237 lines
7.0 KiB
C++
237 lines
7.0 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
|
|
#include "btContinuousConvexCollision.h"
|
|
#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
|
#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
|
|
#include "LinearMath/btTransformUtil.h"
|
|
#include "BulletCollision/CollisionShapes/btSphereShape.h"
|
|
|
|
#include "btGjkPairDetector.h"
|
|
#include "btPointCollector.h"
|
|
|
|
|
|
|
|
btContinuousConvexCollision::btContinuousConvexCollision ( const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* penetrationDepthSolver)
|
|
:m_simplexSolver(simplexSolver),
|
|
m_penetrationDepthSolver(penetrationDepthSolver),
|
|
m_convexA(convexA),m_convexB(convexB)
|
|
{
|
|
}
|
|
|
|
/// This maximum should not be necessary. It allows for untested/degenerate cases in production code.
|
|
/// You don't want your game ever to lock-up.
|
|
#define MAX_ITERATIONS 64
|
|
|
|
bool btContinuousConvexCollision::calcTimeOfImpact(
|
|
const btTransform& fromA,
|
|
const btTransform& toA,
|
|
const btTransform& fromB,
|
|
const btTransform& toB,
|
|
CastResult& result)
|
|
{
|
|
|
|
m_simplexSolver->reset();
|
|
|
|
/// compute linear and angular velocity for this interval, to interpolate
|
|
btVector3 linVelA,angVelA,linVelB,angVelB;
|
|
btTransformUtil::calculateVelocity(fromA,toA,btScalar(1.),linVelA,angVelA);
|
|
btTransformUtil::calculateVelocity(fromB,toB,btScalar(1.),linVelB,angVelB);
|
|
|
|
|
|
btScalar boundingRadiusA = m_convexA->getAngularMotionDisc();
|
|
btScalar boundingRadiusB = m_convexB->getAngularMotionDisc();
|
|
|
|
btScalar maxAngularProjectedVelocity = angVelA.length() * boundingRadiusA + angVelB.length() * boundingRadiusB;
|
|
btVector3 relLinVel = (linVelB-linVelA);
|
|
|
|
btScalar relLinVelocLength = (linVelB-linVelA).length();
|
|
|
|
if ((relLinVelocLength+maxAngularProjectedVelocity) == 0.f)
|
|
return false;
|
|
|
|
|
|
btScalar radius = btScalar(0.001);
|
|
|
|
btScalar lambda = btScalar(0.);
|
|
btVector3 v(1,0,0);
|
|
|
|
int maxIter = MAX_ITERATIONS;
|
|
|
|
btVector3 n;
|
|
n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
|
|
bool hasResult = false;
|
|
btVector3 c;
|
|
|
|
btScalar lastLambda = lambda;
|
|
//btScalar epsilon = btScalar(0.001);
|
|
|
|
int numIter = 0;
|
|
//first solution, using GJK
|
|
|
|
|
|
btTransform identityTrans;
|
|
identityTrans.setIdentity();
|
|
|
|
btSphereShape raySphere(btScalar(0.0));
|
|
raySphere.setMargin(btScalar(0.));
|
|
|
|
|
|
// result.drawCoordSystem(sphereTr);
|
|
|
|
btPointCollector pointCollector1;
|
|
|
|
{
|
|
|
|
btGjkPairDetector gjk(m_convexA,m_convexB,m_convexA->getShapeType(),m_convexB->getShapeType(),m_convexA->getMargin(),m_convexB->getMargin(),m_simplexSolver,m_penetrationDepthSolver);
|
|
btGjkPairDetector::ClosestPointInput input;
|
|
|
|
//we don't use margins during CCD
|
|
// gjk.setIgnoreMargin(true);
|
|
|
|
input.m_transformA = fromA;
|
|
input.m_transformB = fromB;
|
|
gjk.getClosestPoints(input,pointCollector1,0);
|
|
|
|
hasResult = pointCollector1.m_hasResult;
|
|
c = pointCollector1.m_pointInWorld;
|
|
}
|
|
|
|
if (hasResult)
|
|
{
|
|
btScalar dist;
|
|
dist = pointCollector1.m_distance;
|
|
n = pointCollector1.m_normalOnBInWorld;
|
|
|
|
btScalar projectedLinearVelocity = relLinVel.dot(n);
|
|
|
|
//not close enough
|
|
while (dist > radius)
|
|
{
|
|
if (result.m_debugDrawer)
|
|
{
|
|
result.m_debugDrawer->drawSphere(c,0.2f,btVector3(1,1,1));
|
|
}
|
|
numIter++;
|
|
if (numIter > maxIter)
|
|
{
|
|
return false; //todo: report a failure
|
|
}
|
|
btScalar dLambda = btScalar(0.);
|
|
|
|
projectedLinearVelocity = relLinVel.dot(n);
|
|
|
|
//calculate safe moving fraction from distance / (linear+rotational velocity)
|
|
|
|
//btScalar clippedDist = GEN_min(angularConservativeRadius,dist);
|
|
//btScalar clippedDist = dist;
|
|
|
|
//don't report time of impact for motion away from the contact normal (or causes minor penetration)
|
|
if ((projectedLinearVelocity+ maxAngularProjectedVelocity)<=SIMD_EPSILON)
|
|
return false;
|
|
|
|
dLambda = dist / (projectedLinearVelocity+ maxAngularProjectedVelocity);
|
|
|
|
|
|
|
|
lambda = lambda + dLambda;
|
|
|
|
if (lambda > btScalar(1.))
|
|
return false;
|
|
|
|
if (lambda < btScalar(0.))
|
|
return false;
|
|
|
|
|
|
//todo: next check with relative epsilon
|
|
if (lambda <= lastLambda)
|
|
{
|
|
return false;
|
|
//n.setValue(0,0,0);
|
|
break;
|
|
}
|
|
lastLambda = lambda;
|
|
|
|
|
|
|
|
//interpolate to next lambda
|
|
btTransform interpolatedTransA,interpolatedTransB,relativeTrans;
|
|
|
|
btTransformUtil::integrateTransform(fromA,linVelA,angVelA,lambda,interpolatedTransA);
|
|
btTransformUtil::integrateTransform(fromB,linVelB,angVelB,lambda,interpolatedTransB);
|
|
relativeTrans = interpolatedTransB.inverseTimes(interpolatedTransA);
|
|
|
|
if (result.m_debugDrawer)
|
|
{
|
|
result.m_debugDrawer->drawSphere(interpolatedTransA.getOrigin(),0.2f,btVector3(1,0,0));
|
|
}
|
|
|
|
result.DebugDraw( lambda );
|
|
|
|
btPointCollector pointCollector;
|
|
btGjkPairDetector gjk(m_convexA,m_convexB,m_simplexSolver,m_penetrationDepthSolver);
|
|
btGjkPairDetector::ClosestPointInput input;
|
|
input.m_transformA = interpolatedTransA;
|
|
input.m_transformB = interpolatedTransB;
|
|
gjk.getClosestPoints(input,pointCollector,0);
|
|
if (pointCollector.m_hasResult)
|
|
{
|
|
if (pointCollector.m_distance < btScalar(0.))
|
|
{
|
|
//degenerate ?!
|
|
result.m_fraction = lastLambda;
|
|
n = pointCollector.m_normalOnBInWorld;
|
|
result.m_normal=n;//.setValue(1,1,1);// = n;
|
|
result.m_hitPoint = pointCollector.m_pointInWorld;
|
|
return true;
|
|
}
|
|
c = pointCollector.m_pointInWorld;
|
|
n = pointCollector.m_normalOnBInWorld;
|
|
dist = pointCollector.m_distance;
|
|
} else
|
|
{
|
|
//??
|
|
return false;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
if ((projectedLinearVelocity+ maxAngularProjectedVelocity)<=result.m_allowedPenetration)//SIMD_EPSILON)
|
|
return false;
|
|
|
|
result.m_fraction = lambda;
|
|
result.m_normal = n;
|
|
result.m_hitPoint = c;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
|
|
/*
|
|
//todo:
|
|
//if movement away from normal, discard result
|
|
btVector3 move = transBLocalTo.getOrigin() - transBLocalFrom.getOrigin();
|
|
if (result.m_fraction < btScalar(1.))
|
|
{
|
|
if (move.dot(result.m_normal) <= btScalar(0.))
|
|
{
|
|
}
|
|
}
|
|
*/
|
|
|
|
}
|