bluecore/ode/src/ode.cpp

1733 lines
37 KiB
C++

/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
#ifdef _MSC_VER
#pragma warning(disable:4291) // for VC++, no complaints about "no matching operator delete found"
#endif
// this source file is mostly concerned with the data structures, not the
// numerics.
#include "objects.h"
#include <ode/ode.h>
#include "joint.h"
#include <ode/odemath.h>
#include <ode/matrix.h>
#include "step.h"
#include "quickstep.h"
#include "util.h"
#include <ode/memory.h>
#include <ode/error.h>
// misc defines
#define ALLOCA dALLOCA16
//****************************************************************************
// utility
static inline void initObject (dObject *obj, dxWorld *w)
{
obj->world = w;
obj->next = 0;
obj->tome = 0;
obj->userdata = 0;
obj->tag = 0;
}
// add an object `obj' to the list who's head pointer is pointed to by `first'.
static inline void addObjectToList (dObject *obj, dObject **first)
{
obj->next = *first;
obj->tome = first;
if (*first) (*first)->tome = &obj->next;
(*first) = obj;
}
// remove the object from the linked list
static inline void removeObjectFromList (dObject *obj)
{
if (obj->next) obj->next->tome = obj->tome;
*(obj->tome) = obj->next;
// safeguard
obj->next = 0;
obj->tome = 0;
}
// remove the joint from neighbour lists of all connected bodies
static void removeJointReferencesFromAttachedBodies (dxJoint *j)
{
for (int i=0; i<2; i++) {
dxBody *body = j->node[i].body;
if (body) {
dxJointNode *n = body->firstjoint;
dxJointNode *last = 0;
while (n) {
if (n->joint == j) {
if (last) last->next = n->next;
else body->firstjoint = n->next;
break;
}
last = n;
n = n->next;
}
}
}
j->node[0].body = 0;
j->node[0].next = 0;
j->node[1].body = 0;
j->node[1].next = 0;
}
//****************************************************************************
// debugging
// see if an object list loops on itself (if so, it's bad).
static int listHasLoops (dObject *first)
{
if (first==0 || first->next==0) return 0;
dObject *a=first,*b=first->next;
int skip=0;
while (b) {
if (a==b) return 1;
b = b->next;
if (skip) a = a->next;
skip ^= 1;
}
return 0;
}
// check the validity of the world data structures
static void checkWorld (dxWorld *w)
{
dxBody *b;
dxJoint *j;
// check there are no loops
if (listHasLoops (w->firstbody)) dDebug (0,"body list has loops");
if (listHasLoops (w->firstjoint)) dDebug (0,"joint list has loops");
// check lists are well formed (check `tome' pointers)
for (b=w->firstbody; b; b=(dxBody*)b->next) {
if (b->next && b->next->tome != &b->next)
dDebug (0,"bad tome pointer in body list");
}
for (j=w->firstjoint; j; j=(dxJoint*)j->next) {
if (j->next && j->next->tome != &j->next)
dDebug (0,"bad tome pointer in joint list");
}
// check counts
int n = 0;
for (b=w->firstbody; b; b=(dxBody*)b->next) n++;
if (w->nb != n) dDebug (0,"body count incorrect");
n = 0;
for (j=w->firstjoint; j; j=(dxJoint*)j->next) n++;
if (w->nj != n) dDebug (0,"joint count incorrect");
// set all tag values to a known value
static int count = 0;
count++;
for (b=w->firstbody; b; b=(dxBody*)b->next) b->tag = count;
for (j=w->firstjoint; j; j=(dxJoint*)j->next) j->tag = count;
// check all body/joint world pointers are ok
for (b=w->firstbody; b; b=(dxBody*)b->next) if (b->world != w)
dDebug (0,"bad world pointer in body list");
for (j=w->firstjoint; j; j=(dxJoint*)j->next) if (j->world != w)
dDebug (0,"bad world pointer in joint list");
/*
// check for half-connected joints - actually now these are valid
for (j=w->firstjoint; j; j=(dxJoint*)j->next) {
if (j->node[0].body || j->node[1].body) {
if (!(j->node[0].body && j->node[1].body))
dDebug (0,"half connected joint found");
}
}
*/
// check that every joint node appears in the joint lists of both bodies it
// attaches
for (j=w->firstjoint; j; j=(dxJoint*)j->next) {
for (int i=0; i<2; i++) {
if (j->node[i].body) {
int ok = 0;
for (dxJointNode *n=j->node[i].body->firstjoint; n; n=n->next) {
if (n->joint == j) ok = 1;
}
if (ok==0) dDebug (0,"joint not in joint list of attached body");
}
}
}
// check all body joint lists (correct body ptrs)
for (b=w->firstbody; b; b=(dxBody*)b->next) {
for (dxJointNode *n=b->firstjoint; n; n=n->next) {
if (&n->joint->node[0] == n) {
if (n->joint->node[1].body != b)
dDebug (0,"bad body pointer in joint node of body list (1)");
}
else {
if (n->joint->node[0].body != b)
dDebug (0,"bad body pointer in joint node of body list (2)");
}
if (n->joint->tag != count) dDebug (0,"bad joint node pointer in body");
}
}
// check all body pointers in joints, check they are distinct
for (j=w->firstjoint; j; j=(dxJoint*)j->next) {
if (j->node[0].body && (j->node[0].body == j->node[1].body))
dDebug (0,"non-distinct body pointers in joint");
if ((j->node[0].body && j->node[0].body->tag != count) ||
(j->node[1].body && j->node[1].body->tag != count))
dDebug (0,"bad body pointer in joint");
}
}
void dWorldCheck (dxWorld *w)
{
checkWorld (w);
}
//****************************************************************************
// body
dxWorld* dBodyGetWorld (dxBody* b)
{
dAASSERT (b);
return b->world;
}
dxBody *dBodyCreate (dxWorld *w)
{
dAASSERT (w);
dxBody *b = new dxBody;
initObject (b,w);
b->firstjoint = 0;
b->flags = 0;
b->geom = 0;
b->average_lvel_buffer = 0;
b->average_avel_buffer = 0;
dMassSetParameters (&b->mass,1,0,0,0,1,1,1,0,0,0);
dSetZero (b->invI,4*3);
b->invI[0] = 1;
b->invI[5] = 1;
b->invI[10] = 1;
b->invMass = 1;
dSetZero (b->posr.pos,4);
dSetZero (b->q,4);
b->q[0] = 1;
dRSetIdentity (b->posr.R);
dSetZero (b->lvel,4);
dSetZero (b->avel,4);
dSetZero (b->facc,4);
dSetZero (b->tacc,4);
dSetZero (b->finite_rot_axis,4);
addObjectToList (b,(dObject **) &w->firstbody);
w->nb++;
// set auto-disable parameters
b->average_avel_buffer = b->average_lvel_buffer = 0; // no buffer at beginnin
dBodySetAutoDisableDefaults (b); // must do this after adding to world
b->adis_stepsleft = b->adis.idle_steps;
b->adis_timeleft = b->adis.idle_time;
b->average_counter = 0;
b->average_ready = 0; // average buffer not filled on the beginning
dBodySetAutoDisableAverageSamplesCount(b, b->adis.average_samples);
return b;
}
void dBodyDestroy (dxBody *b)
{
dAASSERT (b);
// all geoms that link to this body must be notified that the body is about
// to disappear. note that the call to dGeomSetBody(geom,0) will result in
// dGeomGetBodyNext() returning 0 for the body, so we must get the next body
// before setting the body to 0.
dxGeom *next_geom = 0;
for (dxGeom *geom = b->geom; geom; geom = next_geom) {
next_geom = dGeomGetBodyNext (geom);
dGeomSetBody (geom,0);
}
// detach all neighbouring joints, then delete this body.
dxJointNode *n = b->firstjoint;
while (n) {
// sneaky trick to speed up removal of joint references (black magic)
n->joint->node[(n == n->joint->node)].body = 0;
dxJointNode *next = n->next;
n->next = 0;
removeJointReferencesFromAttachedBodies (n->joint);
n = next;
}
removeObjectFromList (b);
b->world->nb--;
// delete the average buffers
if(b->average_lvel_buffer)
{
delete[] (b->average_lvel_buffer);
b->average_lvel_buffer = 0;
}
if(b->average_avel_buffer)
{
delete[] (b->average_avel_buffer);
b->average_avel_buffer = 0;
}
delete b;
}
void dBodySetData (dBodyID b, void *data)
{
dAASSERT (b);
b->userdata = data;
}
void *dBodyGetData (dBodyID b)
{
dAASSERT (b);
return b->userdata;
}
void dBodySetPosition (dBodyID b, dReal x, dReal y, dReal z)
{
dAASSERT (b);
b->posr.pos[0] = x;
b->posr.pos[1] = y;
b->posr.pos[2] = z;
// notify all attached geoms that this body has moved
for (dxGeom *geom = b->geom; geom; geom = dGeomGetBodyNext (geom))
dGeomMoved (geom);
}
void dBodySetRotation (dBodyID b, const dMatrix3 R)
{
dAASSERT (b && R);
dQuaternion q;
dRtoQ (R,q);
dNormalize4 (q);
b->q[0] = q[0];
b->q[1] = q[1];
b->q[2] = q[2];
b->q[3] = q[3];
dQtoR (b->q,b->posr.R);
// notify all attached geoms that this body has moved
for (dxGeom *geom = b->geom; geom; geom = dGeomGetBodyNext (geom))
dGeomMoved (geom);
}
void dBodySetQuaternion (dBodyID b, const dQuaternion q)
{
dAASSERT (b && q);
b->q[0] = q[0];
b->q[1] = q[1];
b->q[2] = q[2];
b->q[3] = q[3];
dNormalize4 (b->q);
dQtoR (b->q,b->posr.R);
// notify all attached geoms that this body has moved
for (dxGeom *geom = b->geom; geom; geom = dGeomGetBodyNext (geom))
dGeomMoved (geom);
}
void dBodySetLinearVel (dBodyID b, dReal x, dReal y, dReal z)
{
dAASSERT (b);
b->lvel[0] = x;
b->lvel[1] = y;
b->lvel[2] = z;
}
void dBodySetAngularVel (dBodyID b, dReal x, dReal y, dReal z)
{
dAASSERT (b);
b->avel[0] = x;
b->avel[1] = y;
b->avel[2] = z;
}
const dReal * dBodyGetPosition (dBodyID b)
{
dAASSERT (b);
return b->posr.pos;
}
void dBodyCopyPosition (dBodyID b, dVector3 pos)
{
dAASSERT (b);
dReal* src = b->posr.pos;
pos[0] = src[0];
pos[1] = src[1];
pos[2] = src[2];
}
const dReal * dBodyGetRotation (dBodyID b)
{
dAASSERT (b);
return b->posr.R;
}
void dBodyCopyRotation (dBodyID b, dMatrix3 R)
{
dAASSERT (b);
const dReal* src = b->posr.R;
R[0] = src[0];
R[1] = src[1];
R[2] = src[2];
R[3] = src[3];
R[4] = src[4];
R[5] = src[5];
R[6] = src[6];
R[7] = src[7];
R[8] = src[8];
R[9] = src[9];
R[10] = src[10];
R[11] = src[11];
}
const dReal * dBodyGetQuaternion (dBodyID b)
{
dAASSERT (b);
return b->q;
}
void dBodyCopyQuaternion (dBodyID b, dQuaternion quat)
{
dAASSERT (b);
dReal* src = b->q;
quat[0] = src[0];
quat[1] = src[1];
quat[2] = src[2];
quat[3] = src[3];
}
const dReal * dBodyGetLinearVel (dBodyID b)
{
dAASSERT (b);
return b->lvel;
}
const dReal * dBodyGetAngularVel (dBodyID b)
{
dAASSERT (b);
return b->avel;
}
void dBodySetMass (dBodyID b, const dMass *mass)
{
dAASSERT (b && mass );
dIASSERT(dMassCheck(mass));
// The centre of mass must be at the origin.
// Use dMassTranslate( mass, -mass->c[0], -mass->c[1], -mass->c[2] ) to correct it.
dUASSERT( fabs( mass->c[0] ) <= dEpsilon &&
fabs( mass->c[1] ) <= dEpsilon &&
fabs( mass->c[2] ) <= dEpsilon, "The centre of mass must be at the origin." )
memcpy (&b->mass,mass,sizeof(dMass));
if (dInvertPDMatrix (b->mass.I,b->invI,3)==0) {
dDEBUGMSG ("inertia must be positive definite!");
dRSetIdentity (b->invI);
}
b->invMass = dRecip(b->mass.mass);
}
void dBodyGetMass (dBodyID b, dMass *mass)
{
dAASSERT (b && mass);
memcpy (mass,&b->mass,sizeof(dMass));
}
void dBodyAddForce (dBodyID b, dReal fx, dReal fy, dReal fz)
{
dAASSERT (b);
b->facc[0] += fx;
b->facc[1] += fy;
b->facc[2] += fz;
}
void dBodyAddTorque (dBodyID b, dReal fx, dReal fy, dReal fz)
{
dAASSERT (b);
b->tacc[0] += fx;
b->tacc[1] += fy;
b->tacc[2] += fz;
}
void dBodyAddRelForce (dBodyID b, dReal fx, dReal fy, dReal fz)
{
dAASSERT (b);
dVector3 t1,t2;
t1[0] = fx;
t1[1] = fy;
t1[2] = fz;
t1[3] = 0;
dMULTIPLY0_331 (t2,b->posr.R,t1);
b->facc[0] += t2[0];
b->facc[1] += t2[1];
b->facc[2] += t2[2];
}
void dBodyAddRelTorque (dBodyID b, dReal fx, dReal fy, dReal fz)
{
dAASSERT (b);
dVector3 t1,t2;
t1[0] = fx;
t1[1] = fy;
t1[2] = fz;
t1[3] = 0;
dMULTIPLY0_331 (t2,b->posr.R,t1);
b->tacc[0] += t2[0];
b->tacc[1] += t2[1];
b->tacc[2] += t2[2];
}
void dBodyAddForceAtPos (dBodyID b, dReal fx, dReal fy, dReal fz,
dReal px, dReal py, dReal pz)
{
dAASSERT (b);
b->facc[0] += fx;
b->facc[1] += fy;
b->facc[2] += fz;
dVector3 f,q;
f[0] = fx;
f[1] = fy;
f[2] = fz;
q[0] = px - b->posr.pos[0];
q[1] = py - b->posr.pos[1];
q[2] = pz - b->posr.pos[2];
dCROSS (b->tacc,+=,q,f);
}
void dBodyAddForceAtRelPos (dBodyID b, dReal fx, dReal fy, dReal fz,
dReal px, dReal py, dReal pz)
{
dAASSERT (b);
dVector3 prel,f,p;
f[0] = fx;
f[1] = fy;
f[2] = fz;
f[3] = 0;
prel[0] = px;
prel[1] = py;
prel[2] = pz;
prel[3] = 0;
dMULTIPLY0_331 (p,b->posr.R,prel);
b->facc[0] += f[0];
b->facc[1] += f[1];
b->facc[2] += f[2];
dCROSS (b->tacc,+=,p,f);
}
void dBodyAddRelForceAtPos (dBodyID b, dReal fx, dReal fy, dReal fz,
dReal px, dReal py, dReal pz)
{
dAASSERT (b);
dVector3 frel,f;
frel[0] = fx;
frel[1] = fy;
frel[2] = fz;
frel[3] = 0;
dMULTIPLY0_331 (f,b->posr.R,frel);
b->facc[0] += f[0];
b->facc[1] += f[1];
b->facc[2] += f[2];
dVector3 q;
q[0] = px - b->posr.pos[0];
q[1] = py - b->posr.pos[1];
q[2] = pz - b->posr.pos[2];
dCROSS (b->tacc,+=,q,f);
}
void dBodyAddRelForceAtRelPos (dBodyID b, dReal fx, dReal fy, dReal fz,
dReal px, dReal py, dReal pz)
{
dAASSERT (b);
dVector3 frel,prel,f,p;
frel[0] = fx;
frel[1] = fy;
frel[2] = fz;
frel[3] = 0;
prel[0] = px;
prel[1] = py;
prel[2] = pz;
prel[3] = 0;
dMULTIPLY0_331 (f,b->posr.R,frel);
dMULTIPLY0_331 (p,b->posr.R,prel);
b->facc[0] += f[0];
b->facc[1] += f[1];
b->facc[2] += f[2];
dCROSS (b->tacc,+=,p,f);
}
const dReal * dBodyGetForce (dBodyID b)
{
dAASSERT (b);
return b->facc;
}
const dReal * dBodyGetTorque (dBodyID b)
{
dAASSERT (b);
return b->tacc;
}
void dBodySetForce (dBodyID b, dReal x, dReal y, dReal z)
{
dAASSERT (b);
b->facc[0] = x;
b->facc[1] = y;
b->facc[2] = z;
}
void dBodySetTorque (dBodyID b, dReal x, dReal y, dReal z)
{
dAASSERT (b);
b->tacc[0] = x;
b->tacc[1] = y;
b->tacc[2] = z;
}
void dBodyGetRelPointPos (dBodyID b, dReal px, dReal py, dReal pz,
dVector3 result)
{
dAASSERT (b);
dVector3 prel,p;
prel[0] = px;
prel[1] = py;
prel[2] = pz;
prel[3] = 0;
dMULTIPLY0_331 (p,b->posr.R,prel);
result[0] = p[0] + b->posr.pos[0];
result[1] = p[1] + b->posr.pos[1];
result[2] = p[2] + b->posr.pos[2];
}
void dBodyGetRelPointVel (dBodyID b, dReal px, dReal py, dReal pz,
dVector3 result)
{
dAASSERT (b);
dVector3 prel,p;
prel[0] = px;
prel[1] = py;
prel[2] = pz;
prel[3] = 0;
dMULTIPLY0_331 (p,b->posr.R,prel);
result[0] = b->lvel[0];
result[1] = b->lvel[1];
result[2] = b->lvel[2];
dCROSS (result,+=,b->avel,p);
}
void dBodyGetPointVel (dBodyID b, dReal px, dReal py, dReal pz,
dVector3 result)
{
dAASSERT (b);
dVector3 p;
p[0] = px - b->posr.pos[0];
p[1] = py - b->posr.pos[1];
p[2] = pz - b->posr.pos[2];
p[3] = 0;
result[0] = b->lvel[0];
result[1] = b->lvel[1];
result[2] = b->lvel[2];
dCROSS (result,+=,b->avel,p);
}
void dBodyGetPosRelPoint (dBodyID b, dReal px, dReal py, dReal pz,
dVector3 result)
{
dAASSERT (b);
dVector3 prel;
prel[0] = px - b->posr.pos[0];
prel[1] = py - b->posr.pos[1];
prel[2] = pz - b->posr.pos[2];
prel[3] = 0;
dMULTIPLY1_331 (result,b->posr.R,prel);
}
void dBodyVectorToWorld (dBodyID b, dReal px, dReal py, dReal pz,
dVector3 result)
{
dAASSERT (b);
dVector3 p;
p[0] = px;
p[1] = py;
p[2] = pz;
p[3] = 0;
dMULTIPLY0_331 (result,b->posr.R,p);
}
void dBodyVectorFromWorld (dBodyID b, dReal px, dReal py, dReal pz,
dVector3 result)
{
dAASSERT (b);
dVector3 p;
p[0] = px;
p[1] = py;
p[2] = pz;
p[3] = 0;
dMULTIPLY1_331 (result,b->posr.R,p);
}
void dBodySetFiniteRotationMode (dBodyID b, int mode)
{
dAASSERT (b);
b->flags &= ~(dxBodyFlagFiniteRotation | dxBodyFlagFiniteRotationAxis);
if (mode) {
b->flags |= dxBodyFlagFiniteRotation;
if (b->finite_rot_axis[0] != 0 || b->finite_rot_axis[1] != 0 ||
b->finite_rot_axis[2] != 0) {
b->flags |= dxBodyFlagFiniteRotationAxis;
}
}
}
void dBodySetFiniteRotationAxis (dBodyID b, dReal x, dReal y, dReal z)
{
dAASSERT (b);
b->finite_rot_axis[0] = x;
b->finite_rot_axis[1] = y;
b->finite_rot_axis[2] = z;
if (x != 0 || y != 0 || z != 0) {
dNormalize3 (b->finite_rot_axis);
b->flags |= dxBodyFlagFiniteRotationAxis;
}
else {
b->flags &= ~dxBodyFlagFiniteRotationAxis;
}
}
int dBodyGetFiniteRotationMode (dBodyID b)
{
dAASSERT (b);
return ((b->flags & dxBodyFlagFiniteRotation) != 0);
}
void dBodyGetFiniteRotationAxis (dBodyID b, dVector3 result)
{
dAASSERT (b);
result[0] = b->finite_rot_axis[0];
result[1] = b->finite_rot_axis[1];
result[2] = b->finite_rot_axis[2];
}
int dBodyGetNumJoints (dBodyID b)
{
dAASSERT (b);
int count=0;
for (dxJointNode *n=b->firstjoint; n; n=n->next, count++);
return count;
}
dJointID dBodyGetJoint (dBodyID b, int index)
{
dAASSERT (b);
int i=0;
for (dxJointNode *n=b->firstjoint; n; n=n->next, i++) {
if (i == index) return n->joint;
}
return 0;
}
void dBodyEnable (dBodyID b)
{
dAASSERT (b);
b->flags &= ~dxBodyDisabled;
b->adis_stepsleft = b->adis.idle_steps;
b->adis_timeleft = b->adis.idle_time;
// no code for average-processing needed here
}
void dBodyDisable (dBodyID b)
{
dAASSERT (b);
b->flags |= dxBodyDisabled;
}
int dBodyIsEnabled (dBodyID b)
{
dAASSERT (b);
return ((b->flags & dxBodyDisabled) == 0);
}
void dBodySetGravityMode (dBodyID b, int mode)
{
dAASSERT (b);
if (mode) b->flags &= ~dxBodyNoGravity;
else b->flags |= dxBodyNoGravity;
}
int dBodyGetGravityMode (dBodyID b)
{
dAASSERT (b);
return ((b->flags & dxBodyNoGravity) == 0);
}
// body auto-disable functions
dReal dBodyGetAutoDisableLinearThreshold (dBodyID b)
{
dAASSERT(b);
return dSqrt (b->adis.linear_average_threshold);
}
void dBodySetAutoDisableLinearThreshold (dBodyID b, dReal linear_average_threshold)
{
dAASSERT(b);
b->adis.linear_average_threshold = linear_average_threshold * linear_average_threshold;
}
dReal dBodyGetAutoDisableAngularThreshold (dBodyID b)
{
dAASSERT(b);
return dSqrt (b->adis.angular_average_threshold);
}
void dBodySetAutoDisableAngularThreshold (dBodyID b, dReal angular_average_threshold)
{
dAASSERT(b);
b->adis.angular_average_threshold = angular_average_threshold * angular_average_threshold;
}
int dBodyGetAutoDisableAverageSamplesCount (dBodyID b)
{
dAASSERT(b);
return b->adis.average_samples;
}
void dBodySetAutoDisableAverageSamplesCount (dBodyID b, unsigned int average_samples_count)
{
dAASSERT(b);
b->adis.average_samples = average_samples_count;
// update the average buffers
if(b->average_lvel_buffer)
{
delete[] b->average_lvel_buffer;
b->average_lvel_buffer = 0;
}
if(b->average_avel_buffer)
{
delete[] b->average_avel_buffer;
b->average_avel_buffer = 0;
}
if(b->adis.average_samples > 0)
{
b->average_lvel_buffer = new dVector3[b->adis.average_samples];
b->average_avel_buffer = new dVector3[b->adis.average_samples];
}
else
{
b->average_lvel_buffer = 0;
b->average_avel_buffer = 0;
}
// new buffer is empty
b->average_counter = 0;
b->average_ready = 0;
}
int dBodyGetAutoDisableSteps (dBodyID b)
{
dAASSERT(b);
return b->adis.idle_steps;
}
void dBodySetAutoDisableSteps (dBodyID b, int steps)
{
dAASSERT(b);
b->adis.idle_steps = steps;
}
dReal dBodyGetAutoDisableTime (dBodyID b)
{
dAASSERT(b);
return b->adis.idle_time;
}
void dBodySetAutoDisableTime (dBodyID b, dReal time)
{
dAASSERT(b);
b->adis.idle_time = time;
}
int dBodyGetAutoDisableFlag (dBodyID b)
{
dAASSERT(b);
return ((b->flags & dxBodyAutoDisable) != 0);
}
void dBodySetAutoDisableFlag (dBodyID b, int do_auto_disable)
{
dAASSERT(b);
if (!do_auto_disable)
{
b->flags &= ~dxBodyAutoDisable;
// (mg) we should also reset the IsDisabled state to correspond to the DoDisabling flag
b->flags &= ~dxBodyDisabled;
b->adis.idle_steps = dWorldGetAutoDisableSteps(b->world);
b->adis.idle_time = dWorldGetAutoDisableTime(b->world);
// resetting the average calculations too
dBodySetAutoDisableAverageSamplesCount(b, dWorldGetAutoDisableAverageSamplesCount(b->world) );
}
else
{
b->flags |= dxBodyAutoDisable;
}
}
void dBodySetAutoDisableDefaults (dBodyID b)
{
dAASSERT(b);
dWorldID w = b->world;
dAASSERT(w);
b->adis = w->adis;
dBodySetAutoDisableFlag (b, w->adis_flag);
}
//****************************************************************************
// joints
static void dJointInit (dxWorld *w, dxJoint *j)
{
dIASSERT (w && j);
initObject (j,w);
j->vtable = 0;
j->flags = 0;
j->node[0].joint = j;
j->node[0].body = 0;
j->node[0].next = 0;
j->node[1].joint = j;
j->node[1].body = 0;
j->node[1].next = 0;
dSetZero (j->lambda,6);
addObjectToList (j,(dObject **) &w->firstjoint);
w->nj++;
}
static dxJoint *createJoint (dWorldID w, dJointGroupID group,
dxJoint::Vtable *vtable)
{
dIASSERT (w && vtable);
dxJoint *j;
if (group) {
j = (dxJoint*) group->stack.alloc (vtable->size);
group->num++;
}
else j = (dxJoint*) dAlloc (vtable->size);
dJointInit (w,j);
j->vtable = vtable;
if (group) j->flags |= dJOINT_INGROUP;
if (vtable->init) vtable->init (j);
j->feedback = 0;
return j;
}
dxJoint * dJointCreateBall (dWorldID w, dJointGroupID group)
{
dAASSERT (w);
return createJoint (w,group,&__dball_vtable);
}
dxJoint * dJointCreateHinge (dWorldID w, dJointGroupID group)
{
dAASSERT (w);
return createJoint (w,group,&__dhinge_vtable);
}
dxJoint * dJointCreateSlider (dWorldID w, dJointGroupID group)
{
dAASSERT (w);
return createJoint (w,group,&__dslider_vtable);
}
dxJoint * dJointCreateContact (dWorldID w, dJointGroupID group,
const dContact *c)
{
dAASSERT (w && c);
dxJointContact *j = (dxJointContact *)
createJoint (w,group,&__dcontact_vtable);
j->contact = *c;
return j;
}
dxJoint * dJointCreateHinge2 (dWorldID w, dJointGroupID group)
{
dAASSERT (w);
return createJoint (w,group,&__dhinge2_vtable);
}
dxJoint * dJointCreateUniversal (dWorldID w, dJointGroupID group)
{
dAASSERT (w);
return createJoint (w,group,&__duniversal_vtable);
}
dxJoint * dJointCreatePR (dWorldID w, dJointGroupID group)
{
dAASSERT (w);
return createJoint (w,group,&__dPR_vtable);
}
dxJoint * dJointCreateFixed (dWorldID w, dJointGroupID group)
{
dAASSERT (w);
return createJoint (w,group,&__dfixed_vtable);
}
dxJoint * dJointCreateNull (dWorldID w, dJointGroupID group)
{
dAASSERT (w);
return createJoint (w,group,&__dnull_vtable);
}
dxJoint * dJointCreateAMotor (dWorldID w, dJointGroupID group)
{
dAASSERT (w);
return createJoint (w,group,&__damotor_vtable);
}
dxJoint * dJointCreateLMotor (dWorldID w, dJointGroupID group)
{
dAASSERT (w);
return createJoint (w,group,&__dlmotor_vtable);
}
dxJoint * dJointCreatePlane2D (dWorldID w, dJointGroupID group)
{
dAASSERT (w);
return createJoint (w,group,&__dplane2d_vtable);
}
void dJointDestroy (dxJoint *j)
{
dAASSERT (j);
if (j->flags & dJOINT_INGROUP) return;
removeJointReferencesFromAttachedBodies (j);
removeObjectFromList (j);
j->world->nj--;
dFree (j,j->vtable->size);
}
dJointGroupID dJointGroupCreate (int max_size)
{
// not any more ... dUASSERT (max_size > 0,"max size must be > 0");
dxJointGroup *group = new dxJointGroup;
group->num = 0;
return group;
}
void dJointGroupDestroy (dJointGroupID group)
{
dAASSERT (group);
dJointGroupEmpty (group);
delete group;
}
void dJointGroupEmpty (dJointGroupID group)
{
// the joints in this group are detached starting from the most recently
// added (at the top of the stack). this helps ensure that the various
// linked lists are not traversed too much, as the joints will hopefully
// be at the start of those lists.
// if any group joints have their world pointer set to 0, their world was
// previously destroyed. no special handling is required for these joints.
dAASSERT (group);
int i;
dxJoint **jlist = (dxJoint**) ALLOCA (group->num * sizeof(dxJoint*));
dxJoint *j = (dxJoint*) group->stack.rewind();
for (i=0; i < group->num; i++) {
jlist[i] = j;
j = (dxJoint*) (group->stack.next (j->vtable->size));
}
for (i=group->num-1; i >= 0; i--) {
if (jlist[i]->world) {
removeJointReferencesFromAttachedBodies (jlist[i]);
removeObjectFromList (jlist[i]);
jlist[i]->world->nj--;
}
}
group->num = 0;
group->stack.freeAll();
}
void dJointAttach (dxJoint *joint, dxBody *body1, dxBody *body2)
{
// check arguments
dUASSERT (joint,"bad joint argument");
dUASSERT (body1 == 0 || body1 != body2,"can't have body1==body2");
dxWorld *world = joint->world;
dUASSERT ( (!body1 || body1->world == world) &&
(!body2 || body2->world == world),
"joint and bodies must be in same world");
// check if the joint can not be attached to just one body
dUASSERT (!((joint->flags & dJOINT_TWOBODIES) &&
((body1 != 0) ^ (body2 != 0))),
"joint can not be attached to just one body");
// remove any existing body attachments
if (joint->node[0].body || joint->node[1].body) {
removeJointReferencesFromAttachedBodies (joint);
}
// if a body is zero, make sure that it is body2, so 0 --> node[1].body
if (body1==0) {
body1 = body2;
body2 = 0;
joint->flags |= dJOINT_REVERSE;
}
else {
joint->flags &= (~dJOINT_REVERSE);
}
// attach to new bodies
joint->node[0].body = body1;
joint->node[1].body = body2;
if (body1) {
joint->node[1].next = body1->firstjoint;
body1->firstjoint = &joint->node[1];
}
else joint->node[1].next = 0;
if (body2) {
joint->node[0].next = body2->firstjoint;
body2->firstjoint = &joint->node[0];
}
else {
joint->node[0].next = 0;
}
}
void dJointSetData (dxJoint *joint, void *data)
{
dAASSERT (joint);
joint->userdata = data;
}
void *dJointGetData (dxJoint *joint)
{
dAASSERT (joint);
return joint->userdata;
}
int dJointGetType (dxJoint *joint)
{
dAASSERT (joint);
return joint->vtable->typenum;
}
dBodyID dJointGetBody (dxJoint *joint, int index)
{
dAASSERT (joint);
if (index == 0 || index == 1) {
if (joint->flags & dJOINT_REVERSE) return joint->node[1-index].body;
else return joint->node[index].body;
}
else return 0;
}
void dJointSetFeedback (dxJoint *joint, dJointFeedback *f)
{
dAASSERT (joint);
joint->feedback = f;
}
dJointFeedback *dJointGetFeedback (dxJoint *joint)
{
dAASSERT (joint);
return joint->feedback;
}
dJointID dConnectingJoint (dBodyID in_b1, dBodyID in_b2)
{
dAASSERT (in_b1 || in_b2);
dBodyID b1, b2;
if (in_b1 == 0) {
b1 = in_b2;
b2 = in_b1;
}
else {
b1 = in_b1;
b2 = in_b2;
}
// look through b1's neighbour list for b2
for (dxJointNode *n=b1->firstjoint; n; n=n->next) {
if (n->body == b2) return n->joint;
}
return 0;
}
int dConnectingJointList (dBodyID in_b1, dBodyID in_b2, dJointID* out_list)
{
dAASSERT (in_b1 || in_b2);
dBodyID b1, b2;
if (in_b1 == 0) {
b1 = in_b2;
b2 = in_b1;
}
else {
b1 = in_b1;
b2 = in_b2;
}
// look through b1's neighbour list for b2
int numConnectingJoints = 0;
for (dxJointNode *n=b1->firstjoint; n; n=n->next) {
if (n->body == b2)
out_list[numConnectingJoints++] = n->joint;
}
return numConnectingJoints;
}
int dAreConnected (dBodyID b1, dBodyID b2)
{
dAASSERT (b1 && b2);
// look through b1's neighbour list for b2
for (dxJointNode *n=b1->firstjoint; n; n=n->next) {
if (n->body == b2) return 1;
}
return 0;
}
int dAreConnectedExcluding (dBodyID b1, dBodyID b2, int joint_type)
{
dAASSERT (b1 && b2);
// look through b1's neighbour list for b2
for (dxJointNode *n=b1->firstjoint; n; n=n->next) {
if (dJointGetType (n->joint) != joint_type && n->body == b2) return 1;
}
return 0;
}
//****************************************************************************
// world
dxWorld * dWorldCreate()
{
dxWorld *w = new dxWorld;
w->firstbody = 0;
w->firstjoint = 0;
w->nb = 0;
w->nj = 0;
dSetZero (w->gravity,4);
w->global_erp = REAL(0.2);
#if defined(dSINGLE)
w->global_cfm = 1e-5f;
#elif defined(dDOUBLE)
w->global_cfm = 1e-10;
#else
#error dSINGLE or dDOUBLE must be defined
#endif
w->adis.idle_steps = 10;
w->adis.idle_time = 0;
w->adis_flag = 0;
w->adis.average_samples = 1; // Default is 1 sample => Instantaneous velocity
w->adis.angular_average_threshold = REAL(0.01)*REAL(0.01); // (magnitude squared)
w->adis.linear_average_threshold = REAL(0.01)*REAL(0.01); // (magnitude squared)
w->qs.num_iterations = 20;
w->qs.w = REAL(1.3);
w->contactp.max_vel = dInfinity;
w->contactp.min_depth = 0;
return w;
}
void dWorldDestroy (dxWorld *w)
{
// delete all bodies and joints
dAASSERT (w);
dxBody *nextb, *b = w->firstbody;
while (b) {
nextb = (dxBody*) b->next;
if(b->average_lvel_buffer)
{
delete[] (b->average_lvel_buffer);
b->average_lvel_buffer = 0;
}
if(b->average_avel_buffer)
{
delete[] (b->average_avel_buffer);
b->average_avel_buffer = 0;
}
dBodyDestroy(b); // calling here dBodyDestroy for correct destroying! (i.e. the average buffers)
b = nextb;
}
dxJoint *nextj, *j = w->firstjoint;
while (j) {
nextj = (dxJoint*)j->next;
if (j->flags & dJOINT_INGROUP) {
// the joint is part of a group, so "deactivate" it instead
j->world = 0;
j->node[0].body = 0;
j->node[0].next = 0;
j->node[1].body = 0;
j->node[1].next = 0;
dMessage (0,"warning: destroying world containing grouped joints");
}
else {
dFree (j,j->vtable->size);
}
j = nextj;
}
delete w;
}
void dWorldSetGravity (dWorldID w, dReal x, dReal y, dReal z)
{
dAASSERT (w);
w->gravity[0] = x;
w->gravity[1] = y;
w->gravity[2] = z;
}
void dWorldGetGravity (dWorldID w, dVector3 g)
{
dAASSERT (w);
g[0] = w->gravity[0];
g[1] = w->gravity[1];
g[2] = w->gravity[2];
}
void dWorldSetERP (dWorldID w, dReal erp)
{
dAASSERT (w);
w->global_erp = erp;
}
dReal dWorldGetERP (dWorldID w)
{
dAASSERT (w);
return w->global_erp;
}
void dWorldSetCFM (dWorldID w, dReal cfm)
{
dAASSERT (w);
w->global_cfm = cfm;
}
dReal dWorldGetCFM (dWorldID w)
{
dAASSERT (w);
return w->global_cfm;
}
void dWorldStep (dWorldID w, dReal stepsize)
{
dUASSERT (w,"bad world argument");
dUASSERT (stepsize > 0,"stepsize must be > 0");
dxProcessIslands (w,stepsize,&dInternalStepIsland);
}
void dWorldQuickStep (dWorldID w, dReal stepsize)
{
dUASSERT (w,"bad world argument");
dUASSERT (stepsize > 0,"stepsize must be > 0");
dxProcessIslands (w,stepsize,&dxQuickStepper);
}
void dWorldImpulseToForce (dWorldID w, dReal stepsize,
dReal ix, dReal iy, dReal iz,
dVector3 force)
{
dAASSERT (w);
stepsize = dRecip(stepsize);
force[0] = stepsize * ix;
force[1] = stepsize * iy;
force[2] = stepsize * iz;
// @@@ force[3] = 0;
}
// world auto-disable functions
dReal dWorldGetAutoDisableLinearThreshold (dWorldID w)
{
dAASSERT(w);
return dSqrt (w->adis.linear_average_threshold);
}
void dWorldSetAutoDisableLinearThreshold (dWorldID w, dReal linear_average_threshold)
{
dAASSERT(w);
w->adis.linear_average_threshold = linear_average_threshold * linear_average_threshold;
}
dReal dWorldGetAutoDisableAngularThreshold (dWorldID w)
{
dAASSERT(w);
return dSqrt (w->adis.angular_average_threshold);
}
void dWorldSetAutoDisableAngularThreshold (dWorldID w, dReal angular_average_threshold)
{
dAASSERT(w);
w->adis.angular_average_threshold = angular_average_threshold * angular_average_threshold;
}
int dWorldGetAutoDisableAverageSamplesCount (dWorldID w)
{
dAASSERT(w);
return w->adis.average_samples;
}
void dWorldSetAutoDisableAverageSamplesCount (dWorldID w, unsigned int average_samples_count)
{
dAASSERT(w);
w->adis.average_samples = average_samples_count;
}
int dWorldGetAutoDisableSteps (dWorldID w)
{
dAASSERT(w);
return w->adis.idle_steps;
}
void dWorldSetAutoDisableSteps (dWorldID w, int steps)
{
dAASSERT(w);
w->adis.idle_steps = steps;
}
dReal dWorldGetAutoDisableTime (dWorldID w)
{
dAASSERT(w);
return w->adis.idle_time;
}
void dWorldSetAutoDisableTime (dWorldID w, dReal time)
{
dAASSERT(w);
w->adis.idle_time = time;
}
int dWorldGetAutoDisableFlag (dWorldID w)
{
dAASSERT(w);
return w->adis_flag;
}
void dWorldSetAutoDisableFlag (dWorldID w, int do_auto_disable)
{
dAASSERT(w);
w->adis_flag = (do_auto_disable != 0);
}
void dWorldSetQuickStepNumIterations (dWorldID w, int num)
{
dAASSERT(w);
w->qs.num_iterations = num;
}
int dWorldGetQuickStepNumIterations (dWorldID w)
{
dAASSERT(w);
return w->qs.num_iterations;
}
void dWorldSetQuickStepW (dWorldID w, dReal param)
{
dAASSERT(w);
w->qs.w = param;
}
dReal dWorldGetQuickStepW (dWorldID w)
{
dAASSERT(w);
return w->qs.w;
}
void dWorldSetContactMaxCorrectingVel (dWorldID w, dReal vel)
{
dAASSERT(w);
w->contactp.max_vel = vel;
}
dReal dWorldGetContactMaxCorrectingVel (dWorldID w)
{
dAASSERT(w);
return w->contactp.max_vel;
}
void dWorldSetContactSurfaceLayer (dWorldID w, dReal depth)
{
dAASSERT(w);
w->contactp.min_depth = depth;
}
dReal dWorldGetContactSurfaceLayer (dWorldID w)
{
dAASSERT(w);
return w->contactp.min_depth;
}
//****************************************************************************
// testing
#define NUM 100
#define DO(x)
extern "C" void dTestDataStructures()
{
int i;
DO(printf ("testDynamicsStuff()\n"));
dBodyID body [NUM];
int nb = 0;
dJointID joint [NUM];
int nj = 0;
for (i=0; i<NUM; i++) body[i] = 0;
for (i=0; i<NUM; i++) joint[i] = 0;
DO(printf ("creating world\n"));
dWorldID w = dWorldCreate();
checkWorld (w);
for (;;) {
if (nb < NUM && dRandReal() > 0.5) {
DO(printf ("creating body\n"));
body[nb] = dBodyCreate (w);
DO(printf ("\t--> %p\n",body[nb]));
nb++;
checkWorld (w);
DO(printf ("%d BODIES, %d JOINTS\n",nb,nj));
}
if (nj < NUM && nb > 2 && dRandReal() > 0.5) {
dBodyID b1 = body [dRand() % nb];
dBodyID b2 = body [dRand() % nb];
if (b1 != b2) {
DO(printf ("creating joint, attaching to %p,%p\n",b1,b2));
joint[nj] = dJointCreateBall (w,0);
DO(printf ("\t-->%p\n",joint[nj]));
checkWorld (w);
dJointAttach (joint[nj],b1,b2);
nj++;
checkWorld (w);
DO(printf ("%d BODIES, %d JOINTS\n",nb,nj));
}
}
if (nj > 0 && nb > 2 && dRandReal() > 0.5) {
dBodyID b1 = body [dRand() % nb];
dBodyID b2 = body [dRand() % nb];
if (b1 != b2) {
int k = dRand() % nj;
DO(printf ("reattaching joint %p\n",joint[k]));
dJointAttach (joint[k],b1,b2);
checkWorld (w);
DO(printf ("%d BODIES, %d JOINTS\n",nb,nj));
}
}
if (nb > 0 && dRandReal() > 0.5) {
int k = dRand() % nb;
DO(printf ("destroying body %p\n",body[k]));
dBodyDestroy (body[k]);
checkWorld (w);
for (; k < (NUM-1); k++) body[k] = body[k+1];
nb--;
DO(printf ("%d BODIES, %d JOINTS\n",nb,nj));
}
if (nj > 0 && dRandReal() > 0.5) {
int k = dRand() % nj;
DO(printf ("destroying joint %p\n",joint[k]));
dJointDestroy (joint[k]);
checkWorld (w);
for (; k < (NUM-1); k++) joint[k] = joint[k+1];
nj--;
DO(printf ("%d BODIES, %d JOINTS\n",nb,nj));
}
}
/*
printf ("creating world\n");
dWorldID w = dWorldCreate();
checkWorld (w);
printf ("creating body\n");
dBodyID b1 = dBodyCreate (w);
checkWorld (w);
printf ("creating body\n");
dBodyID b2 = dBodyCreate (w);
checkWorld (w);
printf ("creating joint\n");
dJointID j = dJointCreateBall (w);
checkWorld (w);
printf ("attaching joint\n");
dJointAttach (j,b1,b2);
checkWorld (w);
printf ("destroying joint\n");
dJointDestroy (j);
checkWorld (w);
printf ("destroying body\n");
dBodyDestroy (b1);
checkWorld (w);
printf ("destroying body\n");
dBodyDestroy (b2);
checkWorld (w);
printf ("destroying world\n");
dWorldDestroy (w);
*/
}