon
if (lambda <= lastLambda)
{
return false;
//n.setValue(0,0,0);
break;
}
lastLambda = lambda;
//interpolate to next lambda
result.DebugDraw( lambda );
input.m_transformA.getOrigin().setInterpolate3(fromA.getOrigin(),toA.getOrigin(),lambda);
input.m_transformB.getOrigin().setInterpolate3(fromB.getOrigin(),toB.getOrigin(),lambda);
gjk.getClosestPoints(input,pointCollector,0);
if (pointCollector.m_hasResult)
{
if (pointCollector.m_distance < btScalar(0.))
{
result.m_fraction = lastLambda;
n = pointCollector.m_normalOnBInWorld;
result.m_normal=n;
result.m_hitPoint = pointCollector.m_pointInWorld;
return true;
}
c = pointCollector.m_pointInWorld;
n = pointCollector.m_normalOnBInWorld;
dist = pointCollector.m_distance;
} else
{
//??
return false;
}
}
//is n normalized?
//don't report time of impact for motion away from the contact normal (or causes minor penetration)
if (n.dot(r)>=-result.m_allowedPenetration)
return false;
result.m_fraction = lambda;
result.m_normal = n;
result.m_hitPoint = c;
return true;
}
return false;
}

View File

@ -0,0 +1,50 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef GJK_CONVEX_CAST_H
#define GJK_CONVEX_CAST_H
#include "BulletCollision/CollisionShapes/btCollisionMargin.h"
#include "LinearMath/btVector3.h"
#include "btConvexCast.h"
class btConvexShape;
class btMinkowskiSumShape;
#include "btSimplexSolverInterface.h"
///GjkConvexCast performs a raycast on a convex object using support mapping.
class btGjkConvexCast : public btConvexCast
{
btSimplexSolverInterface* m_simplexSolver;
const btConvexShape* m_convexA;
const btConvexShape* m_convexB;
public:
btGjkConvexCast(const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver);
/// cast a convex against another convex object
virtual bool calcTimeOfImpact(
const btTransform& fromA,
const btTransform& toA,
const btTransform& fromB,
const btTransform& toB,
CastResult& result);
};
#endif //GJK_CONVEX_CAST_H

View File

@ -0,0 +1,989 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2008 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the
use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software in a
product, an acknowledgment in the product documentation would be appreciated
but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/*
GJK-EPA collision solver by Nathanael Presson, 2008
*/
#include "BulletCollision/CollisionShapes/btConvexInternalShape.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "btGjkEpa2.h"
#if defined(DEBUG) || defined (_DEBUG)
#include <stdio.h> //for debug printf
#ifdef __SPU__
#include <spu_printf.h>
#define printf spu_printf
#endif //__SPU__
#endif
namespace gjkepa2_impl
{
// Config
/* GJK */
#define GJK_MAX_ITERATIONS 128
#define GJK_ACCURARY ((btScalar)0.0001)
#define GJK_MIN_DISTANCE ((btScalar)0.0001)
#define GJK_DUPLICATED_EPS ((btScalar)0.0001)
#define GJK_SIMPLEX2_EPS ((btScalar)0.0)
#define GJK_SIMPLEX3_EPS ((btScalar)0.0)
#define GJK_SIMPLEX4_EPS ((btScalar)0.0)
/* EPA */
#define EPA_MAX_VERTICES 64
#define EPA_MAX_FACES (EPA_MAX_VERTICES*2)
#define EPA_MAX_ITERATIONS 255
#define EPA_ACCURACY ((btScalar)0.0001)
#define EPA_FALLBACK (10*EPA_ACCURACY)
#define EPA_PLANE_EPS ((btScalar)0.00001)
#define EPA_INSIDE_EPS ((btScalar)0.01)
// Shorthands
typedef unsigned int U;
typedef unsigned char U1;
// MinkowskiDiff
struct MinkowskiDiff
{
const btConvexShape* m_shapes[2];
btMatrix3x3 m_toshape1;
btTransform m_toshape0;
#ifdef __SPU__
bool m_enableMargin;
#else
btVector3 (btConvexShape::*Ls)(const btVector3&) const;
#endif//__SPU__
MinkowskiDiff()
{
}
#ifdef __SPU__
void EnableMargin(bool enable)
{
m_enableMargin = enable;
}
inline btVector3 Support0(const btVector3& d) const
{
if (m_enableMargin)
{
return m_shapes[0]->localGetSupportVertexNonVirtual(d);
} else
{
return m_shapes[0]->localGetSupportVertexWithoutMarginNonVirtual(d);
}
}
inline btVector3 Support1(const btVector3& d) const
{
if (m_enableMargin)
{
return m_toshape0*(m_shapes[1]->localGetSupportVertexNonVirtual(m_toshape1*d));
} else
{
return m_toshape0*(m_shapes[1]->localGetSupportVertexWithoutMarginNonVirtual(m_toshape1*d));
}
}
#else
void EnableMargin(bool enable)
{
if(enable)
Ls=&btConvexShape::localGetSupportVertexNonVirtual;
else
Ls=&btConvexShape::localGetSupportVertexWithoutMarginNonVirtual;
}
inline btVector3 Support0(const btVector3& d) const
{
return(((m_shapes[0])->*(Ls))(d));
}
inline btVector3 Support1(const btVector3& d) const
{
return(m_toshape0*((m_shapes[1])->*(Ls))(m_toshape1*d));
}
#endif //__SPU__
inline btVector3 Support(const btVector3& d) const
{
return(Support0(d)-Support1(-d));
}
btVector3 Support(const btVector3& d,U index) const
{
if(index)
return(Support1(d));
else
return(Support0(d));
}
};
typedef MinkowskiDiff tShape;
// GJK
struct GJK
{
/* Types */
struct sSV
{
btVector3 d,w;
};
struct sSimplex
{
sSV* c[4];
btScalar p[4];
U rank;
};
struct eStatus { enum _ {
Valid,
Inside,
Failed };};
/* Fields */
tShape m_shape;
btVector3 m_ray;
btScalar m_distance;
sSimplex m_simplices[2];
sSV m_store[4];
sSV* m_free[4];
U m_nfree;
U m_current;
sSimplex* m_simplex;
eStatus::_ m_status;
/* Methods */
GJK()
{
Initialize();
}
void Initialize()
{
m_ray = btVector3(0,0,0);
m_nfree = 0;
m_status = eStatus::Failed;
m_current = 0;
m_distance = 0;
}
eStatus::_ Evaluate(const tShape& shapearg,const btVector3& guess)
{
U iterations=0;
btScalar sqdist=0;
btScalar alpha=0;
btVector3 lastw[4];
U clastw=0;
/* Initialize solver */
m_free[0] = &m_store[0];
m_free[1] = &m_store[1];
m_free[2] = &m_store[2];
m_free[3] = &m_store[3];
m_nfree = 4;
m_current = 0;
m_status = eStatus::Valid;
m_shape = shapearg;
m_distance = 0;
/* Initialize simplex */
m_simplices[0].rank = 0;
m_ray = guess;
const btScalar sqrl= m_ray.length2();
appendvertice(m_simplices[0],sqrl>0?-m_ray:btVector3(1,0,0));
m_simplices[0].p[0] = 1;
m_ray = m_simplices[0].c[0]->w;
sqdist = sqrl;
lastw[0] =
lastw[1] =
lastw[2] =
lastw[3] = m_ray;
/* Loop */
do {
const U next=1-m_current;
sSimplex& cs=m_simplices[m_current];
sSimplex& ns=m_simplices[next];
/* Check zero */
const btScalar rl=m_ray.length();
if(rl<GJK_MIN_DISTANCE)
{/* Touching or inside */
m_status=eStatus::Inside;
break;
}
/* Append new vertice in -'v' direction */
appendvertice(cs,-m_ray);
const btVector3& w=cs.c[cs.rank-1]->w;
bool found=false;
for(U i=0;i<4;++i)
{
if((w-lastw[i]).length2()<GJK_DUPLICATED_EPS)
{ found=true;break; }
}
if(found)
{/* Return old simplex */
removevertice(m_simplices[m_current]);
break;
}
else
{/* Update lastw */
lastw[clastw=(clastw+1)&3]=w;
}
/* Check for termination */
const btScalar omega=btDot(m_ray,w)/rl;
alpha=btMax(omega,alpha);
if(((rl-alpha)-(GJK_ACCURARY*rl))<=0)
{/* Return old simplex */
removevertice(m_simplices[m_current]);
break;
}
/* Reduce simplex */
btScalar weights[4];
U mask=0;
switch(cs.rank)
{
case 2: sqdist=projectorigin( cs.c[0]->w,
cs.c[1]->w,
weights,mask);break;
case 3: sqdist=projectorigin( cs.c[0]->w,
cs.c[1]->w,
cs.c[2]->w,
weights,mask);break;
case 4: sqdist=projectorigin( cs.c[0]->w,
cs.c[1]->w,
cs.c[2]->w,
cs.c[3]->w,
weights,mask);break;
}
if(sqdist>=0)
{/* Valid */
ns.rank = 0;
m_ray = btVector3(0,0,0);
m_current = next;
for(U i=0,ni=cs.rank;i<ni;++i)
{
if(mask&(1<<i))
{
ns.c[ns.rank] = cs.c[i];
ns.p[ns.rank++] = weights[i];
m_ray += cs.c[i]->w*weights[i];
}
else
{
m_free[m_nfree++] = cs.c[i];
}
}
if(mask==15) m_status=eStatus::Inside;
}
else
{/* Return old simplex */
removevertice(m_simplices[m_current]);
break;
}
m_status=((++iterations)<GJK_MAX_ITERATIONS)?m_status:eStatus::Failed;
} while(m_status==eStatus::Valid);
m_simplex=&m_simplices[m_current];
switch(m_status)
{
case eStatus::Valid: m_distance=m_ray.length();break;
case eStatus::Inside: m_distance=0;break;
default:
{
}
}
return(m_status);
}
bool EncloseOrigin()
{
switch(m_simplex->rank)
{
case 1:
{
for(U i=0;i<3;++i)
{
btVector3 axis=btVector3(0,0,0);
axis[i]=1;
appendvertice(*m_simplex, axis);
if(EncloseOrigin()) return(true);
removevertice(*m_simplex);
appendvertice(*m_simplex,-axis);
if(EncloseOrigin()) return(true);
removevertice(*m_simplex);
}
}
break;
case 2:
{
const btVector3 d=m_simplex->c[1]->w-m_simplex->c[0]->w;
for(U i=0;i<3;++i)
{
btVector3 axis=btVector3(0,0,0);
axis[i]=1;
const btVector3 p=btCross(d,axis);
if(p.length2()>0)
{
appendvertice(*m_simplex, p);
if(EncloseOrigin()) return(true);
removevertice(*m_simplex);
appendvertice(*m_simplex,-p);
if(EncloseOrigin()) return(true);
removevertice(*m_simplex);
}
}
}
break;
case 3:
{
const btVector3 n=btCross(m_simplex->c[1]->w-m_simplex->c[0]->w,
m_simplex->c[2]->w-m_simplex->c[0]->w);
if(n.length2()>0)
{
appendvertice(*m_simplex,n);
if(EncloseOrigin()) return(true);
removevertice(*m_simplex);
appendvertice(*m_simplex,-n);
if(EncloseOrigin()) return(true);
removevertice(*m_simplex);
}
}
break;
case 4:
{
if(btFabs(det( m_simplex->c[0]->w-m_simplex->c[3]->w,
m_simplex->c[1]->w-m_simplex->c[3]->w,
m_simplex->c[2]->w-m_simplex->c[3]->w))>0)
return(true);
}
break;
}
return(false);
}
/* Internals */
void getsupport(const btVector3& d,sSV& sv) const
{
sv.d = d/d.length();
sv.w = m_shape.Support(sv.d);
}
void removevertice(sSimplex& simplex)
{
m_free[m_nfree++]=simplex.c[--simplex.rank];
}
void appendvertice(sSimplex& simplex,const btVector3& v)
{
simplex.p[simplex.rank]=0;
simplex.c[simplex.rank]=m_free[--m_nfree];
getsupport(v,*simplex.c[simplex.rank++]);
}
static btScalar det(const btVector3& a,const btVector3& b,const btVector3& c)
{
return( a.y()*b.z()*c.x()+a.z()*b.x()*c.y()-
a.x()*b.z()*c.y()-a.y()*b.x()*c.z()+
a.x()*b.y()*c.z()-a.z()*b.y()*c.x());
}
static btScalar projectorigin( const btVector3& a,
const btVector3& b,
btScalar* w,U& m)
{
const btVector3 d=b-a;
const btScalar l=d.length2();
if(l>GJK_SIMPLEX2_EPS)
{
const btScalar t(l>0?-btDot(a,d)/l:0);
if(t>=1) { w[0]=0;w[1]=1;m=2;return(b.length2()); }
else if(t<=0) { w[0]=1;w[1]=0;m=1;return(a.length2()); }
else { w[0]=1-(w[1]=t);m=3;return((a+d*t).length2()); }
}
return(-1);
}
static btScalar projectorigin( const btVector3& a,
const btVector3& b,
const btVector3& c,
btScalar* w,U& m)
{
static const U imd3[]={1,2,0};
const btVector3* vt[]={&a,&b,&c};
const btVector3 dl[]={a-b,b-c,c-a};
const btVector3 n=btCross(dl[0],dl[1]);
const btScalar l=n.length2();
if(l>GJK_SIMPLEX3_EPS)
{
btScalar mindist=-1;
btScalar subw[2]={0.f,0.f};
U subm(0);
for(U i=0;i<3;++i)
{
if(btDot(*vt[i],btCross(dl[i],n))>0)
{
const U j=imd3[i];
const btScalar subd(projectorigin(*vt[i],*vt[j],subw,subm));
if((mindist<0)||(subd<mindist))
{
mindist = subd;
m = static_cast<U>(((subm&1)?1<<i:0)+((subm&2)?1<<j:0));
w[i] = subw[0];
w[j] = subw[1];
w[imd3[j]] = 0;
}
}
}
if(mindist<0)
{
const btScalar d=btDot(a,n);
const btScalar s=btSqrt(l);
const btVector3 p=n*(d/l);
mindist = p.length2();
m = 7;
w[0] = (btCross(dl[1],b-p)).length()/s;
w[1] = (btCross(dl[2],c-p)).length()/s;
w[2] = 1-(w[0]+w[1]);
}
return(mindist);
}
return(-1);
}
static btScalar projectorigin( const btVector3& a,
const btVector3& b,
const btVector3& c,
const btVector3& d,
btScalar* w,U& m)
{
static const U imd3[]={1,2,0};
const btVector3* vt[]={&a,&b,&c,&d};
const btVector3 dl[]={a-d,b-d,c-d};
const btScalar vl=det(dl[0],dl[1],dl[2]);
const bool ng=(vl*btDot(a,btCross(b-c,a-b)))<=0;
if(ng&&(btFabs(vl)>GJK_SIMPLEX4_EPS))
{
btScalar mindist=-1;
btScalar subw[3]={0.f,0.f,0.f};
U subm(0);
for(U i=0;i<3;++i)
{
const U j=imd3[i];
const btScalar s=vl*btDot(d,btCross(dl[i],dl[j]));
if(s>0)
{
const btScalar subd=projectorigin(*vt[i],*vt[j],d,subw,subm);
if((mindist<0)||(subd<mindist))
{
mindist = subd;
m = static_cast<U>((subm&1?1<<i:0)+
(subm&2?1<<j:0)+
(subm&4?8:0));
w[i] = subw[0];
w[j] = subw[1];
w[imd3[j]] = 0;
w[3] = subw[2];
}
}
}
if(mindist<0)
{
mindist = 0;
m = 15;
w[0] = det(c,b,d)/vl;
w[1] = det(a,c,d)/vl;
w[2] = det(b,a,d)/vl;
w[3] = 1-(w[0]+w[1]+w[2]);
}
return(mindist);
}
return(-1);
}
};
// EPA
struct EPA
{
/* Types */
typedef GJK::sSV sSV;
struct sFace
{
btVector3 n;
btScalar d;
btScalar p;
sSV* c[3];
sFace* f[3];
sFace* l[2];
U1 e[3];
U1 pass;
};
struct sList
{
sFace* root;
U count;
sList() : root(0),count(0) {}
};
struct sHorizon
{
sFace* cf;
sFace* ff;
U nf;
sHorizon() : cf(0),ff(0),nf(0) {}
};
struct eStatus { enum _ {
Valid,
Touching,
Degenerated,
NonConvex,
InvalidHull,
OutOfFaces,
OutOfVertices,
AccuraryReached,
FallBack,
Failed };};
/* Fields */
eStatus::_ m_status;
GJK::sSimplex m_result;
btVector3 m_normal;
btScalar m_depth;
sSV m_sv_store[EPA_MAX_VERTICES];
sFace m_fc_store[EPA_MAX_FACES];
U m_nextsv;
sList m_hull;
sList m_stock;
/* Methods */
EPA()
{
Initialize();
}
static inline void bind(sFace* fa,U ea,sFace* fb,U eb)
{
fa->e[ea]=(U1)eb;fa->f[ea]=fb;
fb->e[eb]=(U1)ea;fb->f[eb]=fa;
}
static inline void append(sList& list,sFace* face)
{
face->l[0] = 0;
face->l[1] = list.root;
if(list.root) list.root->l[0]=face;
list.root = face;
++list.count;
}
static inline void remove(sList& list,sFace* face)
{
if(face->l[1]) face->l[1]->l[0]=face->l[0];
if(face->l[0]) face->l[0]->l[1]=face->l[1];
if(face==list.root) list.root=face->l[1];
--list.count;
}
void Initialize()
{
m_status = eStatus::Failed;
m_normal = btVector3(0,0,0);
m_depth = 0;
m_nextsv = 0;
for(U i=0;i<EPA_MAX_FACES;++i)
{
append(m_stock,&m_fc_store[EPA_MAX_FACES-i-1]);
}
}
eStatus::_ Evaluate(GJK& gjk,const btVector3& guess)
{
GJK::sSimplex& simplex=*gjk.m_simplex;
if((simplex.rank>1)&&gjk.EncloseOrigin())
{
/* Clean up */
while(m_hull.root)
{
sFace* f = m_hull.root;
remove(m_hull,f);
append(m_stock,f);
}
m_status = eStatus::Valid;
m_nextsv = 0;
/* Orient simplex */
if(gjk.det( simplex.c[0]->w-simplex.c[3]->w,
simplex.c[1]->w-simplex.c[3]->w,
simplex.c[2]->w-simplex.c[3]->w)<0)
{
btSwap(simplex.c[0],simplex.c[1]);
btSwap(simplex.p[0],simplex.p[1]);
}
/* Build initial hull */
sFace* tetra[]={newface(simplex.c[0],simplex.c[1],simplex.c[2],true),
newface(simplex.c[1],simplex.c[0],simplex.c[3],true),
newface(simplex.c[2],simplex.c[1],simplex.c[3],true),
newface(simplex.c[0],simplex.c[2],simplex.c[3],true)};
if(m_hull.count==4)
{
sFace* best=findbest();
sFace outer=*best;
U pass=0;
U iterations=0;
bind(tetra[0],0,tetra[1],0);
bind(tetra[0],1,tetra[2],0);
bind(tetra[0],2,tetra[3],0);
bind(tetra[1],1,tetra[3],2);
bind(tetra[1],2,tetra[2],1);
bind(tetra[2],2,tetra[3],1);
m_status=eStatus::Valid;
for(;iterations<EPA_MAX_ITERATIONS;++iterations)
{
if(m_nextsv<EPA_MAX_VERTICES)
{
sHorizon horizon;
sSV* w=&m_sv_store[m_nextsv++];
bool valid=true;
best->pass = (U1)(++pass);
gjk.getsupport(best->n,*w);
const btScalar wdist=btDot(best->n,w->w)-best->d;
if(wdist>EPA_ACCURACY)
{
for(U j=0;(j<3)&&valid;++j)
{
valid&=expand( pass,w,
best->f[j],best->e[j],
horizon);
}
if(valid&&(horizon.nf>=3))
{
bind(horizon.cf,1,horizon.ff,2);
remove(m_hull,best);
append(m_stock,best);
best=findbest();
if(best->p>=outer.p) outer=*best;
} else { m_status=eStatus::InvalidHull;break; }
} else { m_status=eStatus::AccuraryReached;break; }
} else { m_status=eStatus::OutOfVertices;break; }
}
const btVector3 projection=outer.n*outer.d;
m_normal = outer.n;
m_depth = outer.d;
m_result.rank = 3;
m_result.c[0] = outer.c[0];
m_result.c[1] = outer.c[1];
m_result.c[2] = outer.c[2];
m_result.p[0] = btCross( outer.c[1]->w-projection,
outer.c[2]->w-projection).length();
m_result.p[1] = btCross( outer.c[2]->w-projection,
outer.c[0]->w-projection).length();
m_result.p[2] = btCross( outer.c[0]->w-projection,
outer.c[1]->w-projection).length();
const btScalar sum=m_result.p[0]+m_result.p[1]+m_result.p[2];
m_result.p[0] /= sum;
m_result.p[1] /= sum;
m_result.p[2] /= sum;
return(m_status);
}
}
/* Fallback */
m_status = eStatus::FallBack;
m_normal = -guess;
const btScalar nl=m_normal.length();
if(nl>0)
m_normal = m_normal/nl;
else
m_normal = btVector3(1,0,0);
m_depth = 0;
m_result.rank=1;
m_result.c[0]=simplex.c[0];
m_result.p[0]=1;
return(m_status);
}
sFace* newface(sSV* a,sSV* b,sSV* c,bool forced)
{
if(m_stock.root)
{
sFace* face=m_stock.root;
remove(m_stock,face);
append(m_hull,face);
face->pass = 0;
face->c[0] = a;
face->c[1] = b;
face->c[2] = c;
face->n = btCross(b->w-a->w,c->w-a->w);
const btScalar l=face->n.length();
const bool v=l>EPA_ACCURACY;
face->p = btMin(btMin(
btDot(a->w,btCross(face->n,a->w-b->w)),
btDot(b->w,btCross(face->n,b->w-c->w))),
btDot(c->w,btCross(face->n,c->w-a->w))) /
(v?l:1);
face->p = face->p>=-EPA_INSIDE_EPS?0:face->p;
if(v)
{
face->d = btDot(a->w,face->n)/l;
face->n /= l;
if(forced||(face->d>=-EPA_PLANE_EPS))
{
return(face);
} else m_status=eStatus::NonConvex;
} else m_status=eStatus::Degenerated;
remove(m_hull,face);
append(m_stock,face);
return(0);
}
m_status=m_stock.root?eStatus::OutOfVertices:eStatus::OutOfFaces;
return(0);
}
sFace* findbest()
{
sFace* minf=m_hull.root;
btScalar mind=minf->d*minf->d;
btScalar maxp=minf->p;
for(sFace* f=minf->l[1];f;f=f->l[1])
{
const btScalar sqd=f->d*f->d;
if((f->p>=maxp)&&(sqd<mind))
{
minf=f;
mind=sqd;
maxp=f->p;
}
}
return(minf);
}
bool expand(U pass,sSV* w,sFace* f,U e,sHorizon& horizon)
{
static const U i1m3[]={1,2,0};
static const U i2m3[]={2,0,1};
if(f->pass!=pass)
{
const U e1=i1m3[e];
if((btDot(f->n,w->w)-f->d)<-EPA_PLANE_EPS)
{
sFace* nf=newface(f->c[e1],f->c[e],w,false);
if(nf)
{
bind(nf,0,f,e);
if(horizon.cf) bind(horizon.cf,1,nf,2); else horizon.ff=nf;
horizon.cf=nf;
++horizon.nf;
return(true);
}
}
else
{
const U e2=i2m3[e];
f->pass = (U1)pass;
if( expand(pass,w,f->f[e1],f->e[e1],horizon)&&
expand(pass,w,f->f[e2],f->e[e2],horizon))
{
remove(m_hull,f);
append(m_stock,f);
return(true);
}
}
}
return(false);
}
};
//
static void Initialize( const btConvexShape* shape0,const btTransform& wtrs0,
const btConvexShape* shape1,const btTransform& wtrs1,
btGjkEpaSolver2::sResults& results,
tShape& shape,
bool withmargins)
{
/* Results */
results.witnesses[0] =
results.witnesses[1] = btVector3(0,0,0);
results.status = btGjkEpaSolver2::sResults::Separated;
/* Shape */
shape.m_shapes[0] = shape0;
shape.m_shapes[1] = shape1;
shape.m_toshape1 = wtrs1.getBasis().transposeTimes(wtrs0.getBasis());
shape.m_toshape0 = wtrs0.inverseTimes(wtrs1);
shape.EnableMargin(withmargins);
}
}
//
// Api
//
using namespace gjkepa2_impl;
//
int btGjkEpaSolver2::StackSizeRequirement()
{
return(sizeof(GJK)+sizeof(EPA));
}
//
bool btGjkEpaSolver2::Distance( const btConvexShape* shape0,
const btTransform& wtrs0,
const btConvexShape* shape1,
const btTransform& wtrs1,
const btVector3& guess,
sResults& results)
{
tShape shape;
Initialize(shape0,wtrs0,shape1,wtrs1,results,shape,false);
GJK gjk;
GJK::eStatus::_ gjk_status=gjk.Evaluate(shape,guess);
if(gjk_status==GJK::eStatus::Valid)
{
btVector3 w0=btVector3(0,0,0);
btVector3 w1=btVector3(0,0,0);
for(U i=0;i<gjk.m_simplex->rank;++i)
{
const btScalar p=gjk.m_simplex->p[i];
w0+=shape.Support( gjk.m_simplex->c[i]->d,0)*p;
w1+=shape.Support(-gjk.m_simplex->c[i]->d,1)*p;
}
results.witnesses[0] = wtrs0*w0;
results.witnesses[1] = wtrs0*w1;
results.normal = w0-w1;
results.distance = results.normal.length();
results.normal /= results.distance>GJK_MIN_DISTANCE?results.distance:1;
return(true);
}
else
{
results.status = gjk_status==GJK::eStatus::Inside?
sResults::Penetrating :
sResults::GJK_Failed ;
return(false);
}
}
//
bool btGjkEpaSolver2::Penetration( const btConvexShape* shape0,
const btTransform& wtrs0,
const btConvexShape* shape1,
const btTransform& wtrs1,
const btVector3& guess,
sResults& results,
bool usemargins)
{
tShape shape;
Initialize(shape0,wtrs0,shape1,wtrs1,results,shape,usemargins);
GJK gjk;
GJK::eStatus::_ gjk_status=gjk.Evaluate(shape,-guess);
switch(gjk_status)
{
case GJK::eStatus::Inside:
{
EPA epa;
EPA::eStatus::_ epa_status=epa.Evaluate(gjk,-guess);
if(epa_status!=EPA::eStatus::Failed)
{
btVector3 w0=btVector3(0,0,0);
for(U i=0;i<epa.m_result.rank;++i)
{
w0+=shape.Support(epa.m_result.c[i]->d,0)*epa.m_result.p[i];
}
results.status = sResults::Penetrating;
results.witnesses[0] = wtrs0*w0;
results.witnesses[1] = wtrs0*(w0-epa.m_normal*epa.m_depth);
results.normal = -epa.m_normal;
results.distance = -epa.m_depth;
return(true);
} else results.status=sResults::EPA_Failed;
}
break;
case GJK::eStatus::Failed:
results.status=sResults::GJK_Failed;
break;
default:
{
}
}
return(false);
}
#ifndef __SPU__
//
btScalar btGjkEpaSolver2::SignedDistance(const btVector3& position,
btScalar margin,
const btConvexShape* shape0,
const btTransform& wtrs0,
sResults& results)
{
tShape shape;
btSphereShape shape1(margin);
btTransform wtrs1(btQuaternion(0,0,0,1),position);
Initialize(shape0,wtrs0,&shape1,wtrs1,results,shape,false);
GJK gjk;
GJK::eStatus::_ gjk_status=gjk.Evaluate(shape,btVector3(1,1,1));
if(gjk_status==GJK::eStatus::Valid)
{
btVector3 w0=btVector3(0,0,0);
btVector3 w1=btVector3(0,0,0);
for(U i=0;i<gjk.m_simplex->rank;++i)
{
const btScalar p=gjk.m_simplex->p[i];
w0+=shape.Support( gjk.m_simplex->c[i]->d,0)*p;
w1+=shape.Support(-gjk.m_simplex->c[i]->d,1)*p;
}
results.witnesses[0] = wtrs0*w0;
results.witnesses[1] = wtrs0*w1;
const btVector3 delta= results.witnesses[1]-
results.witnesses[0];
const btScalar margin= shape0->getMarginNonVirtual()+
shape1.getMarginNonVirtual();
const btScalar length= delta.length();
results.normal = delta/length;
results.witnesses[0] += results.normal*margin;
return(length-margin);
}
else
{
if(gjk_status==GJK::eStatus::Inside)
{
if(Penetration(shape0,wtrs0,&shape1,wtrs1,gjk.m_ray,results))
{
const btVector3 delta= results.witnesses[0]-
results.witnesses[1];
const btScalar length= delta.length();
if (length >= SIMD_EPSILON)
results.normal = delta/length;
return(-length);
}
}
}
return(SIMD_INFINITY);
}
//
bool btGjkEpaSolver2::SignedDistance(const btConvexShape* shape0,
const btTransform& wtrs0,
const btConvexShape* shape1,
const btTransform& wtrs1,
const btVector3& guess,
sResults& results)
{
if(!Distance(shape0,wtrs0,shape1,wtrs1,guess,results))
return(Penetration(shape0,wtrs0,shape1,wtrs1,guess,results,false));
else
return(true);
}
#endif //__SPU__
/* Symbols cleanup */
#undef GJK_MAX_ITERATIONS
#undef GJK_ACCURARY
#undef GJK_MIN_DISTANCE
#undef GJK_DUPLICATED_EPS
#undef GJK_SIMPLEX2_EPS
#undef GJK_SIMPLEX3_EPS
#undef GJK_SIMPLEX4_EPS
#undef EPA_MAX_VERTICES
#undef EPA_MAX_FACES
#undef EPA_MAX_ITERATIONS
#undef EPA_ACCURACY
#undef EPA_FALLBACK
#undef EPA_PLANE_EPS
#undef EPA_INSIDE_EPS

View File

@ -0,0 +1,73 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2008 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the
use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software in a
product, an acknowledgment in the product documentation would be appreciated
but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/*
GJK-EPA collision solver by Nathanael Presson, 2008
*/
#ifndef _68DA1F85_90B7_4bb0_A705_83B4040A75C6_
#define _68DA1F85_90B7_4bb0_A705_83B4040A75C6_
#include "BulletCollision/CollisionShapes/btConvexShape.h"
///btGjkEpaSolver contributed under zlib by Nathanael Presson
struct btGjkEpaSolver2
{
struct sResults
{
enum eStatus
{
Separated, /* Shapes doesnt penetrate */
Penetrating, /* Shapes are penetrating */
GJK_Failed, /* GJK phase fail, no big issue, shapes are probably just 'touching' */
EPA_Failed /* EPA phase fail, bigger problem, need to save parameters, and debug */
} status;
btVector3 witnesses[2];
btVector3 normal;
btScalar distance;
};
static int StackSizeRequirement();
static bool Distance( const btConvexShape* shape0,const btTransform& wtrs0,
const btConvexShape* shape1,const btTransform& wtrs1,
const btVector3& guess,
sResults& results);
static bool Penetration(const btConvexShape* shape0,const btTransform& wtrs0,
const btConvexShape* shape1,const btTransform& wtrs1,
const btVector3& guess,
sResults& results,
bool usemargins=true);
#ifndef __SPU__
static btScalar SignedDistance( const btVector3& position,
btScalar margin,
const btConvexShape* shape,
const btTransform& wtrs,
sResults& results);
static bool SignedDistance( const btConvexShape* shape0,const btTransform& wtrs0,
const btConvexShape* shape1,const btTransform& wtrs1,
const btVector3& guess,
sResults& results);
#endif //__SPU__
};
#endif

View File

@ -0,0 +1,66 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
EPA Copyright (c) Ricardo Padrela 2006
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "btGjkEpaPenetrationDepthSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
bool btGjkEpaPenetrationDepthSolver::calcPenDepth( btSimplexSolverInterface& simplexSolver,
const btConvexShape* pConvexA, const btConvexShape* pConvexB,
const btTransform& transformA, const btTransform& transformB,
btVector3& v, btVector3& wWitnessOnA, btVector3& wWitnessOnB,
class btIDebugDraw* debugDraw, btStackAlloc* stackAlloc )
{
(void)debugDraw;
(void)v;
(void)simplexSolver;
// const btScalar radialmargin(btScalar(0.));
btVector3 guessVector(transformA.getOrigin()-transformB.getOrigin());
btGjkEpaSolver2::sResults results;
if(btGjkEpaSolver2::Penetration(pConvexA,transformA,
pConvexB,transformB,
guessVector,results))
{
// debugDraw->drawLine(results.witnesses[1],results.witnesses[1]+results.normal,btVector3(255,0,0));
//resultOut->addContactPoint(results.normal,results.witnesses[1],-results.depth);
wWitnessOnA = results.witnesses[0];
wWitnessOnB = results.witnesses[1];
v = results.normal;
return true;
} else
{
if(btGjkEpaSolver2::Distance(pConvexA,transformA,pConvexB,transformB,guessVector,results))
{
wWitnessOnA = results.witnesses[0];
wWitnessOnB = results.witnesses[1];
v = results.normal;
return false;
}
}
return false;
}

View File

@ -0,0 +1,43 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
EPA Copyright (c) Ricardo Padrela 2006
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_GJP_EPA_PENETRATION_DEPTH_H
#define BT_GJP_EPA_PENETRATION_DEPTH_H
#include "btConvexPenetrationDepthSolver.h"
///EpaPenetrationDepthSolver uses the Expanding Polytope Algorithm to
///calculate the penetration depth between two convex shapes.
class btGjkEpaPenetrationDepthSolver : public btConvexPenetrationDepthSolver
{
public :
btGjkEpaPenetrationDepthSolver()
{
}
bool calcPenDepth( btSimplexSolverInterface& simplexSolver,
const btConvexShape* pConvexA, const btConvexShape* pConvexB,
const btTransform& transformA, const btTransform& transformB,
btVector3& v, btVector3& wWitnessOnA, btVector3& wWitnessOnB,
class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc );
private :
};
#endif // BT_GJP_EPA_PENETRATION_DEPTH_H

View File

@ -0,0 +1,456 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btGjkPairDetector.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
#if defined(DEBUG) || defined (_DEBUG)
//#define TEST_NON_VIRTUAL 1
#include <stdio.h> //for debug printf
#ifdef __SPU__
#include <spu_printf.h>
#define printf spu_printf
//#define DEBUG_SPU_COLLISION_DETECTION 1
#endif //__SPU__
#endif
//must be above the machine epsilon
#define REL_ERROR2 btScalar(1.0e-6)
//temp globals, to improve GJK/EPA/penetration calculations
int gNumDeepPenetrationChecks = 0;
int gNumGjkChecks = 0;
btGjkPairDetector::btGjkPairDetector(const btConvexShape* objectA,const btConvexShape* objectB,btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver* penetrationDepthSolver)
:m_cachedSeparatingAxis(btScalar(0.),btScalar(1.),btScalar(0.)),
m_penetrationDepthSolver(penetrationDepthSolver),
m_simplexSolver(simplexSolver),
m_minkowskiA(objectA),
m_minkowskiB(objectB),
m_shapeTypeA(objectA->getShapeType()),
m_shapeTypeB(objectB->getShapeType()),
m_marginA(objectA->getMargin()),
m_marginB(objectB->getMargin()),
m_ignoreMargin(false),
m_lastUsedMethod(-1),
m_catchDegeneracies(1)
{
}
btGjkPairDetector::btGjkPairDetector(const btConvexShape* objectA,const btConvexShape* objectB,int shapeTypeA,int shapeTypeB,btScalar marginA, btScalar marginB, btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver* penetrationDepthSolver)
:m_cachedSeparatingAxis(btScalar(0.),btScalar(1.),btScalar(0.)),
m_penetrationDepthSolver(penetrationDepthSolver),
m_simplexSolver(simplexSolver),
m_minkowskiA(objectA),
m_minkowskiB(objectB),
m_shapeTypeA(shapeTypeA),
m_shapeTypeB(shapeTypeB),
m_marginA(marginA),
m_marginB(marginB),
m_ignoreMargin(false),
m_lastUsedMethod(-1),
m_catchDegeneracies(1)
{
}
void btGjkPairDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw,bool swapResults)
{
(void)swapResults;
getClosestPointsNonVirtual(input,output,debugDraw);
}
#ifdef __SPU__
void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw)
#else
void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw)
#endif
{
m_cachedSeparatingDistance = 0.f;
btScalar distance=btScalar(0.);
btVector3 normalInB(btScalar(0.),btScalar(0.),btScalar(0.));
btVector3 pointOnA,pointOnB;
btTransform localTransA = input.m_transformA;
btTransform localTransB = input.m_transformB;
btVector3 positionOffset = (localTransA.getOrigin() + localTransB.getOrigin()) * btScalar(0.5);
localTransA.getOrigin() -= positionOffset;
localTransB.getOrigin() -= positionOffset;
bool check2d = m_minkowskiA->isConvex2d() && m_minkowskiB->isConvex2d();
btScalar marginA = m_marginA;
btScalar marginB = m_marginB;
gNumGjkChecks++;
#ifdef DEBUG_SPU_COLLISION_DETECTION
spu_printf("inside gjk\n");
#endif
//for CCD we don't use margins
if (m_ignoreMargin)
{
marginA = btScalar(0.);
marginB = btScalar(0.);
#ifdef DEBUG_SPU_COLLISION_DETECTION
spu_printf("ignoring margin\n");
#endif
}
m_curIter = 0;
int gGjkMaxIter = 1000;//this is to catch invalid input, perhaps check for #NaN?
m_cachedSeparatingAxis.setValue(0,1,0);
bool isValid = false;
bool checkSimplex = false;
bool checkPenetration = true;
m_degenerateSimplex = 0;
m_lastUsedMethod = -1;
{
btScalar squaredDistance = BT_LARGE_FLOAT;
btScalar delta = btScalar(0.);
btScalar margin = marginA + marginB;
m_simplexSolver->reset();
for ( ; ; )
//while (true)
{
btVector3 seperatingAxisInA = (-m_cachedSeparatingAxis)* input.m_transformA.getBasis();
btVector3 seperatingAxisInB = m_cachedSeparatingAxis* input.m_transformB.getBasis();
#if 1
btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInA);
btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInB);
// btVector3 pInA = localGetSupportingVertexWithoutMargin(m_shapeTypeA, m_minkowskiA, seperatingAxisInA,input.m_convexVertexData[0]);//, &featureIndexA);
// btVector3 qInB = localGetSupportingVertexWithoutMargin(m_shapeTypeB, m_minkowskiB, seperatingAxisInB,input.m_convexVertexData[1]);//, &featureIndexB);
#else
#ifdef __SPU__
btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInA);
btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInB);
#else
btVector3 pInA = m_minkowskiA->localGetSupportingVertexWithoutMargin(seperatingAxisInA);
btVector3 qInB = m_minkowskiB->localGetSupportingVertexWithoutMargin(seperatingAxisInB);
#ifdef TEST_NON_VIRTUAL
btVector3 pInAv = m_minkowskiA->localGetSupportingVertexWithoutMargin(seperatingAxisInA);
btVector3 qInBv = m_minkowskiB->localGetSupportingVertexWithoutMargin(seperatingAxisInB);
btAssert((pInAv-pInA).length() < 0.0001);
btAssert((qInBv-qInB).length() < 0.0001);
#endif //
#endif //__SPU__
#endif
btVector3 pWorld = localTransA(pInA);
btVector3 qWorld = localTransB(qInB);
#ifdef DEBUG_SPU_COLLISION_DETECTION
spu_printf("got local supporting vertices\n");
#endif
if (check2d)
{
pWorld[2] = 0.f;
qWorld[2] = 0.f;
}
btVector3 w = pWorld - qWorld;
delta = m_cachedSeparatingAxis.dot(w);
// potential exit, they don't overlap
if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared))
{
m_degenerateSimplex = 10;
checkSimplex=true;
//checkPenetration = false;
break;
}
//exit 0: the new point is already in the simplex, or we didn't come any closer
if (m_simplexSolver->inSimplex(w))
{
m_degenerateSimplex = 1;
checkSimplex = true;
break;
}
// are we getting any closer ?
btScalar f0 = squaredDistance - delta;
btScalar f1 = squaredDistance * REL_ERROR2;
if (f0 <= f1)
{
if (f0 <= btScalar(0.))
{
m_degenerateSimplex = 2;
} else
{
m_degenerateSimplex = 11;
}
checkSimplex = true;
break;
}
#ifdef DEBUG_SPU_COLLISION_DETECTION
spu_printf("addVertex 1\n");
#endif
//add current vertex to simplex
m_simplexSolver->addVertex(w, pWorld, qWorld);
#ifdef DEBUG_SPU_COLLISION_DETECTION
spu_printf("addVertex 2\n");
#endif
btVector3 newCachedSeparatingAxis;
//calculate the closest point to the origin (update vector v)
if (!m_simplexSolver->closest(newCachedSeparatingAxis))
{
m_degenerateSimplex = 3;
checkSimplex = true;
break;
}
if(newCachedSeparatingAxis.length2()<REL_ERROR2)
{
m_cachedSeparatingAxis = newCachedSeparatingAxis;
m_degenerateSimplex = 6;
checkSimplex = true;
break;
}
btScalar previousSquaredDistance = squaredDistance;
squaredDistance = newCachedSeparatingAxis.length2();
#if 0
///warning: this termination condition leads to some problems in 2d test case see Bullet/Demos/Box2dDemo
if (squaredDistance>previousSquaredDistance)
{
m_degenerateSimplex = 7;
squaredDistance = previousSquaredDistance;
checkSimplex = false;
break;
}
#endif //
m_cachedSeparatingAxis = newCachedSeparatingAxis;
//redundant m_simplexSolver->compute_points(pointOnA, pointOnB);
//are we getting any closer ?
if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance)
{
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
checkSimplex = true;
m_degenerateSimplex = 12;
break;
}
//degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject
if (m_curIter++ > gGjkMaxIter)
{
#if defined(DEBUG) || defined (_DEBUG) || defined (DEBUG_SPU_COLLISION_DETECTION)
printf("btGjkPairDetector maxIter exceeded:%i\n",m_curIter);
printf("sepAxis=(%f,%f,%f), squaredDistance = %f, shapeTypeA=%i,shapeTypeB=%i\n",
m_cachedSeparatingAxis.getX(),
m_cachedSeparatingAxis.getY(),
m_cachedSeparatingAxis.getZ(),
squaredDistance,
m_minkowskiA->getShapeType(),
m_minkowskiB->getShapeType());
#endif
break;
}
bool check = (!m_simplexSolver->fullSimplex());
//bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex());
if (!check)
{
//do we need this backup_closest here ?
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
m_degenerateSimplex = 13;
break;
}
}
if (checkSimplex)
{
m_simplexSolver->compute_points(pointOnA, pointOnB);
normalInB = pointOnA-pointOnB;
btScalar lenSqr =m_cachedSeparatingAxis.length2();
//valid normal
if (lenSqr < 0.0001)
{
m_degenerateSimplex = 5;
}
if (lenSqr > SIMD_EPSILON*SIMD_EPSILON)
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
normalInB *= rlen; //normalize
btScalar s = btSqrt(squaredDistance);
btAssert(s > btScalar(0.0));
pointOnA -= m_cachedSeparatingAxis * (marginA / s);
pointOnB += m_cachedSeparatingAxis * (marginB / s);
distance = ((btScalar(1.)/rlen) - margin);
isValid = true;
m_lastUsedMethod = 1;
} else
{
m_lastUsedMethod = 2;
}
}
bool catchDegeneratePenetrationCase =
(m_catchDegeneracies && m_penetrationDepthSolver && m_degenerateSimplex && ((distance+margin) < 0.01));
//if (checkPenetration && !isValid)
if (checkPenetration && (!isValid || catchDegeneratePenetrationCase ))
{
//penetration case
//if there is no way to handle penetrations, bail out
if (m_penetrationDepthSolver)
{
// Penetration depth case.
btVector3 tmpPointOnA,tmpPointOnB;
gNumDeepPenetrationChecks++;
m_cachedSeparatingAxis.setZero();
bool isValid2 = m_penetrationDepthSolver->calcPenDepth(
*m_simplexSolver,
m_minkowskiA,m_minkowskiB,
localTransA,localTransB,
m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB,
debugDraw,input.m_stackAlloc
);
if (isValid2)
{
btVector3 tmpNormalInB = tmpPointOnB-tmpPointOnA;
btScalar lenSqr = tmpNormalInB.length2();
if (lenSqr <= (SIMD_EPSILON*SIMD_EPSILON))
{
tmpNormalInB = m_cachedSeparatingAxis;
lenSqr = m_cachedSeparatingAxis.length2();
}
if (lenSqr > (SIMD_EPSILON*SIMD_EPSILON))
{
tmpNormalInB /= btSqrt(lenSqr);
btScalar distance2 = -(tmpPointOnA-tmpPointOnB).length();
//only replace valid penetrations when the result is deeper (check)
if (!isValid || (distance2 < distance))
{
distance = distance2;
pointOnA = tmpPointOnA;
pointOnB = tmpPointOnB;
normalInB = tmpNormalInB;
isValid = true;
m_lastUsedMethod = 3;
} else
{
m_lastUsedMethod = 8;
}
} else
{
m_lastUsedMethod = 9;
}
} else
{
///this is another degenerate case, where the initial GJK calculation reports a degenerate case
///EPA reports no penetration, and the second GJK (using the supporting vector without margin)
///reports a valid positive distance. Use the results of the second GJK instead of failing.
///thanks to Jacob.Langford for the reproduction case
///http://code.google.com/p/bullet/issues/detail?id=250
if (m_cachedSeparatingAxis.length2() > btScalar(0.))
{
btScalar distance2 = (tmpPointOnA-tmpPointOnB).length()-margin;
//only replace valid distances when the distance is less
if (!isValid || (distance2 < distance))
{
distance = distance2;
pointOnA = tmpPointOnA;
pointOnB = tmpPointOnB;
pointOnA -= m_cachedSeparatingAxis * marginA ;
pointOnB += m_cachedSeparatingAxis * marginB ;
normalInB = m_cachedSeparatingAxis;
normalInB.normalize();
isValid = true;
m_lastUsedMethod = 6;
} else
{
m_lastUsedMethod = 5;
}
}
}
}
}
}
if (isValid && ((distance < 0) || (distance*distance < input.m_maximumDistanceSquared)))
{
#if 0
///some debugging
// if (check2d)
{
printf("n = %2.3f,%2.3f,%2.3f. ",normalInB[0],normalInB[1],normalInB[2]);
printf("distance = %2.3f exit=%d deg=%d\n",distance,m_lastUsedMethod,m_degenerateSimplex);
}
#endif
m_cachedSeparatingAxis = normalInB;
m_cachedSeparatingDistance = distance;
output.addContactPoint(
normalInB,
pointOnB+positionOffset,
distance);
}
}

View File

@ -0,0 +1,103 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef GJK_PAIR_DETECTOR_H
#define GJK_PAIR_DETECTOR_H
#include "btDiscreteCollisionDetectorInterface.h"
#include "BulletCollision/CollisionShapes/btCollisionMargin.h"
class btConvexShape;
#include "btSimplexSolverInterface.h"
class btConvexPenetrationDepthSolver;
/// btGjkPairDetector uses GJK to implement the btDiscreteCollisionDetectorInterface
class btGjkPairDetector : public btDiscreteCollisionDetectorInterface
{
btVector3 m_cachedSeparatingAxis;
btConvexPenetrationDepthSolver* m_penetrationDepthSolver;
btSimplexSolverInterface* m_simplexSolver;
const btConvexShape* m_minkowskiA;
const btConvexShape* m_minkowskiB;
int m_shapeTypeA;
int m_shapeTypeB;
btScalar m_marginA;
btScalar m_marginB;
bool m_ignoreMargin;
btScalar m_cachedSeparatingDistance;
public:
//some debugging to fix degeneracy problems
int m_lastUsedMethod;
int m_curIter;
int m_degenerateSimplex;
int m_catchDegeneracies;
btGjkPairDetector(const btConvexShape* objectA,const btConvexShape* objectB,btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver* penetrationDepthSolver);
btGjkPairDetector(const btConvexShape* objectA,const btConvexShape* objectB,int shapeTypeA,int shapeTypeB,btScalar marginA, btScalar marginB, btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver* penetrationDepthSolver);
virtual ~btGjkPairDetector() {};
virtual void getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw,bool swapResults=false);
void getClosestPointsNonVirtual(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw);
void setMinkowskiA(btConvexShape* minkA)
{
m_minkowskiA = minkA;
}
void setMinkowskiB(btConvexShape* minkB)
{
m_minkowskiB = minkB;
}
void setCachedSeperatingAxis(const btVector3& seperatingAxis)
{
m_cachedSeparatingAxis = seperatingAxis;
}
const btVector3& getCachedSeparatingAxis() const
{
return m_cachedSeparatingAxis;
}
btScalar getCachedSeparatingDistance() const
{
return m_cachedSeparatingDistance;
}
void setPenetrationDepthSolver(btConvexPenetrationDepthSolver* penetrationDepthSolver)
{
m_penetrationDepthSolver = penetrationDepthSolver;
}
///don't use setIgnoreMargin, it's for Bullet's internal use
void setIgnoreMargin(bool ignoreMargin)
{
m_ignoreMargin = ignoreMargin;
}
};
#endif //GJK_PAIR_DETECTOR_H

View File

@ -0,0 +1,153 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef MANIFOLD_CONTACT_POINT_H
#define MANIFOLD_CONTACT_POINT_H
#include "LinearMath/btVector3.h"
#include "LinearMath/btTransformUtil.h"
// Don't change following order of parameters
ATTRIBUTE_ALIGNED16(struct) PfxConstraintRow {
btScalar mNormal[3];
btScalar mRhs;
btScalar mJacDiagInv;
btScalar mLowerLimit;
btScalar mUpperLimit;
btScalar mAccumImpulse;
};
/// ManifoldContactPoint collects and maintains persistent contactpoints.
/// used to improve stability and performance of rigidbody dynamics response.
class btManifoldPoint
{
public:
btManifoldPoint()
:m_userPersistentData(0),
m_appliedImpulse(0.f),
m_lateralFrictionInitialized(false),
m_appliedImpulseLateral1(0.f),
m_appliedImpulseLateral2(0.f),
m_contactMotion1(0.f),
m_contactMotion2(0.f),
m_contactCFM1(0.f),
m_contactCFM2(0.f),
m_lifeTime(0)
{
}
btManifoldPoint( const btVector3 &pointA, const btVector3 &pointB,
const btVector3 &normal,
btScalar distance ) :
m_localPointA( pointA ),
m_localPointB( pointB ),
m_normalWorldOnB( normal ),
m_distance1( distance ),
m_combinedFriction(btScalar(0.)),
m_combinedRestitution(btScalar(0.)),
m_userPersistentData(0),
m_appliedImpulse(0.f),
m_lateralFrictionInitialized(false),
m_appliedImpulseLateral1(0.f),
m_appliedImpulseLateral2(0.f),
m_contactMotion1(0.f),
m_contactMotion2(0.f),
m_contactCFM1(0.f),
m_contactCFM2(0.f),
m_lifeTime(0)
{
mConstraintRow[0].mAccumImpulse = 0.f;
mConstraintRow[1].mAccumImpulse = 0.f;
mConstraintRow[2].mAccumImpulse = 0.f;
}
btVector3 m_localPointA;
btVector3 m_localPointB;
btVector3 m_positionWorldOnB;
///m_positionWorldOnA is redundant information, see getPositionWorldOnA(), but for clarity
btVector3 m_positionWorldOnA;
btVector3 m_normalWorldOnB;
btScalar m_distance1;
btScalar m_combinedFriction;
btScalar m_combinedRestitution;
//BP mod, store contact triangles.
int m_partId0;
int m_partId1;
int m_index0;
int m_index1;
mutable void* m_userPersistentData;
btScalar m_appliedImpulse;
bool m_lateralFrictionInitialized;
btScalar m_appliedImpulseLateral1;
btScalar m_appliedImpulseLateral2;
btScalar m_contactMotion1;
btScalar m_contactMotion2;
btScalar m_contactCFM1;
btScalar m_contactCFM2;
int m_lifeTime;//lifetime of the contactpoint in frames
btVector3 m_lateralFrictionDir1;
btVector3 m_lateralFrictionDir2;
PfxConstraintRow mConstraintRow[3];
btScalar getDistance() const
{
return m_distance1;
}
int getLifeTime() const
{
return m_lifeTime;
}
const btVector3& getPositionWorldOnA() const {
return m_positionWorldOnA;
// return m_positionWorldOnB + m_normalWorldOnB * m_distance1;
}
const btVector3& getPositionWorldOnB() const
{
return m_positionWorldOnB;
}
void setDistance(btScalar dist)
{
m_distance1 = dist;
}
///this returns the most recent applied impulse, to satisfy contact constraints by the constraint solver
btScalar getAppliedImpulse() const
{
return m_appliedImpulse;
}
};
#endif //MANIFOLD_CONTACT_POINT_H

View File

@ -0,0 +1,362 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btMinkowskiPenetrationDepthSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#define NUM_UNITSPHERE_POINTS 42
bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& simplexSolver,
const btConvexShape* convexA,const btConvexShape* convexB,
const btTransform& transA,const btTransform& transB,
btVector3& v, btVector3& pa, btVector3& pb,
class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc
)
{
(void)stackAlloc;
(void)v;
bool check2d= convexA->isConvex2d() && convexB->isConvex2d();
struct btIntermediateResult : public btDiscreteCollisionDetectorInterface::Result
{
btIntermediateResult():m_hasResult(false)
{
}
btVector3 m_normalOnBInWorld;
btVector3 m_pointInWorld;
btScalar m_depth;
bool m_hasResult;
virtual void setShapeIdentifiersA(int partId0,int index0)
{
(void)partId0;
(void)index0;
}
virtual void setShapeIdentifiersB(int partId1,int index1)
{
(void)partId1;
(void)index1;
}
void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth)
{
m_normalOnBInWorld = normalOnBInWorld;
m_pointInWorld = pointInWorld;
m_depth = depth;
m_hasResult = true;
}
};
//just take fixed number of orientation, and sample the penetration depth in that direction
btScalar minProj = btScalar(BT_LARGE_FLOAT);
btVector3 minNorm(btScalar(0.), btScalar(0.), btScalar(0.));
btVector3 minA,minB;
btVector3 seperatingAxisInA,seperatingAxisInB;
btVector3 pInA,qInB,pWorld,qWorld,w;
#ifndef __SPU__
#define USE_BATCHED_SUPPORT 1
#endif
#ifdef USE_BATCHED_SUPPORT
btVector3 supportVerticesABatch[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2];
btVector3 supportVerticesBBatch[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2];
btVector3 seperatingAxisInABatch[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2];
btVector3 seperatingAxisInBBatch[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2];
int i;
int numSampleDirections = NUM_UNITSPHERE_POINTS;
for (i=0;i<numSampleDirections;i++)
{
btVector3 norm = getPenetrationDirections()[i];
seperatingAxisInABatch[i] = (-norm) * transA.getBasis() ;
seperatingAxisInBBatch[i] = norm * transB.getBasis() ;
}
{
int numPDA = convexA->getNumPreferredPenetrationDirections();
if (numPDA)
{
for (int i=0;i<numPDA;i++)
{
btVector3 norm;
convexA->getPreferredPenetrationDirection(i,norm);
norm = transA.getBasis() * norm;
getPenetrationDirections()[numSampleDirections] = norm;
seperatingAxisInABatch[numSampleDirections] = (-norm) * transA.getBasis();
seperatingAxisInBBatch[numSampleDirections] = norm * transB.getBasis();
numSampleDirections++;
}
}
}
{
int numPDB = convexB->getNumPreferredPenetrationDirections();
if (numPDB)
{
for (int i=0;i<numPDB;i++)
{
btVector3 norm;
convexB->getPreferredPenetrationDirection(i,norm);
norm = transB.getBasis() * norm;
getPenetrationDirections()[numSampleDirections] = norm;
seperatingAxisInABatch[numSampleDirections] = (-norm) * transA.getBasis();
seperatingAxisInBBatch[numSampleDirections] = norm * transB.getBasis();
numSampleDirections++;
}
}
}
convexA->batchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInABatch,supportVerticesABatch,numSampleDirections);
convexB->batchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInBBatch,supportVerticesBBatch,numSampleDirections);
for (i=0;i<numSampleDirections;i++)
{
btVector3 norm = getPenetrationDirections()[i];
if (check2d)
{
norm[2] = 0.f;
}
if (norm.length2()>0.01)
{
seperatingAxisInA = seperatingAxisInABatch[i];
seperatingAxisInB = seperatingAxisInBBatch[i];
pInA = supportVerticesABatch[i];
qInB = supportVerticesBBatch[i];
pWorld = transA(pInA);
qWorld = transB(qInB);
if (check2d)
{
pWorld[2] = 0.f;
qWorld[2] = 0.f;
}
w = qWorld - pWorld;
btScalar delta = norm.dot(w);
//find smallest delta
if (delta < minProj)
{
minProj = delta;
minNorm = norm;
minA = pWorld;
minB = qWorld;
}
}
}
#else
int numSampleDirections = NUM_UNITSPHERE_POINTS;
#ifndef __SPU__
{
int numPDA = convexA->getNumPreferredPenetrationDirections();
if (numPDA)
{
for (int i=0;i<numPDA;i++)
{
btVector3 norm;
convexA->getPreferredPenetrationDirection(i,norm);
norm = transA.getBasis() * norm;
getPenetrationDirections()[numSampleDirections] = norm;
numSampleDirections++;
}
}
}
{
int numPDB = convexB->getNumPreferredPenetrationDirections();
if (numPDB)
{
for (int i=0;i<numPDB;i++)
{
btVector3 norm;
convexB->getPreferredPenetrationDirection(i,norm);
norm = transB.getBasis() * norm;
getPenetrationDirections()[numSampleDirections] = norm;
numSampleDirections++;
}
}
}
#endif // __SPU__
for (int i=0;i<numSampleDirections;i++)
{
const btVector3& norm = getPenetrationDirections()[i];
seperatingAxisInA = (-norm)* transA.getBasis();
seperatingAxisInB = norm* transB.getBasis();
pInA = convexA->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInA);
qInB = convexB->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInB);
pWorld = transA(pInA);
qWorld = transB(qInB);
w = qWorld - pWorld;
btScalar delta = norm.dot(w);
//find smallest delta
if (delta < minProj)
{
minProj = delta;
minNorm = norm;
minA = pWorld;
minB = qWorld;
}
}
#endif //USE_BATCHED_SUPPORT
//add the margins
minA += minNorm*convexA->getMarginNonVirtual();
minB -= minNorm*convexB->getMarginNonVirtual();
//no penetration
if (minProj < btScalar(0.))
return false;
btScalar extraSeparation = 0.5f;///scale dependent
minProj += extraSeparation+(convexA->getMarginNonVirtual() + convexB->getMarginNonVirtual());
//#define DEBUG_DRAW 1
#ifdef DEBUG_DRAW
if (debugDraw)
{
btVector3 color(0,1,0);
debugDraw->drawLine(minA,minB,color);
color = btVector3 (1,1,1);
btVector3 vec = minB-minA;
btScalar prj2 = minNorm.dot(vec);
debugDraw->drawLine(minA,minA+(minNorm*minProj),color);
}
#endif //DEBUG_DRAW
btGjkPairDetector gjkdet(convexA,convexB,&simplexSolver,0);
btScalar offsetDist = minProj;
btVector3 offset = minNorm * offsetDist;
btGjkPairDetector::ClosestPointInput input;
btVector3 newOrg = transA.getOrigin() + offset;
btTransform displacedTrans = transA;
displacedTrans.setOrigin(newOrg);
input.m_transformA = displacedTrans;
input.m_transformB = transB;
input.m_maximumDistanceSquared = btScalar(BT_LARGE_FLOAT);//minProj;
btIntermediateResult res;
gjkdet.setCachedSeperatingAxis(-minNorm);
gjkdet.getClosestPoints(input,res,debugDraw);
btScalar correctedMinNorm = minProj - res.m_depth;
//the penetration depth is over-estimated, relax it
btScalar penetration_relaxation= btScalar(1.);
minNorm*=penetration_relaxation;
if (res.m_hasResult)
{
pa = res.m_pointInWorld - minNorm * correctedMinNorm;
pb = res.m_pointInWorld;
v = minNorm;
#ifdef DEBUG_DRAW
if (debugDraw)
{
btVector3 color(1,0,0);
debugDraw->drawLine(pa,pb,color);
}
#endif//DEBUG_DRAW
}
return res.m_hasResult;
}
btVector3* btMinkowskiPenetrationDepthSolver::getPenetrationDirections()
{
static btVector3 sPenetrationDirections[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2] =
{
btVector3(btScalar(0.000000) , btScalar(-0.000000),btScalar(-1.000000)),
btVector3(btScalar(0.723608) , btScalar(-0.525725),btScalar(-0.447219)),
btVector3(btScalar(-0.276388) , btScalar(-0.850649),btScalar(-0.447219)),
btVector3(btScalar(-0.894426) , btScalar(-0.000000),btScalar(-0.447216)),
btVector3(btScalar(-0.276388) , btScalar(0.850649),btScalar(-0.447220)),
btVector3(btScalar(0.723608) , btScalar(0.525725),btScalar(-0.447219)),
btVector3(btScalar(0.276388) , btScalar(-0.850649),btScalar(0.447220)),
btVector3(btScalar(-0.723608) , btScalar(-0.525725),btScalar(0.447219)),
btVector3(btScalar(-0.723608) , btScalar(0.525725),btScalar(0.447219)),
btVector3(btScalar(0.276388) , btScalar(0.850649),btScalar(0.447219)),
btVector3(btScalar(0.894426) , btScalar(0.000000),btScalar(0.447216)),
btVector3(btScalar(-0.000000) , btScalar(0.000000),btScalar(1.000000)),
btVector3(btScalar(0.425323) , btScalar(-0.309011),btScalar(-0.850654)),
btVector3(btScalar(-0.162456) , btScalar(-0.499995),btScalar(-0.850654)),
btVector3(btScalar(0.262869) , btScalar(-0.809012),btScalar(-0.525738)),
btVector3(btScalar(0.425323) , btScalar(0.309011),btScalar(-0.850654)),
btVector3(btScalar(0.850648) , btScalar(-0.000000),btScalar(-0.525736)),
btVector3(btScalar(-0.525730) , btScalar(-0.000000),btScalar(-0.850652)),
btVector3(btScalar(-0.688190) , btScalar(-0.499997),btScalar(-0.525736)),
btVector3(btScalar(-0.162456) , btScalar(0.499995),btScalar(-0.850654)),
btVector3(btScalar(-0.688190) , btScalar(0.499997),btScalar(-0.525736)),
btVector3(btScalar(0.262869) , btScalar(0.809012),btScalar(-0.525738)),
btVector3(btScalar(0.951058) , btScalar(0.309013),btScalar(0.000000)),
btVector3(btScalar(0.951058) , btScalar(-0.309013),btScalar(0.000000)),
btVector3(btScalar(0.587786) , btScalar(-0.809017),btScalar(0.000000)),
btVector3(btScalar(0.000000) , btScalar(-1.000000),btScalar(0.000000)),
btVector3(btScalar(-0.587786) , btScalar(-0.809017),btScalar(0.000000)),
btVector3(btScalar(-0.951058) , btScalar(-0.309013),btScalar(-0.000000)),
btVector3(btScalar(-0.951058) , btScalar(0.309013),btScalar(-0.000000)),
btVector3(btScalar(-0.587786) , btScalar(0.809017),btScalar(-0.000000)),
btVector3(btScalar(-0.000000) , btScalar(1.000000),btScalar(-0.000000)),
btVector3(btScalar(0.587786) , btScalar(0.809017),btScalar(-0.000000)),
btVector3(btScalar(0.688190) , btScalar(-0.499997),btScalar(0.525736)),
btVector3(btScalar(-0.262869) , btScalar(-0.809012),btScalar(0.525738)),
btVector3(btScalar(-0.850648) , btScalar(0.000000),btScalar(0.525736)),
btVector3(btScalar(-0.262869) , btScalar(0.809012),btScalar(0.525738)),
btVector3(btScalar(0.688190) , btScalar(0.499997),btScalar(0.525736)),
btVector3(btScalar(0.525730) , btScalar(0.000000),btScalar(0.850652)),
btVector3(btScalar(0.162456) , btScalar(-0.499995),btScalar(0.850654)),
btVector3(btScalar(-0.425323) , btScalar(-0.309011),btScalar(0.850654)),
btVector3(btScalar(-0.425323) , btScalar(0.309011),btScalar(0.850654)),
btVector3(btScalar(0.162456) , btScalar(0.499995),btScalar(0.850654))
};
return sPenetrationDirections;
}

View File

@ -0,0 +1,40 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef MINKOWSKI_PENETRATION_DEPTH_SOLVER_H
#define MINKOWSKI_PENETRATION_DEPTH_SOLVER_H
#include "btConvexPenetrationDepthSolver.h"
///MinkowskiPenetrationDepthSolver implements bruteforce penetration depth estimation.
///Implementation is based on sampling the depth using support mapping, and using GJK step to get the witness points.
class btMinkowskiPenetrationDepthSolver : public btConvexPenetrationDepthSolver
{
protected:
static btVector3* getPenetrationDirections();
public:
virtual bool calcPenDepth( btSimplexSolverInterface& simplexSolver,
const btConvexShape* convexA,const btConvexShape* convexB,
const btTransform& transA,const btTransform& transB,
btVector3& v, btVector3& pa, btVector3& pb,
class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc
);
};
#endif //MINKOWSKI_PENETRATION_DEPTH_SOLVER_H

View File

@ -0,0 +1,260 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btPersistentManifold.h"
#include "LinearMath/btTransform.h"
btScalar gContactBreakingThreshold = btScalar(0.02);
ContactDestroyedCallback gContactDestroyedCallback = 0;
ContactProcessedCallback gContactProcessedCallback = 0;
btPersistentManifold::btPersistentManifold()
:btTypedObject(BT_PERSISTENT_MANIFOLD_TYPE),
m_body0(0),
m_body1(0),
m_cachedPoints (0),
m_index1a(0)
{
}
#ifdef DEBUG_PERSISTENCY
#include <stdio.h>
void btPersistentManifold::DebugPersistency()
{
int i;
printf("DebugPersistency : numPoints %d\n",m_cachedPoints);
for (i=0;i<m_cachedPoints;i++)
{
printf("m_pointCache[%d].m_userPersistentData = %x\n",i,m_pointCache[i].m_userPersistentData);
}
}
#endif //DEBUG_PERSISTENCY
void btPersistentManifold::clearUserCache(btManifoldPoint& pt)
{
void* oldPtr = pt.m_userPersistentData;
if (oldPtr)
{
#ifdef DEBUG_PERSISTENCY
int i;
int occurance = 0;
for (i=0;i<m_cachedPoints;i++)
{
if (m_pointCache[i].m_userPersistentData == oldPtr)
{
occurance++;
if (occurance>1)
printf("error in clearUserCache\n");
}
}
btAssert(occurance<=0);
#endif //DEBUG_PERSISTENCY
if (pt.m_userPersistentData && gContactDestroyedCallback)
{
(*gContactDestroyedCallback)(pt.m_userPersistentData);
pt.m_userPersistentData = 0;
}
#ifdef DEBUG_PERSISTENCY
DebugPersistency();
#endif
}
}
int btPersistentManifold::sortCachedPoints(const btManifoldPoint& pt)
{
//calculate 4 possible cases areas, and take biggest area
//also need to keep 'deepest'
int maxPenetrationIndex = -1;
#define KEEP_DEEPEST_POINT 1
#ifdef KEEP_DEEPEST_POINT
btScalar maxPenetration = pt.getDistance();
for (int i=0;i<4;i++)
{
if (m_pointCache[i].getDistance() < maxPenetration)
{
maxPenetrationIndex = i;
maxPenetration = m_pointCache[i].getDistance();
}
}
#endif //KEEP_DEEPEST_POINT
btScalar res0(btScalar(0.)),res1(btScalar(0.)),res2(btScalar(0.)),res3(btScalar(0.));
if (maxPenetrationIndex != 0)
{
btVector3 a0 = pt.m_localPointA-m_pointCache[1].m_localPointA;
btVector3 b0 = m_pointCache[3].m_localPointA-m_pointCache[2].m_localPointA;
btVector3 cross = a0.cross(b0);
res0 = cross.length2();
}
if (maxPenetrationIndex != 1)
{
btVector3 a1 = pt.m_localPointA-m_pointCache[0].m_localPointA;
btVector3 b1 = m_pointCache[3].m_localPointA-m_pointCache[2].m_localPointA;
btVector3 cross = a1.cross(b1);
res1 = cross.length2();
}
if (maxPenetrationIndex != 2)
{
btVector3 a2 = pt.m_localPointA-m_pointCache[0].m_localPointA;
btVector3 b2 = m_pointCache[3].m_localPointA-m_pointCache[1].m_localPointA;
btVector3 cross = a2.cross(b2);
res2 = cross.length2();
}
if (maxPenetrationIndex != 3)
{
btVector3 a3 = pt.m_localPointA-m_pointCache[0].m_localPointA;
btVector3 b3 = m_pointCache[2].m_localPointA-m_pointCache[1].m_localPointA;
btVector3 cross = a3.cross(b3);
res3 = cross.length2();
}
btVector4 maxvec(res0,res1,res2,res3);
int biggestarea = maxvec.closestAxis4();
return biggestarea;
}
int btPersistentManifold::getCacheEntry(const btManifoldPoint& newPoint) const
{
btScalar shortestDist = getContactBreakingThreshold() * getContactBreakingThreshold();
int size = getNumContacts();
int nearestPoint = -1;
for( int i = 0; i < size; i++ )
{
const btManifoldPoint &mp = m_pointCache[i];
btVector3 diffA = mp.m_localPointA- newPoint.m_localPointA;
const btScalar distToManiPoint = diffA.dot(diffA);
if( distToManiPoint < shortestDist )
{
shortestDist = distToManiPoint;
nearestPoint = i;
}
}
return nearestPoint;
}
int btPersistentManifold::addManifoldPoint(const btManifoldPoint& newPoint)
{
btAssert(validContactDistance(newPoint));
int insertIndex = getNumContacts();
if (insertIndex == MANIFOLD_CACHE_SIZE)
{
#if MANIFOLD_CACHE_SIZE >= 4
//sort cache so best points come first, based on area
insertIndex = sortCachedPoints(newPoint);
#else
insertIndex = 0;
#endif
clearUserCache(m_pointCache[insertIndex]);
} else
{
m_cachedPoints++;
}
if (insertIndex<0)
insertIndex=0;
btAssert(m_pointCache[insertIndex].m_userPersistentData==0);
m_pointCache[insertIndex] = newPoint;
return insertIndex;
}
btScalar btPersistentManifold::getContactBreakingThreshold() const
{
return m_contactBreakingThreshold;
}
void btPersistentManifold::refreshContactPoints(const btTransform& trA,const btTransform& trB)
{
int i;
#ifdef DEBUG_PERSISTENCY
printf("refreshContactPoints posA = (%f,%f,%f) posB = (%f,%f,%f)\n",
trA.getOrigin().getX(),
trA.getOrigin().getY(),
trA.getOrigin().getZ(),
trB.getOrigin().getX(),
trB.getOrigin().getY(),
trB.getOrigin().getZ());
#endif //DEBUG_PERSISTENCY
/// first refresh worldspace positions and distance
for (i=getNumContacts()-1;i>=0;i--)
{
btManifoldPoint &manifoldPoint = m_pointCache[i];
manifoldPoint.m_positionWorldOnA = trA( manifoldPoint.m_localPointA );
manifoldPoint.m_positionWorldOnB = trB( manifoldPoint.m_localPointB );
manifoldPoint.m_distance1 = (manifoldPoint.m_positionWorldOnA - manifoldPoint.m_positionWorldOnB).dot(manifoldPoint.m_normalWorldOnB);
manifoldPoint.m_lifeTime++;
}
/// then
btScalar distance2d;
btVector3 projectedDifference,projectedPoint;
for (i=getNumContacts()-1;i>=0;i--)
{
btManifoldPoint &manifoldPoint = m_pointCache[i];
//contact becomes invalid when signed distance exceeds margin (projected on contactnormal direction)
if (!validContactDistance(manifoldPoint))
{
removeContactPoint(i);
} else
{
//contact also becomes invalid when relative movement orthogonal to normal exceeds margin
projectedPoint = manifoldPoint.m_positionWorldOnA - manifoldPoint.m_normalWorldOnB * manifoldPoint.m_distance1;
projectedDifference = manifoldPoint.m_positionWorldOnB - projectedPoint;
distance2d = projectedDifference.dot(projectedDifference);
if (distance2d > getContactBreakingThreshold()*getContactBreakingThreshold() )
{
removeContactPoint(i);
} else
{
//contact point processed callback
if (gContactProcessedCallback)
(*gContactProcessedCallback)(manifoldPoint,m_body0,m_body1);
}
}
}
#ifdef DEBUG_PERSISTENCY
DebugPersistency();
#endif //
}

View File

@ -0,0 +1,227 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef PERSISTENT_MANIFOLD_H
#define PERSISTENT_MANIFOLD_H
#include "LinearMath/btVector3.h"
#include "LinearMath/btTransform.h"
#include "btManifoldPoint.h"
#include "LinearMath/btAlignedAllocator.h"
struct btCollisionResult;
///maximum contact breaking and merging threshold
extern btScalar gContactBreakingThreshold;
typedef bool (*ContactDestroyedCallback)(void* userPersistentData);
typedef bool (*ContactProcessedCallback)(btManifoldPoint& cp,void* body0,void* body1);
extern ContactDestroyedCallback gContactDestroyedCallback;
extern ContactProcessedCallback gContactProcessedCallback;
enum btContactManifoldTypes
{
BT_PERSISTENT_MANIFOLD_TYPE = 1,
MAX_CONTACT_MANIFOLD_TYPE
};
#define MANIFOLD_CACHE_SIZE 4
///btPersistentManifold is a contact point cache, it stays persistent as long as objects are overlapping in the broadphase.
///Those contact points are created by the collision narrow phase.
///The cache can be empty, or hold 1,2,3 or 4 points. Some collision algorithms (GJK) might only add one point at a time.
///updates/refreshes old contact points, and throw them away if necessary (distance becomes too large)
///reduces the cache to 4 points, when more then 4 points are added, using following rules:
///the contact point with deepest penetration is always kept, and it tries to maximuze the area covered by the points
///note that some pairs of objects might have more then one contact manifold.
ATTRIBUTE_ALIGNED128( class) btPersistentManifold : public btTypedObject
//ATTRIBUTE_ALIGNED16( class) btPersistentManifold : public btTypedObject
{
btManifoldPoint m_pointCache[MANIFOLD_CACHE_SIZE];
/// this two body pointers can point to the physics rigidbody class.
/// void* will allow any rigidbody class
void* m_body0;
void* m_body1;
int m_cachedPoints;
btScalar m_contactBreakingThreshold;
btScalar m_contactProcessingThreshold;
/// sort cached points so most isolated points come first
int sortCachedPoints(const btManifoldPoint& pt);
int findContactPoint(const btManifoldPoint* unUsed, int numUnused,const btManifoldPoint& pt);
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
int m_companionIdA;
int m_companionIdB;
int m_index1a;
btPersistentManifold();
btPersistentManifold(void* body0,void* body1,int , btScalar contactBreakingThreshold,btScalar contactProcessingThreshold)
: btTypedObject(BT_PERSISTENT_MANIFOLD_TYPE),
m_body0(body0),m_body1(body1),m_cachedPoints(0),
m_contactBreakingThreshold(contactBreakingThreshold),
m_contactProcessingThreshold(contactProcessingThreshold)
{
}
SIMD_FORCE_INLINE void* getBody0() { return m_body0;}
SIMD_FORCE_INLINE void* getBody1() { return m_body1;}
SIMD_FORCE_INLINE const void* getBody0() const { return m_body0;}
SIMD_FORCE_INLINE const void* getBody1() const { return m_body1;}
void setBodies(void* body0,void* body1)
{
m_body0 = body0;
m_body1 = body1;
}
void clearUserCache(btManifoldPoint& pt);
#ifdef DEBUG_PERSISTENCY
void DebugPersistency();
#endif //
SIMD_FORCE_INLINE int getNumContacts() const { return m_cachedPoints;}
SIMD_FORCE_INLINE const btManifoldPoint& getContactPoint(int index) const
{
btAssert(index < m_cachedPoints);
return m_pointCache[index];
}
SIMD_FORCE_INLINE btManifoldPoint& getContactPoint(int index)
{
btAssert(index < m_cachedPoints);
return m_pointCache[index];
}
///@todo: get this margin from the current physics / collision environment
btScalar getContactBreakingThreshold() const;
btScalar getContactProcessingThreshold() const
{
return m_contactProcessingThreshold;
}
int getCacheEntry(const btManifoldPoint& newPoint) const;
int addManifoldPoint( const btManifoldPoint& newPoint);
void removeContactPoint (int index)
{
clearUserCache(m_pointCache[index]);
int lastUsedIndex = getNumContacts() - 1;
// m_pointCache[index] = m_pointCache[lastUsedIndex];
if(index != lastUsedIndex)
{
m_pointCache[index] = m_pointCache[lastUsedIndex];
//get rid of duplicated userPersistentData pointer
m_pointCache[lastUsedIndex].m_userPersistentData = 0;
m_pointCache[lastUsedIndex].mConstraintRow[0].mAccumImpulse = 0.f;
m_pointCache[lastUsedIndex].mConstraintRow[1].mAccumImpulse = 0.f;
m_pointCache[lastUsedIndex].mConstraintRow[2].mAccumImpulse = 0.f;
m_pointCache[lastUsedIndex].m_appliedImpulse = 0.f;
m_pointCache[lastUsedIndex].m_lateralFrictionInitialized = false;
m_pointCache[lastUsedIndex].m_appliedImpulseLateral1 = 0.f;
m_pointCache[lastUsedIndex].m_appliedImpulseLateral2 = 0.f;
m_pointCache[lastUsedIndex].m_lifeTime = 0;
}
btAssert(m_pointCache[lastUsedIndex].m_userPersistentData==0);
m_cachedPoints--;
}
void replaceContactPoint(const btManifoldPoint& newPoint,int insertIndex)
{
btAssert(validContactDistance(newPoint));
#define MAINTAIN_PERSISTENCY 1
#ifdef MAINTAIN_PERSISTENCY
int lifeTime = m_pointCache[insertIndex].getLifeTime();
btScalar appliedImpulse = m_pointCache[insertIndex].mConstraintRow[0].mAccumImpulse;
btScalar appliedLateralImpulse1 = m_pointCache[insertIndex].mConstraintRow[1].mAccumImpulse;
btScalar appliedLateralImpulse2 = m_pointCache[insertIndex].mConstraintRow[2].mAccumImpulse;
// bool isLateralFrictionInitialized = m_pointCache[insertIndex].m_lateralFrictionInitialized;
btAssert(lifeTime>=0);
void* cache = m_pointCache[insertIndex].m_userPersistentData;
m_pointCache[insertIndex] = newPoint;
m_pointCache[insertIndex].m_userPersistentData = cache;
m_pointCache[insertIndex].m_appliedImpulse = appliedImpulse;
m_pointCache[insertIndex].m_appliedImpulseLateral1 = appliedLateralImpulse1;
m_pointCache[insertIndex].m_appliedImpulseLateral2 = appliedLateralImpulse2;
m_pointCache[insertIndex].mConstraintRow[0].mAccumImpulse = appliedImpulse;
m_pointCache[insertIndex].mConstraintRow[1].mAccumImpulse = appliedLateralImpulse1;
m_pointCache[insertIndex].mConstraintRow[2].mAccumImpulse = appliedLateralImpulse2;
m_pointCache[insertIndex].m_lifeTime = lifeTime;
#else
clearUserCache(m_pointCache[insertIndex]);
m_pointCache[insertIndex] = newPoint;
#endif
}
bool validContactDistance(const btManifoldPoint& pt) const
{
return pt.m_distance1 <= getContactBreakingThreshold();
}
/// calculated new worldspace coordinates and depth, and reject points that exceed the collision margin
void refreshContactPoints( const btTransform& trA,const btTransform& trB);
SIMD_FORCE_INLINE void clearManifold()
{
int i;
for (i=0;i<m_cachedPoints;i++)
{
clearUserCache(m_pointCache[i]);
}
m_cachedPoints = 0;
}
}
;
#endif //PERSISTENT_MANIFOLD_H

View File

@ -0,0 +1,64 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef POINT_COLLECTOR_H
#define POINT_COLLECTOR_H
#include "btDiscreteCollisionDetectorInterface.h"
struct btPointCollector : public btDiscreteCollisionDetectorInterface::Result
{
btVector3 m_normalOnBInWorld;
btVector3 m_pointInWorld;
btScalar m_distance;//negative means penetration
bool m_hasResult;
btPointCollector ()
: m_distance(btScalar(BT_LARGE_FLOAT)),m_hasResult(false)
{
}
virtual void setShapeIdentifiersA(int partId0,int index0)
{
(void)partId0;
(void)index0;
}
virtual void setShapeIdentifiersB(int partId1,int index1)
{
(void)partId1;
(void)index1;
}
virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth)
{
if (depth< m_distance)
{
m_hasResult = true;
m_normalOnBInWorld = normalOnBInWorld;
m_pointInWorld = pointInWorld;
//negative means penetration
m_distance = depth;
}
}
};
#endif //POINT_COLLECTOR_H

View File

@ -0,0 +1,175 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
//#include <stdio.h>
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/CollisionShapes/btTriangleShape.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
#include "btRaycastCallback.h"
btTriangleRaycastCallback::btTriangleRaycastCallback(const btVector3& from,const btVector3& to, unsigned int flags)
:
m_from(from),
m_to(to),
//@BP Mod
m_flags(flags),
m_hitFraction(btScalar(1.))
{
}
void btTriangleRaycastCallback::processTriangle(btVector3* triangle,int partId, int triangleIndex)
{
const btVector3 &vert0=triangle[0];
const btVector3 &vert1=triangle[1];
const btVector3 &vert2=triangle[2];
btVector3 v10; v10 = vert1 - vert0 ;
btVector3 v20; v20 = vert2 - vert0 ;
btVector3 triangleNormal; triangleNormal = v10.cross( v20 );
const btScalar dist = vert0.dot(triangleNormal);
btScalar dist_a = triangleNormal.dot(m_from) ;
dist_a-= dist;
btScalar dist_b = triangleNormal.dot(m_to);
dist_b -= dist;
if ( dist_a * dist_b >= btScalar(0.0) )
{
return ; // same sign
}
//@BP Mod - Backface filtering
if (((m_flags & kF_FilterBackfaces) != 0) && (dist_a > btScalar(0.0)))
{
// Backface, skip check
return;
}
const btScalar proj_length=dist_a-dist_b;
const btScalar distance = (dist_a)/(proj_length);
// Now we have the intersection point on the plane, we'll see if it's inside the triangle
// Add an epsilon as a tolerance for the raycast,
// in case the ray hits exacly on the edge of the triangle.
// It must be scaled for the triangle size.
if(distance < m_hitFraction)
{
btScalar edge_tolerance =triangleNormal.length2();
edge_tolerance *= btScalar(-0.0001);
btVector3 point; point.setInterpolate3( m_from, m_to, distance);
{
btVector3 v0p; v0p = vert0 - point;
btVector3 v1p; v1p = vert1 - point;
btVector3 cp0; cp0 = v0p.cross( v1p );
if ( (btScalar)(cp0.dot(triangleNormal)) >=edge_tolerance)
{
btVector3 v2p; v2p = vert2 - point;
btVector3 cp1;
cp1 = v1p.cross( v2p);
if ( (btScalar)(cp1.dot(triangleNormal)) >=edge_tolerance)
{
btVector3 cp2;
cp2 = v2p.cross(v0p);
if ( (btScalar)(cp2.dot(triangleNormal)) >=edge_tolerance)
{
//@BP Mod
// Triangle normal isn't normalized
triangleNormal.normalize();
//@BP Mod - Allow for unflipped normal when raycasting against backfaces
if (((m_flags & kF_KeepUnflippedNormal) != 0) || (dist_a <= btScalar(0.0)))
{
m_hitFraction = reportHit(-triangleNormal,distance,partId,triangleIndex);
}
else
{
m_hitFraction = reportHit(triangleNormal,distance,partId,triangleIndex);
}
}
}
}
}
}
}
btTriangleConvexcastCallback::btTriangleConvexcastCallback (const btConvexShape* convexShape, const btTransform& convexShapeFrom, const btTransform& convexShapeTo, const btTransform& triangleToWorld, const btScalar triangleCollisionMargin)
{
m_convexShape = convexShape;
m_convexShapeFrom = convexShapeFrom;
m_convexShapeTo = convexShapeTo;
m_triangleToWorld = triangleToWorld;
m_hitFraction = 1.0;
m_triangleCollisionMargin = triangleCollisionMargin;
}
void
btTriangleConvexcastCallback::processTriangle (btVector3* triangle, int partId, int triangleIndex)
{
btTriangleShape triangleShape (triangle[0], triangle[1], triangle[2]);
triangleShape.setMargin(m_triangleCollisionMargin);
btVoronoiSimplexSolver simplexSolver;
btGjkEpaPenetrationDepthSolver gjkEpaPenetrationSolver;
//#define USE_SUBSIMPLEX_CONVEX_CAST 1
//if you reenable USE_SUBSIMPLEX_CONVEX_CAST see commented out code below
#ifdef USE_SUBSIMPLEX_CONVEX_CAST
btSubsimplexConvexCast convexCaster(m_convexShape, &triangleShape, &simplexSolver);
#else
//btGjkConvexCast convexCaster(m_convexShape,&triangleShape,&simplexSolver);
btContinuousConvexCollision convexCaster(m_convexShape,&triangleShape,&simplexSolver,&gjkEpaPenetrationSolver);
#endif //#USE_SUBSIMPLEX_CONVEX_CAST
btConvexCast::CastResult castResult;
castResult.m_fraction = btScalar(1.);
if (convexCaster.calcTimeOfImpact(m_convexShapeFrom,m_convexShapeTo,m_triangleToWorld, m_triangleToWorld, castResult))
{
//add hit
if (castResult.m_normal.length2() > btScalar(0.0001))
{
if (castResult.m_fraction < m_hitFraction)
{
/* btContinuousConvexCast's normal is already in world space */
/*
#ifdef USE_SUBSIMPLEX_CONVEX_CAST
//rotate normal into worldspace
castResult.m_normal = m_convexShapeFrom.getBasis() * castResult.m_normal;
#endif //USE_SUBSIMPLEX_CONVEX_CAST
*/
castResult.m_normal.normalize();
reportHit (castResult.m_normal,
castResult.m_hitPoint,
castResult.m_fraction,
partId,
triangleIndex);
}
}
}
}

View File

@ -0,0 +1,71 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef RAYCAST_TRI_CALLBACK_H
#define RAYCAST_TRI_CALLBACK_H
#include "BulletCollision/CollisionShapes/btTriangleCallback.h"
#include "LinearMath/btTransform.h"
struct btBroadphaseProxy;
class btConvexShape;
class btTriangleRaycastCallback: public btTriangleCallback
{
public:
//input
btVector3 m_from;
btVector3 m_to;
//@BP Mod - allow backface filtering and unflipped normals
enum EFlags
{
kF_None = 0,
kF_FilterBackfaces = 1 << 0,
kF_KeepUnflippedNormal = 1 << 1, // Prevents returned face normal getting flipped when a ray hits a back-facing triangle
kF_Terminator = 0xFFFFFFFF
};
unsigned int m_flags;
btScalar m_hitFraction;
btTriangleRaycastCallback(const btVector3& from,const btVector3& to, unsigned int flags=0);
virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex);
virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex ) = 0;
};
class btTriangleConvexcastCallback : public btTriangleCallback
{
public:
const btConvexShape* m_convexShape;
btTransform m_convexShapeFrom;
btTransform m_convexShapeTo;
btTransform m_triangleToWorld;
btScalar m_hitFraction;
btScalar m_triangleCollisionMargin;
btTriangleConvexcastCallback (const btConvexShape* convexShape, const btTransform& convexShapeFrom, const btTransform& convexShapeTo, const btTransform& triangleToWorld, const btScalar triangleCollisionMargin);
virtual void processTriangle (btVector3* triangle, int partId, int triangleIndex);
virtual btScalar reportHit (const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex) = 0;
};
#endif //RAYCAST_TRI_CALLBACK_H

View File

@ -0,0 +1,63 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef SIMPLEX_SOLVER_INTERFACE_H
#define SIMPLEX_SOLVER_INTERFACE_H
#include "LinearMath/btVector3.h"
#define NO_VIRTUAL_INTERFACE 1
#ifdef NO_VIRTUAL_INTERFACE
#include "btVoronoiSimplexSolver.h"
#define btSimplexSolverInterface btVoronoiSimplexSolver
#else
/// btSimplexSolverInterface can incrementally calculate distance between origin and up to 4 vertices
/// Used by GJK or Linear Casting. Can be implemented by the Johnson-algorithm or alternative approaches based on
/// voronoi regions or barycentric coordinates
class btSimplexSolverInterface
{
public:
virtual ~btSimplexSolverInterface() {};
virtual void reset() = 0;
virtual void addVertex(const btVector3& w, const btVector3& p, const btVector3& q) = 0;
virtual bool closest(btVector3& v) = 0;
virtual btScalar maxVertex() = 0;
virtual bool fullSimplex() const = 0;
virtual int getSimplex(btVector3 *pBuf, btVector3 *qBuf, btVector3 *yBuf) const = 0;
virtual bool inSimplex(const btVector3& w) = 0;
virtual void backup_closest(btVector3& v) = 0;
virtual bool emptySimplex() const = 0;
virtual void compute_points(btVector3& p1, btVector3& p2) = 0;
virtual int numVertices() const =0;
};
#endif
#endif //SIMPLEX_SOLVER_INTERFACE_H

View File

@ -0,0 +1,160 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btSubSimplexConvexCast.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h"
#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
#include "btPointCollector.h"
#include "LinearMath/btTransformUtil.h"
btSubsimplexConvexCast::btSubsimplexConvexCast (const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver)
:m_simplexSolver(simplexSolver),
m_convexA(convexA),m_convexB(convexB)
{
}
///Typically the conservative advancement reaches solution in a few iterations, clip it to 32 for degenerate cases.
///See discussion about this here http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=565
#ifdef BT_USE_DOUBLE_PRECISION
#define MAX_ITERATIONS 64
#else
#define MAX_ITERATIONS 32
#endif
bool btSubsimplexConvexCast::calcTimeOfImpact(
const btTransform& fromA,
const btTransform& toA,
const btTransform& fromB,
const btTransform& toB,
CastResult& result)
{
m_simplexSolver->reset();
btVector3 linVelA,linVelB;
linVelA = toA.getOrigin()-fromA.getOrigin();
linVelB = toB.getOrigin()-fromB.getOrigin();
btScalar lambda = btScalar(0.);
btTransform interpolatedTransA = fromA;
btTransform interpolatedTransB = fromB;
///take relative motion
btVector3 r = (linVelA-linVelB);
btVector3 v;
btVector3 supVertexA = fromA(m_convexA->localGetSupportingVertex(-r*fromA.getBasis()));
btVector3 supVertexB = fromB(m_convexB->localGetSupportingVertex(r*fromB.getBasis()));
v = supVertexA-supVertexB;
int maxIter = MAX_ITERATIONS;
btVector3 n;
n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
bool hasResult = false;
btVector3 c;
btScalar lastLambda = lambda;
btScalar dist2 = v.length2();
#ifdef BT_USE_DOUBLE_PRECISION
btScalar epsilon = btScalar(0.0001);
#else
btScalar epsilon = btScalar(0.0001);
#endif //BT_USE_DOUBLE_PRECISION
btVector3 w,p;
btScalar VdotR;
while ( (dist2 > epsilon) && maxIter--)
{
supVertexA = interpolatedTransA(m_convexA->localGetSupportingVertex(-v*interpolatedTransA.getBasis()));
supVertexB = interpolatedTransB(m_convexB->localGetSupportingVertex(v*interpolatedTransB.getBasis()));
w = supVertexA-supVertexB;
btScalar VdotW = v.dot(w);
if (lambda > btScalar(1.0))
{
return false;
}
if ( VdotW > btScalar(0.))
{
VdotR = v.dot(r);
if (VdotR >= -(SIMD_EPSILON*SIMD_EPSILON))
return false;
else
{
lambda = lambda - VdotW / VdotR;
//interpolate to next lambda
// x = s + lambda * r;
interpolatedTransA.getOrigin().setInterpolate3(fromA.getOrigin(),toA.getOrigin(),lambda);
interpolatedTransB.getOrigin().setInterpolate3(fromB.getOrigin(),toB.getOrigin(),lambda);
//m_simplexSolver->reset();
//check next line
w = supVertexA-supVertexB;
lastLambda = lambda;
n = v;
hasResult = true;
}
}
///Just like regular GJK only add the vertex if it isn't already (close) to current vertex, it would lead to divisions by zero and NaN etc.
if (!m_simplexSolver->inSimplex(w))
m_simplexSolver->addVertex( w, supVertexA , supVertexB);
if (m_simplexSolver->closest(v))
{
dist2 = v.length2();
hasResult = true;
//todo: check this normal for validity
//n=v;
//printf("V=%f , %f, %f\n",v[0],v[1],v[2]);
//printf("DIST2=%f\n",dist2);
//printf("numverts = %i\n",m_simplexSolver->numVertices());
} else
{
dist2 = btScalar(0.);
}
}
//int numiter = MAX_ITERATIONS - maxIter;
// printf("number of iterations: %d", numiter);
//don't report a time of impact when moving 'away' from the hitnormal
result.m_fraction = lambda;
if (n.length2() >= (SIMD_EPSILON*SIMD_EPSILON))
result.m_normal = n.normalized();
else
result.m_normal = btVector3(btScalar(0.0), btScalar(0.0), btScalar(0.0));
//don't report time of impact for motion away from the contact normal (or causes minor penetration)
if (result.m_normal.dot(r)>=-result.m_allowedPenetration)
return false;
btVector3 hitA,hitB;
m_simplexSolver->compute_points(hitA,hitB);
result.m_hitPoint=hitB;
return true;
}

View File

@ -0,0 +1,50 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef SUBSIMPLEX_CONVEX_CAST_H
#define SUBSIMPLEX_CONVEX_CAST_H
#include "btConvexCast.h"
#include "btSimplexSolverInterface.h"
class btConvexShape;
/// btSubsimplexConvexCast implements Gino van den Bergens' paper
///"Ray Casting against bteral Convex Objects with Application to Continuous Collision Detection"
/// GJK based Ray Cast, optimized version
/// Objects should not start in overlap, otherwise results are not defined.
class btSubsimplexConvexCast : public btConvexCast
{
btSimplexSolverInterface* m_simplexSolver;
const btConvexShape* m_convexA;
const btConvexShape* m_convexB;
public:
btSubsimplexConvexCast (const btConvexShape* shapeA,const btConvexShape* shapeB,btSimplexSolverInterface* simplexSolver);
//virtual ~btSubsimplexConvexCast();
///SimsimplexConvexCast calculateTimeOfImpact calculates the time of impact+normal for the linear cast (sweep) between two moving objects.
///Precondition is that objects should not penetration/overlap at the start from the interval. Overlap can be tested using btGjkPairDetector.
virtual bool calcTimeOfImpact(
const btTransform& fromA,
const btTransform& toA,
const btTransform& fromB,
const btTransform& toB,
CastResult& result);
};
#endif //SUBSIMPLEX_CONVEX_CAST_H

View File

@ -0,0 +1,609 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Elsevier CDROM license agreements grants nonexclusive license to use the software
for any purpose, commercial or non-commercial as long as the following credit is included
identifying the original source of the software:
Parts of the source are "from the book Real-Time Collision Detection by
Christer Ericson, published by Morgan Kaufmann Publishers,
(c) 2005 Elsevier Inc."
*/
#include "btVoronoiSimplexSolver.h"
#define VERTA 0
#define VERTB 1
#define VERTC 2
#define VERTD 3
#define CATCH_DEGENERATE_TETRAHEDRON 1
void btVoronoiSimplexSolver::removeVertex(int index)
{
btAssert(m_numVertices>0);
m_numVertices--;
m_simplexVectorW[index] = m_simplexVectorW[m_numVertices];
m_simplexPointsP[index] = m_simplexPointsP[m_numVertices];
m_simplexPointsQ[index] = m_simplexPointsQ[m_numVertices];
}
void btVoronoiSimplexSolver::reduceVertices (const btUsageBitfield& usedVerts)
{
if ((numVertices() >= 4) && (!usedVerts.usedVertexD))
removeVertex(3);
if ((numVertices() >= 3) && (!usedVerts.usedVertexC))
removeVertex(2);
if ((numVertices() >= 2) && (!usedVerts.usedVertexB))
removeVertex(1);
if ((numVertices() >= 1) && (!usedVerts.usedVertexA))
removeVertex(0);
}
//clear the simplex, remove all the vertices
void btVoronoiSimplexSolver::reset()
{
m_cachedValidClosest = false;
m_numVertices = 0;
m_needsUpdate = true;
m_lastW = btVector3(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));
m_cachedBC.reset();
}
//add a vertex
void btVoronoiSimplexSolver::addVertex(const btVector3& w, const btVector3& p, const btVector3& q)
{
m_lastW = w;
m_needsUpdate = true;
m_simplexVectorW[m_numVertices] = w;
m_simplexPointsP[m_numVertices] = p;
m_simplexPointsQ[m_numVertices] = q;
m_numVertices++;
}
bool btVoronoiSimplexSolver::updateClosestVectorAndPoints()
{
if (m_needsUpdate)
{
m_cachedBC.reset();
m_needsUpdate = false;
switch (numVertices())
{
case 0:
m_cachedValidClosest = false;
break;
case 1:
{
m_cachedP1 = m_simplexPointsP[0];
m_cachedP2 = m_simplexPointsQ[0];
m_cachedV = m_cachedP1-m_cachedP2; //== m_simplexVectorW[0]
m_cachedBC.reset();
m_cachedBC.setBarycentricCoordinates(btScalar(1.),btScalar(0.),btScalar(0.),btScalar(0.));
m_cachedValidClosest = m_cachedBC.isValid();
break;
};
case 2:
{
//closest point origin from line segment
const btVector3& from = m_simplexVectorW[0];
const btVector3& to = m_simplexVectorW[1];
btVector3 nearest;
btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.));
btVector3 diff = p - from;
btVector3 v = to - from;
btScalar t = v.dot(diff);
if (t > 0) {
btScalar dotVV = v.dot(v);
if (t < dotVV) {
t /= dotVV;
diff -= t*v;
m_cachedBC.m_usedVertices.usedVertexA = true;
m_cachedBC.m_usedVertices.usedVertexB = true;
} else {
t = 1;
diff -= v;
//reduce to 1 point
m_cachedBC.m_usedVertices.usedVertexB = true;
}
} else
{
t = 0;
//reduce to 1 point
m_cachedBC.m_usedVertices.usedVertexA = true;
}
m_cachedBC.setBarycentricCoordinates(1-t,t);
nearest = from + t*v;
m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]);
m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]);
m_cachedV = m_cachedP1 - m_cachedP2;
reduceVertices(m_cachedBC.m_usedVertices);
m_cachedValidClosest = m_cachedBC.isValid();
break;
}
case 3:
{
//closest point origin from triangle
btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.));
const btVector3& a = m_simplexVectorW[0];
const btVector3& b = m_simplexVectorW[1];
const btVector3& c = m_simplexVectorW[2];
closestPtPointTriangle(p,a,b,c,m_cachedBC);
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2];
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2];
m_cachedV = m_cachedP1-m_cachedP2;
reduceVertices (m_cachedBC.m_usedVertices);
m_cachedValidClosest = m_cachedBC.isValid();
break;
}
case 4:
{
btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.));
const btVector3& a = m_simplexVectorW[0];
const btVector3& b = m_simplexVectorW[1];
const btVector3& c = m_simplexVectorW[2];
const btVector3& d = m_simplexVectorW[3];
bool hasSeperation = closestPtPointTetrahedron(p,a,b,c,d,m_cachedBC);
if (hasSeperation)
{
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] +
m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3];
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] +
m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3];
m_cachedV = m_cachedP1-m_cachedP2;
reduceVertices (m_cachedBC.m_usedVertices);
} else
{
// printf("sub distance got penetration\n");
if (m_cachedBC.m_degenerate)
{
m_cachedValidClosest = false;
} else
{
m_cachedValidClosest = true;
//degenerate case == false, penetration = true + zero
m_cachedV.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
}
break;
}
m_cachedValidClosest = m_cachedBC.isValid();
//closest point origin from tetrahedron
break;
}
default:
{
m_cachedValidClosest = false;
}
};
}
return m_cachedValidClosest;
}
//return/calculate the closest vertex
bool btVoronoiSimplexSolver::closest(btVector3& v)
{
bool succes = updateClosestVectorAndPoints();
v = m_cachedV;
return succes;
}
btScalar btVoronoiSimplexSolver::maxVertex()
{
int i, numverts = numVertices();
btScalar maxV = btScalar(0.);
for (i=0;i<numverts;i++)
{
btScalar curLen2 = m_simplexVectorW[i].length2();
if (maxV < curLen2)
maxV = curLen2;
}
return maxV;
}
//return the current simplex
int btVoronoiSimplexSolver::getSimplex(btVector3 *pBuf, btVector3 *qBuf, btVector3 *yBuf) const
{
int i;
for (i=0;i<numVertices();i++)
{
yBuf[i] = m_simplexVectorW[i];
pBuf[i] = m_simplexPointsP[i];
qBuf[i] = m_simplexPointsQ[i];
}
return numVertices();
}
bool btVoronoiSimplexSolver::inSimplex(const btVector3& w)
{
bool found = false;
int i, numverts = numVertices();
//btScalar maxV = btScalar(0.);
//w is in the current (reduced) simplex
for (i=0;i<numverts;i++)
{
#ifdef BT_USE_EQUAL_VERTEX_THRESHOLD
if ( m_simplexVectorW[i].distance2(w) <= m_equalVertexThreshold)
#else
if (m_simplexVectorW[i] == w)
#endif
found = true;
}
//check in case lastW is already removed
if (w == m_lastW)
return true;
return found;
}
void btVoronoiSimplexSolver::backup_closest(btVector3& v)
{
v = m_cachedV;
}
bool btVoronoiSimplexSolver::emptySimplex() const
{
return (numVertices() == 0);
}
void btVoronoiSimplexSolver::compute_points(btVector3& p1, btVector3& p2)
{
updateClosestVectorAndPoints();
p1 = m_cachedP1;
p2 = m_cachedP2;
}
bool btVoronoiSimplexSolver::closestPtPointTriangle(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c,btSubSimplexClosestResult& result)
{
result.m_usedVertices.reset();
// Check if P in vertex region outside A
btVector3 ab = b - a;
btVector3 ac = c - a;
btVector3 ap = p - a;
btScalar d1 = ab.dot(ap);
btScalar d2 = ac.dot(ap);
if (d1 <= btScalar(0.0) && d2 <= btScalar(0.0))
{
result.m_closestPointOnSimplex = a;
result.m_usedVertices.usedVertexA = true;
result.setBarycentricCoordinates(1,0,0);
return true;// a; // barycentric coordinates (1,0,0)
}
// Check if P in vertex region outside B
btVector3 bp = p - b;
btScalar d3 = ab.dot(bp);
btScalar d4 = ac.dot(bp);
if (d3 >= btScalar(0.0) && d4 <= d3)
{
result.m_closestPointOnSimplex = b;
result.m_usedVertices.usedVertexB = true;
result.setBarycentricCoordinates(0,1,0);
return true; // b; // barycentric coordinates (0,1,0)
}
// Check if P in edge region of AB, if so return projection of P onto AB
btScalar vc = d1*d4 - d3*d2;
if (vc <= btScalar(0.0) && d1 >= btScalar(0.0) && d3 <= btScalar(0.0)) {
btScalar v = d1 / (d1 - d3);
result.m_closestPointOnSimplex = a + v * ab;
result.m_usedVertices.usedVertexA = true;
result.m_usedVertices.usedVertexB = true;
result.setBarycentricCoordinates(1-v,v,0);
return true;
//return a + v * ab; // barycentric coordinates (1-v,v,0)
}
// Check if P in vertex region outside C
btVector3 cp = p - c;
btScalar d5 = ab.dot(cp);
btScalar d6 = ac.dot(cp);
if (d6 >= btScalar(0.0) && d5 <= d6)
{
result.m_closestPointOnSimplex = c;
result.m_usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(0,0,1);
return true;//c; // barycentric coordinates (0,0,1)
}
// Check if P in edge region of AC, if so return projection of P onto AC
btScalar vb = d5*d2 - d1*d6;
if (vb <= btScalar(0.0) && d2 >= btScalar(0.0) && d6 <= btScalar(0.0)) {
btScalar w = d2 / (d2 - d6);
result.m_closestPointOnSimplex = a + w * ac;
result.m_usedVertices.usedVertexA = true;
result.m_usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(1-w,0,w);
return true;
//return a + w * ac; // barycentric coordinates (1-w,0,w)
}
// Check if P in edge region of BC, if so return projection of P onto BC
btScalar va = d3*d6 - d5*d4;
if (va <= btScalar(0.0) && (d4 - d3) >= btScalar(0.0) && (d5 - d6) >= btScalar(0.0)) {
btScalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
result.m_closestPointOnSimplex = b + w * (c - b);
result.m_usedVertices.usedVertexB = true;
result.m_usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(0,1-w,w);
return true;
// return b + w * (c - b); // barycentric coordinates (0,1-w,w)
}
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
btScalar denom = btScalar(1.0) / (va + vb + vc);
btScalar v = vb * denom;
btScalar w = vc * denom;
result.m_closestPointOnSimplex = a + ab * v + ac * w;
result.m_usedVertices.usedVertexA = true;
result.m_usedVertices.usedVertexB = true;
result.m_usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(1-v-w,v,w);
return true;
// return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = btScalar(1.0) - v - w
}
/// Test if point p and d lie on opposite sides of plane through abc
int btVoronoiSimplexSolver::pointOutsideOfPlane(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d)
{
btVector3 normal = (b-a).cross(c-a);
btScalar signp = (p - a).dot(normal); // [AP AB AC]
btScalar signd = (d - a).dot( normal); // [AD AB AC]
#ifdef CATCH_DEGENERATE_TETRAHEDRON
#ifdef BT_USE_DOUBLE_PRECISION
if (signd * signd < (btScalar(1e-8) * btScalar(1e-8)))
{
return -1;
}
#else
if (signd * signd < (btScalar(1e-4) * btScalar(1e-4)))
{
// printf("affine dependent/degenerate\n");//
return -1;
}
#endif
#endif
// Points on opposite sides if expression signs are opposite
return signp * signd < btScalar(0.);
}
bool btVoronoiSimplexSolver::closestPtPointTetrahedron(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d, btSubSimplexClosestResult& finalResult)
{
btSubSimplexClosestResult tempResult;
// Start out assuming point inside all halfspaces, so closest to itself
finalResult.m_closestPointOnSimplex = p;
finalResult.m_usedVertices.reset();
finalResult.m_usedVertices.usedVertexA = true;
finalResult.m_usedVertices.usedVertexB = true;
finalResult.m_usedVertices.usedVertexC = true;
finalResult.m_usedVertices.usedVertexD = true;
int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d);
int pointOutsideACD = pointOutsideOfPlane(p, a, c, d, b);
int pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c);
int pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a);
if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0)
{
finalResult.m_degenerate = true;
return false;
}
if (!pointOutsideABC && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC)
{
return false;
}
btScalar bestSqDist = FLT_MAX;
// If point outside face abc then compute closest point on abc
if (pointOutsideABC)
{
closestPtPointTriangle(p, a, b, c,tempResult);
btVector3 q = tempResult.m_closestPointOnSimplex;
btScalar sqDist = (q - p).dot( q - p);
// Update best closest point if (squared) distance is less than current best
if (sqDist < bestSqDist) {
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
//convert result bitmask!
finalResult.m_usedVertices.reset();
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexB;
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
finalResult.setBarycentricCoordinates(
tempResult.m_barycentricCoords[VERTA],
tempResult.m_barycentricCoords[VERTB],
tempResult.m_barycentricCoords[VERTC],
0
);
}
}
// Repeat test for face acd
if (pointOutsideACD)
{
closestPtPointTriangle(p, a, c, d,tempResult);
btVector3 q = tempResult.m_closestPointOnSimplex;
//convert result bitmask!
btScalar sqDist = (q - p).dot( q - p);
if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
finalResult.m_usedVertices.reset();
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexB;
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexC;
finalResult.setBarycentricCoordinates(
tempResult.m_barycentricCoords[VERTA],
0,
tempResult.m_barycentricCoords[VERTB],
tempResult.m_barycentricCoords[VERTC]
);
}
}
// Repeat test for face adb
if (pointOutsideADB)
{
closestPtPointTriangle(p, a, d, b,tempResult);
btVector3 q = tempResult.m_closestPointOnSimplex;
//convert result bitmask!
btScalar sqDist = (q - p).dot( q - p);
if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
finalResult.m_usedVertices.reset();
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexC;
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
finalResult.setBarycentricCoordinates(
tempResult.m_barycentricCoords[VERTA],
tempResult.m_barycentricCoords[VERTC],
0,
tempResult.m_barycentricCoords[VERTB]
);
}
}
// Repeat test for face bdc
if (pointOutsideBDC)
{
closestPtPointTriangle(p, b, d, c,tempResult);
btVector3 q = tempResult.m_closestPointOnSimplex;
//convert result bitmask!
btScalar sqDist = (q - p).dot( q - p);
if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
finalResult.m_usedVertices.reset();
//
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexA;
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
finalResult.setBarycentricCoordinates(
0,
tempResult.m_barycentricCoords[VERTA],
tempResult.m_barycentricCoords[VERTC],
tempResult.m_barycentricCoords[VERTB]
);
}
}
//help! we ended up full !
if (finalResult.m_usedVertices.usedVertexA &&
finalResult.m_usedVertices.usedVertexB &&
finalResult.m_usedVertices.usedVertexC &&
finalResult.m_usedVertices.usedVertexD)
{
return true;
}
return true;
}

View File

@ -0,0 +1,178 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef btVoronoiSimplexSolver_H
#define btVoronoiSimplexSolver_H
#include "btSimplexSolverInterface.h"
#define VORONOI_SIMPLEX_MAX_VERTS 5
///disable next define, or use defaultCollisionConfiguration->getSimplexSolver()->setEqualVertexThreshold(0.f) to disable/configure
#define BT_USE_EQUAL_VERTEX_THRESHOLD
#define VORONOI_DEFAULT_EQUAL_VERTEX_THRESHOLD 0.0001f
struct btUsageBitfield{
btUsageBitfield()
{
reset();
}
void reset()
{
usedVertexA = false;
usedVertexB = false;
usedVertexC = false;
usedVertexD = false;
}
unsigned short usedVertexA : 1;
unsigned short usedVertexB : 1;
unsigned short usedVertexC : 1;
unsigned short usedVertexD : 1;
unsigned short unused1 : 1;
unsigned short unused2 : 1;
unsigned short unused3 : 1;
unsigned short unused4 : 1;
};
struct btSubSimplexClosestResult
{
btVector3 m_closestPointOnSimplex;
//MASK for m_usedVertices
//stores the simplex vertex-usage, using the MASK,
// if m_usedVertices & MASK then the related vertex is used
btUsageBitfield m_usedVertices;
btScalar m_barycentricCoords[4];
bool m_degenerate;
void reset()
{
m_degenerate = false;
setBarycentricCoordinates();
m_usedVertices.reset();
}
bool isValid()
{
bool valid = (m_barycentricCoords[0] >= btScalar(0.)) &&
(m_barycentricCoords[1] >= btScalar(0.)) &&
(m_barycentricCoords[2] >= btScalar(0.)) &&
(m_barycentricCoords[3] >= btScalar(0.));
return valid;
}
void setBarycentricCoordinates(btScalar a=btScalar(0.),btScalar b=btScalar(0.),btScalar c=btScalar(0.),btScalar d=btScalar(0.))
{
m_barycentricCoords[0] = a;
m_barycentricCoords[1] = b;
m_barycentricCoords[2] = c;
m_barycentricCoords[3] = d;
}
};
/// btVoronoiSimplexSolver is an implementation of the closest point distance algorithm from a 1-4 points simplex to the origin.
/// Can be used with GJK, as an alternative to Johnson distance algorithm.
#ifdef NO_VIRTUAL_INTERFACE
class btVoronoiSimplexSolver
#else
class btVoronoiSimplexSolver : public btSimplexSolverInterface
#endif
{
public:
int m_numVertices;
btVector3 m_simplexVectorW[VORONOI_SIMPLEX_MAX_VERTS];
btVector3 m_simplexPointsP[VORONOI_SIMPLEX_MAX_VERTS];
btVector3 m_simplexPointsQ[VORONOI_SIMPLEX_MAX_VERTS];
btVector3 m_cachedP1;
btVector3 m_cachedP2;
btVector3 m_cachedV;
btVector3 m_lastW;
btScalar m_equalVertexThreshold;
bool m_cachedValidClosest;
btSubSimplexClosestResult m_cachedBC;
bool m_needsUpdate;
void removeVertex(int index);
void reduceVertices (const btUsageBitfield& usedVerts);
bool updateClosestVectorAndPoints();
bool closestPtPointTetrahedron(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d, btSubSimplexClosestResult& finalResult);
int pointOutsideOfPlane(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d);
bool closestPtPointTriangle(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c,btSubSimplexClosestResult& result);
public:
btVoronoiSimplexSolver()
: m_equalVertexThreshold(VORONOI_DEFAULT_EQUAL_VERTEX_THRESHOLD)
{
}
void reset();
void addVertex(const btVector3& w, const btVector3& p, const btVector3& q);
void setEqualVertexThreshold(btScalar threshold)
{
m_equalVertexThreshold = threshold;
}
btScalar getEqualVertexThreshold() const
{
return m_equalVertexThreshold;
}
bool closest(btVector3& v);
btScalar maxVertex();
bool fullSimplex() const
{
return (m_numVertices == 4);
}
int getSimplex(btVector3 *pBuf, btVector3 *qBuf, btVector3 *yBuf) const;
bool inSimplex(const btVector3& w);
void backup_closest(btVector3& v) ;
bool emptySimplex() const ;
void compute_points(btVector3& p1, btVector3& p2) ;
int numVertices() const
{
return m_numVertices;
}
};
#endif //VoronoiSimplexSolver