/************************************************************************* * * * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * * All rights reserved. Email: russ@q12.org Web: www.q12.org * * * * This library is free software; you can redistribute it and/or * * modify it under the terms of EITHER: * * (1) The GNU Lesser General Public License as published by the Free * * Software Foundation; either version 2.1 of the License, or (at * * your option) any later version. The text of the GNU Lesser * * General Public License is included with this library in the * * file LICENSE.TXT. * * (2) The BSD-style license that is included with this library in * * the file LICENSE-BSD.TXT. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * * LICENSE.TXT and LICENSE-BSD.TXT for more details. * * * *************************************************************************/ #ifdef _MSC_VER #pragma warning(disable:4291) // for VC++, no complaints about "no matching operator delete found" #endif // this source file is mostly concerned with the data structures, not the // numerics. #include "objects.h" #include #include "joint.h" #include #include #include "step.h" #include "quickstep.h" #include "util.h" #include #include // misc defines #define ALLOCA dALLOCA16 //**************************************************************************** // utility static inline void initObject (dObject *obj, dxWorld *w) { obj->world = w; obj->next = 0; obj->tome = 0; obj->userdata = 0; obj->tag = 0; } // add an object `obj' to the list who's head pointer is pointed to by `first'. static inline void addObjectToList (dObject *obj, dObject **first) { obj->next = *first; obj->tome = first; if (*first) (*first)->tome = &obj->next; (*first) = obj; } // remove the object from the linked list static inline void removeObjectFromList (dObject *obj) { if (obj->next) obj->next->tome = obj->tome; *(obj->tome) = obj->next; // safeguard obj->next = 0; obj->tome = 0; } // remove the joint from neighbour lists of all connected bodies static void removeJointReferencesFromAttachedBodies (dxJoint *j) { for (int i=0; i<2; i++) { dxBody *body = j->node[i].body; if (body) { dxJointNode *n = body->firstjoint; dxJointNode *last = 0; while (n) { if (n->joint == j) { if (last) last->next = n->next; else body->firstjoint = n->next; break; } last = n; n = n->next; } } } j->node[0].body = 0; j->node[0].next = 0; j->node[1].body = 0; j->node[1].next = 0; } //**************************************************************************** // debugging // see if an object list loops on itself (if so, it's bad). static int listHasLoops (dObject *first) { if (first==0 || first->next==0) return 0; dObject *a=first,*b=first->next; int skip=0; while (b) { if (a==b) return 1; b = b->next; if (skip) a = a->next; skip ^= 1; } return 0; } // check the validity of the world data structures static void checkWorld (dxWorld *w) { dxBody *b; dxJoint *j; // check there are no loops if (listHasLoops (w->firstbody)) dDebug (0,"body list has loops"); if (listHasLoops (w->firstjoint)) dDebug (0,"joint list has loops"); // check lists are well formed (check `tome' pointers) for (b=w->firstbody; b; b=(dxBody*)b->next) { if (b->next && b->next->tome != &b->next) dDebug (0,"bad tome pointer in body list"); } for (j=w->firstjoint; j; j=(dxJoint*)j->next) { if (j->next && j->next->tome != &j->next) dDebug (0,"bad tome pointer in joint list"); } // check counts int n = 0; for (b=w->firstbody; b; b=(dxBody*)b->next) n++; if (w->nb != n) dDebug (0,"body count incorrect"); n = 0; for (j=w->firstjoint; j; j=(dxJoint*)j->next) n++; if (w->nj != n) dDebug (0,"joint count incorrect"); // set all tag values to a known value static int count = 0; count++; for (b=w->firstbody; b; b=(dxBody*)b->next) b->tag = count; for (j=w->firstjoint; j; j=(dxJoint*)j->next) j->tag = count; // check all body/joint world pointers are ok for (b=w->firstbody; b; b=(dxBody*)b->next) if (b->world != w) dDebug (0,"bad world pointer in body list"); for (j=w->firstjoint; j; j=(dxJoint*)j->next) if (j->world != w) dDebug (0,"bad world pointer in joint list"); /* // check for half-connected joints - actually now these are valid for (j=w->firstjoint; j; j=(dxJoint*)j->next) { if (j->node[0].body || j->node[1].body) { if (!(j->node[0].body && j->node[1].body)) dDebug (0,"half connected joint found"); } } */ // check that every joint node appears in the joint lists of both bodies it // attaches for (j=w->firstjoint; j; j=(dxJoint*)j->next) { for (int i=0; i<2; i++) { if (j->node[i].body) { int ok = 0; for (dxJointNode *n=j->node[i].body->firstjoint; n; n=n->next) { if (n->joint == j) ok = 1; } if (ok==0) dDebug (0,"joint not in joint list of attached body"); } } } // check all body joint lists (correct body ptrs) for (b=w->firstbody; b; b=(dxBody*)b->next) { for (dxJointNode *n=b->firstjoint; n; n=n->next) { if (&n->joint->node[0] == n) { if (n->joint->node[1].body != b) dDebug (0,"bad body pointer in joint node of body list (1)"); } else { if (n->joint->node[0].body != b) dDebug (0,"bad body pointer in joint node of body list (2)"); } if (n->joint->tag != count) dDebug (0,"bad joint node pointer in body"); } } // check all body pointers in joints, check they are distinct for (j=w->firstjoint; j; j=(dxJoint*)j->next) { if (j->node[0].body && (j->node[0].body == j->node[1].body)) dDebug (0,"non-distinct body pointers in joint"); if ((j->node[0].body && j->node[0].body->tag != count) || (j->node[1].body && j->node[1].body->tag != count)) dDebug (0,"bad body pointer in joint"); } } void dWorldCheck (dxWorld *w) { checkWorld (w); } //**************************************************************************** // body dxWorld* dBodyGetWorld (dxBody* b) { dAASSERT (b); return b->world; } dxBody *dBodyCreate (dxWorld *w) { dAASSERT (w); dxBody *b = new dxBody; initObject (b,w); b->firstjoint = 0; b->flags = 0; b->geom = 0; b->average_lvel_buffer = 0; b->average_avel_buffer = 0; dMassSetParameters (&b->mass,1,0,0,0,1,1,1,0,0,0); dSetZero (b->invI,4*3); b->invI[0] = 1; b->invI[5] = 1; b->invI[10] = 1; b->invMass = 1; dSetZero (b->posr.pos,4); dSetZero (b->q,4); b->q[0] = 1; dRSetIdentity (b->posr.R); dSetZero (b->lvel,4); dSetZero (b->avel,4); dSetZero (b->facc,4); dSetZero (b->tacc,4); dSetZero (b->finite_rot_axis,4); addObjectToList (b,(dObject **) &w->firstbody); w->nb++; // set auto-disable parameters b->average_avel_buffer = b->average_lvel_buffer = 0; // no buffer at beginnin dBodySetAutoDisableDefaults (b); // must do this after adding to world b->adis_stepsleft = b->adis.idle_steps; b->adis_timeleft = b->adis.idle_time; b->average_counter = 0; b->average_ready = 0; // average buffer not filled on the beginning dBodySetAutoDisableAverageSamplesCount(b, b->adis.average_samples); return b; } void dBodyDestroy (dxBody *b) { dAASSERT (b); // all geoms that link to this body must be notified that the body is about // to disappear. note that the call to dGeomSetBody(geom,0) will result in // dGeomGetBodyNext() returning 0 for the body, so we must get the next body // before setting the body to 0. dxGeom *next_geom = 0; for (dxGeom *geom = b->geom; geom; geom = next_geom) { next_geom = dGeomGetBodyNext (geom); dGeomSetBody (geom,0); } // detach all neighbouring joints, then delete this body. dxJointNode *n = b->firstjoint; while (n) { // sneaky trick to speed up removal of joint references (black magic) n->joint->node[(n == n->joint->node)].body = 0; dxJointNode *next = n->next; n->next = 0; removeJointReferencesFromAttachedBodies (n->joint); n = next; } removeObjectFromList (b); b->world->nb--; // delete the average buffers if(b->average_lvel_buffer) { delete[] (b->average_lvel_buffer); b->average_lvel_buffer = 0; } if(b->average_avel_buffer) { delete[] (b->average_avel_buffer); b->average_avel_buffer = 0; } delete b; } void dBodySetData (dBodyID b, void *data) { dAASSERT (b); b->userdata = data; } void *dBodyGetData (dBodyID b) { dAASSERT (b); return b->userdata; } void dBodySetPosition (dBodyID b, dReal x, dReal y, dReal z) { dAASSERT (b); b->posr.pos[0] = x; b->posr.pos[1] = y; b->posr.pos[2] = z; // notify all attached geoms that this body has moved for (dxGeom *geom = b->geom; geom; geom = dGeomGetBodyNext (geom)) dGeomMoved (geom); } void dBodySetRotation (dBodyID b, const dMatrix3 R) { dAASSERT (b && R); dQuaternion q; dRtoQ (R,q); dNormalize4 (q); b->q[0] = q[0]; b->q[1] = q[1]; b->q[2] = q[2]; b->q[3] = q[3]; dQtoR (b->q,b->posr.R); // notify all attached geoms that this body has moved for (dxGeom *geom = b->geom; geom; geom = dGeomGetBodyNext (geom)) dGeomMoved (geom); } void dBodySetQuaternion (dBodyID b, const dQuaternion q) { dAASSERT (b && q); b->q[0] = q[0]; b->q[1] = q[1]; b->q[2] = q[2]; b->q[3] = q[3]; dNormalize4 (b->q); dQtoR (b->q,b->posr.R); // notify all attached geoms that this body has moved for (dxGeom *geom = b->geom; geom; geom = dGeomGetBodyNext (geom)) dGeomMoved (geom); } void dBodySetLinearVel (dBodyID b, dReal x, dReal y, dReal z) { dAASSERT (b); b->lvel[0] = x; b->lvel[1] = y; b->lvel[2] = z; } void dBodySetAngularVel (dBodyID b, dReal x, dReal y, dReal z) { dAASSERT (b); b->avel[0] = x; b->avel[1] = y; b->avel[2] = z; } const dReal * dBodyGetPosition (dBodyID b) { dAASSERT (b); return b->posr.pos; } void dBodyCopyPosition (dBodyID b, dVector3 pos) { dAASSERT (b); dReal* src = b->posr.pos; pos[0] = src[0]; pos[1] = src[1]; pos[2] = src[2]; } const dReal * dBodyGetRotation (dBodyID b) { dAASSERT (b); return b->posr.R; } void dBodyCopyRotation (dBodyID b, dMatrix3 R) { dAASSERT (b); const dReal* src = b->posr.R; R[0] = src[0]; R[1] = src[1]; R[2] = src[2]; R[3] = src[3]; R[4] = src[4]; R[5] = src[5]; R[6] = src[6]; R[7] = src[7]; R[8] = src[8]; R[9] = src[9]; R[10] = src[10]; R[11] = src[11]; } const dReal * dBodyGetQuaternion (dBodyID b) { dAASSERT (b); return b->q; } void dBodyCopyQuaternion (dBodyID b, dQuaternion quat) { dAASSERT (b); dReal* src = b->q; quat[0] = src[0]; quat[1] = src[1]; quat[2] = src[2]; quat[3] = src[3]; } const dReal * dBodyGetLinearVel (dBodyID b) { dAASSERT (b); return b->lvel; } const dReal * dBodyGetAngularVel (dBodyID b) { dAASSERT (b); return b->avel; } void dBodySetMass (dBodyID b, const dMass *mass) { dAASSERT (b && mass ); dIASSERT(dMassCheck(mass)); // The centre of mass must be at the origin. // Use dMassTranslate( mass, -mass->c[0], -mass->c[1], -mass->c[2] ) to correct it. dUASSERT( fabs( mass->c[0] ) <= dEpsilon && fabs( mass->c[1] ) <= dEpsilon && fabs( mass->c[2] ) <= dEpsilon, "The centre of mass must be at the origin." ) memcpy (&b->mass,mass,sizeof(dMass)); if (dInvertPDMatrix (b->mass.I,b->invI,3)==0) { dDEBUGMSG ("inertia must be positive definite!"); dRSetIdentity (b->invI); } b->invMass = dRecip(b->mass.mass); } void dBodyGetMass (dBodyID b, dMass *mass) { dAASSERT (b && mass); memcpy (mass,&b->mass,sizeof(dMass)); } void dBodyAddForce (dBodyID b, dReal fx, dReal fy, dReal fz) { dAASSERT (b); b->facc[0] += fx; b->facc[1] += fy; b->facc[2] += fz; } void dBodyAddTorque (dBodyID b, dReal fx, dReal fy, dReal fz) { dAASSERT (b); b->tacc[0] += fx; b->tacc[1] += fy; b->tacc[2] += fz; } void dBodyAddRelForce (dBodyID b, dReal fx, dReal fy, dReal fz) { dAASSERT (b); dVector3 t1,t2; t1[0] = fx; t1[1] = fy; t1[2] = fz; t1[3] = 0; dMULTIPLY0_331 (t2,b->posr.R,t1); b->facc[0] += t2[0]; b->facc[1] += t2[1]; b->facc[2] += t2[2]; } void dBodyAddRelTorque (dBodyID b, dReal fx, dReal fy, dReal fz) { dAASSERT (b); dVector3 t1,t2; t1[0] = fx; t1[1] = fy; t1[2] = fz; t1[3] = 0; dMULTIPLY0_331 (t2,b->posr.R,t1); b->tacc[0] += t2[0]; b->tacc[1] += t2[1]; b->tacc[2] += t2[2]; } void dBodyAddForceAtPos (dBodyID b, dReal fx, dReal fy, dReal fz, dReal px, dReal py, dReal pz) { dAASSERT (b); b->facc[0] += fx; b->facc[1] += fy; b->facc[2] += fz; dVector3 f,q; f[0] = fx; f[1] = fy; f[2] = fz; q[0] = px - b->posr.pos[0]; q[1] = py - b->posr.pos[1]; q[2] = pz - b->posr.pos[2]; dCROSS (b->tacc,+=,q,f); } void dBodyAddForceAtRelPos (dBodyID b, dReal fx, dReal fy, dReal fz, dReal px, dReal py, dReal pz) { dAASSERT (b); dVector3 prel,f,p; f[0] = fx; f[1] = fy; f[2] = fz; f[3] = 0; prel[0] = px; prel[1] = py; prel[2] = pz; prel[3] = 0; dMULTIPLY0_331 (p,b->posr.R,prel); b->facc[0] += f[0]; b->facc[1] += f[1]; b->facc[2] += f[2]; dCROSS (b->tacc,+=,p,f); } void dBodyAddRelForceAtPos (dBodyID b, dReal fx, dReal fy, dReal fz, dReal px, dReal py, dReal pz) { dAASSERT (b); dVector3 frel,f; frel[0] = fx; frel[1] = fy; frel[2] = fz; frel[3] = 0; dMULTIPLY0_331 (f,b->posr.R,frel); b->facc[0] += f[0]; b->facc[1] += f[1]; b->facc[2] += f[2]; dVector3 q; q[0] = px - b->posr.pos[0]; q[1] = py - b->posr.pos[1]; q[2] = pz - b->posr.pos[2]; dCROSS (b->tacc,+=,q,f); } void dBodyAddRelForceAtRelPos (dBodyID b, dReal fx, dReal fy, dReal fz, dReal px, dReal py, dReal pz) { dAASSERT (b); dVector3 frel,prel,f,p; frel[0] = fx; frel[1] = fy; frel[2] = fz; frel[3] = 0; prel[0] = px; prel[1] = py; prel[2] = pz; prel[3] = 0; dMULTIPLY0_331 (f,b->posr.R,frel); dMULTIPLY0_331 (p,b->posr.R,prel); b->facc[0] += f[0]; b->facc[1] += f[1]; b->facc[2] += f[2]; dCROSS (b->tacc,+=,p,f); } const dReal * dBodyGetForce (dBodyID b) { dAASSERT (b); return b->facc; } const dReal * dBodyGetTorque (dBodyID b) { dAASSERT (b); return b->tacc; } void dBodySetForce (dBodyID b, dReal x, dReal y, dReal z) { dAASSERT (b); b->facc[0] = x; b->facc[1] = y; b->facc[2] = z; } void dBodySetTorque (dBodyID b, dReal x, dReal y, dReal z) { dAASSERT (b); b->tacc[0] = x; b->tacc[1] = y; b->tacc[2] = z; } void dBodyGetRelPointPos (dBodyID b, dReal px, dReal py, dReal pz, dVector3 result) { dAASSERT (b); dVector3 prel,p; prel[0] = px; prel[1] = py; prel[2] = pz; prel[3] = 0; dMULTIPLY0_331 (p,b->posr.R,prel); result[0] = p[0] + b->posr.pos[0]; result[1] = p[1] + b->posr.pos[1]; result[2] = p[2] + b->posr.pos[2]; } void dBodyGetRelPointVel (dBodyID b, dReal px, dReal py, dReal pz, dVector3 result) { dAASSERT (b); dVector3 prel,p; prel[0] = px; prel[1] = py; prel[2] = pz; prel[3] = 0; dMULTIPLY0_331 (p,b->posr.R,prel); result[0] = b->lvel[0]; result[1] = b->lvel[1]; result[2] = b->lvel[2]; dCROSS (result,+=,b->avel,p); } void dBodyGetPointVel (dBodyID b, dReal px, dReal py, dReal pz, dVector3 result) { dAASSERT (b); dVector3 p; p[0] = px - b->posr.pos[0]; p[1] = py - b->posr.pos[1]; p[2] = pz - b->posr.pos[2]; p[3] = 0; result[0] = b->lvel[0]; result[1] = b->lvel[1]; result[2] = b->lvel[2]; dCROSS (result,+=,b->avel,p); } void dBodyGetPosRelPoint (dBodyID b, dReal px, dReal py, dReal pz, dVector3 result) { dAASSERT (b); dVector3 prel; prel[0] = px - b->posr.pos[0]; prel[1] = py - b->posr.pos[1]; prel[2] = pz - b->posr.pos[2]; prel[3] = 0; dMULTIPLY1_331 (result,b->posr.R,prel); } void dBodyVectorToWorld (dBodyID b, dReal px, dReal py, dReal pz, dVector3 result) { dAASSERT (b); dVector3 p; p[0] = px; p[1] = py; p[2] = pz; p[3] = 0; dMULTIPLY0_331 (result,b->posr.R,p); } void dBodyVectorFromWorld (dBodyID b, dReal px, dReal py, dReal pz, dVector3 result) { dAASSERT (b); dVector3 p; p[0] = px; p[1] = py; p[2] = pz; p[3] = 0; dMULTIPLY1_331 (result,b->posr.R,p); } void dBodySetFiniteRotationMode (dBodyID b, int mode) { dAASSERT (b); b->flags &= ~(dxBodyFlagFiniteRotation | dxBodyFlagFiniteRotationAxis); if (mode) { b->flags |= dxBodyFlagFiniteRotation; if (b->finite_rot_axis[0] != 0 || b->finite_rot_axis[1] != 0 || b->finite_rot_axis[2] != 0) { b->flags |= dxBodyFlagFiniteRotationAxis; } } } void dBodySetFiniteRotationAxis (dBodyID b, dReal x, dReal y, dReal z) { dAASSERT (b); b->finite_rot_axis[0] = x; b->finite_rot_axis[1] = y; b->finite_rot_axis[2] = z; if (x != 0 || y != 0 || z != 0) { dNormalize3 (b->finite_rot_axis); b->flags |= dxBodyFlagFiniteRotationAxis; } else { b->flags &= ~dxBodyFlagFiniteRotationAxis; } } int dBodyGetFiniteRotationMode (dBodyID b) { dAASSERT (b); return ((b->flags & dxBodyFlagFiniteRotation) != 0); } void dBodyGetFiniteRotationAxis (dBodyID b, dVector3 result) { dAASSERT (b); result[0] = b->finite_rot_axis[0]; result[1] = b->finite_rot_axis[1]; result[2] = b->finite_rot_axis[2]; } int dBodyGetNumJoints (dBodyID b) { dAASSERT (b); int count=0; for (dxJointNode *n=b->firstjoint; n; n=n->next, count++); return count; } dJointID dBodyGetJoint (dBodyID b, int index) { dAASSERT (b); int i=0; for (dxJointNode *n=b->firstjoint; n; n=n->next, i++) { if (i == index) return n->joint; } return 0; } void dBodyEnable (dBodyID b) { dAASSERT (b); b->flags &= ~dxBodyDisabled; b->adis_stepsleft = b->adis.idle_steps; b->adis_timeleft = b->adis.idle_time; // no code for average-processing needed here } void dBodyDisable (dBodyID b) { dAASSERT (b); b->flags |= dxBodyDisabled; } int dBodyIsEnabled (dBodyID b) { dAASSERT (b); return ((b->flags & dxBodyDisabled) == 0); } void dBodySetGravityMode (dBodyID b, int mode) { dAASSERT (b); if (mode) b->flags &= ~dxBodyNoGravity; else b->flags |= dxBodyNoGravity; } int dBodyGetGravityMode (dBodyID b) { dAASSERT (b); return ((b->flags & dxBodyNoGravity) == 0); } // body auto-disable functions dReal dBodyGetAutoDisableLinearThreshold (dBodyID b) { dAASSERT(b); return dSqrt (b->adis.linear_average_threshold); } void dBodySetAutoDisableLinearThreshold (dBodyID b, dReal linear_average_threshold) { dAASSERT(b); b->adis.linear_average_threshold = linear_average_threshold * linear_average_threshold; } dReal dBodyGetAutoDisableAngularThreshold (dBodyID b) { dAASSERT(b); return dSqrt (b->adis.angular_average_threshold); } void dBodySetAutoDisableAngularThreshold (dBodyID b, dReal angular_average_threshold) { dAASSERT(b); b->adis.angular_average_threshold = angular_average_threshold * angular_average_threshold; } int dBodyGetAutoDisableAverageSamplesCount (dBodyID b) { dAASSERT(b); return b->adis.average_samples; } void dBodySetAutoDisableAverageSamplesCount (dBodyID b, unsigned int average_samples_count) { dAASSERT(b); b->adis.average_samples = average_samples_count; // update the average buffers if(b->average_lvel_buffer) { delete[] b->average_lvel_buffer; b->average_lvel_buffer = 0; } if(b->average_avel_buffer) { delete[] b->average_avel_buffer; b->average_avel_buffer = 0; } if(b->adis.average_samples > 0) { b->average_lvel_buffer = new dVector3[b->adis.average_samples]; b->average_avel_buffer = new dVector3[b->adis.average_samples]; } else { b->average_lvel_buffer = 0; b->average_avel_buffer = 0; } // new buffer is empty b->average_counter = 0; b->average_ready = 0; } int dBodyGetAutoDisableSteps (dBodyID b) { dAASSERT(b); return b->adis.idle_steps; } void dBodySetAutoDisableSteps (dBodyID b, int steps) { dAASSERT(b); b->adis.idle_steps = steps; } dReal dBodyGetAutoDisableTime (dBodyID b) { dAASSERT(b); return b->adis.idle_time; } void dBodySetAutoDisableTime (dBodyID b, dReal time) { dAASSERT(b); b->adis.idle_time = time; } int dBodyGetAutoDisableFlag (dBodyID b) { dAASSERT(b); return ((b->flags & dxBodyAutoDisable) != 0); } void dBodySetAutoDisableFlag (dBodyID b, int do_auto_disable) { dAASSERT(b); if (!do_auto_disable) { b->flags &= ~dxBodyAutoDisable; // (mg) we should also reset the IsDisabled state to correspond to the DoDisabling flag b->flags &= ~dxBodyDisabled; b->adis.idle_steps = dWorldGetAutoDisableSteps(b->world); b->adis.idle_time = dWorldGetAutoDisableTime(b->world); // resetting the average calculations too dBodySetAutoDisableAverageSamplesCount(b, dWorldGetAutoDisableAverageSamplesCount(b->world) ); } else { b->flags |= dxBodyAutoDisable; } } void dBodySetAutoDisableDefaults (dBodyID b) { dAASSERT(b); dWorldID w = b->world; dAASSERT(w); b->adis = w->adis; dBodySetAutoDisableFlag (b, w->adis_flag); } //**************************************************************************** // joints static void dJointInit (dxWorld *w, dxJoint *j) { dIASSERT (w && j); initObject (j,w); j->vtable = 0; j->flags = 0; j->node[0].joint = j; j->node[0].body = 0; j->node[0].next = 0; j->node[1].joint = j; j->node[1].body = 0; j->node[1].next = 0; dSetZero (j->lambda,6); addObjectToList (j,(dObject **) &w->firstjoint); w->nj++; } static dxJoint *createJoint (dWorldID w, dJointGroupID group, dxJoint::Vtable *vtable) { dIASSERT (w && vtable); dxJoint *j; if (group) { j = (dxJoint*) group->stack.alloc (vtable->size); group->num++; } else j = (dxJoint*) dAlloc (vtable->size); dJointInit (w,j); j->vtable = vtable; if (group) j->flags |= dJOINT_INGROUP; if (vtable->init) vtable->init (j); j->feedback = 0; return j; } dxJoint * dJointCreateBall (dWorldID w, dJointGroupID group) { dAASSERT (w); return createJoint (w,group,&__dball_vtable); } dxJoint * dJointCreateHinge (dWorldID w, dJointGroupID group) { dAASSERT (w); return createJoint (w,group,&__dhinge_vtable); } dxJoint * dJointCreateSlider (dWorldID w, dJointGroupID group) { dAASSERT (w); return createJoint (w,group,&__dslider_vtable); } dxJoint * dJointCreateContact (dWorldID w, dJointGroupID group, const dContact *c) { dAASSERT (w && c); dxJointContact *j = (dxJointContact *) createJoint (w,group,&__dcontact_vtable); j->contact = *c; return j; } dxJoint * dJointCreateHinge2 (dWorldID w, dJointGroupID group) { dAASSERT (w); return createJoint (w,group,&__dhinge2_vtable); } dxJoint * dJointCreateUniversal (dWorldID w, dJointGroupID group) { dAASSERT (w); return createJoint (w,group,&__duniversal_vtable); } dxJoint * dJointCreatePR (dWorldID w, dJointGroupID group) { dAASSERT (w); return createJoint (w,group,&__dPR_vtable); } dxJoint * dJointCreateFixed (dWorldID w, dJointGroupID group) { dAASSERT (w); return createJoint (w,group,&__dfixed_vtable); } dxJoint * dJointCreateNull (dWorldID w, dJointGroupID group) { dAASSERT (w); return createJoint (w,group,&__dnull_vtable); } dxJoint * dJointCreateAMotor (dWorldID w, dJointGroupID group) { dAASSERT (w); return createJoint (w,group,&__damotor_vtable); } dxJoint * dJointCreateLMotor (dWorldID w, dJointGroupID group) { dAASSERT (w); return createJoint (w,group,&__dlmotor_vtable); } dxJoint * dJointCreatePlane2D (dWorldID w, dJointGroupID group) { dAASSERT (w); return createJoint (w,group,&__dplane2d_vtable); } void dJointDestroy (dxJoint *j) { dAASSERT (j); if (j->flags & dJOINT_INGROUP) return; removeJointReferencesFromAttachedBodies (j); removeObjectFromList (j); j->world->nj--; dFree (j,j->vtable->size); } dJointGroupID dJointGroupCreate (int max_size) { // not any more ... dUASSERT (max_size > 0,"max size must be > 0"); dxJointGroup *group = new dxJointGroup; group->num = 0; return group; } void dJointGroupDestroy (dJointGroupID group) { dAASSERT (group); dJointGroupEmpty (group); delete group; } void dJointGroupEmpty (dJointGroupID group) { // the joints in this group are detached starting from the most recently // added (at the top of the stack). this helps ensure that the various // linked lists are not traversed too much, as the joints will hopefully // be at the start of those lists. // if any group joints have their world pointer set to 0, their world was // previously destroyed. no special handling is required for these joints. dAASSERT (group); int i; dxJoint **jlist = (dxJoint**) ALLOCA (group->num * sizeof(dxJoint*)); dxJoint *j = (dxJoint*) group->stack.rewind(); for (i=0; i < group->num; i++) { jlist[i] = j; j = (dxJoint*) (group->stack.next (j->vtable->size)); } for (i=group->num-1; i >= 0; i--) { if (jlist[i]->world) { removeJointReferencesFromAttachedBodies (jlist[i]); removeObjectFromList (jlist[i]); jlist[i]->world->nj--; } } group->num = 0; group->stack.freeAll(); } void dJointAttach (dxJoint *joint, dxBody *body1, dxBody *body2) { // check arguments dUASSERT (joint,"bad joint argument"); dUASSERT (body1 == 0 || body1 != body2,"can't have body1==body2"); dxWorld *world = joint->world; dUASSERT ( (!body1 || body1->world == world) && (!body2 || body2->world == world), "joint and bodies must be in same world"); // check if the joint can not be attached to just one body dUASSERT (!((joint->flags & dJOINT_TWOBODIES) && ((body1 != 0) ^ (body2 != 0))), "joint can not be attached to just one body"); // remove any existing body attachments if (joint->node[0].body || joint->node[1].body) { removeJointReferencesFromAttachedBodies (joint); } // if a body is zero, make sure that it is body2, so 0 --> node[1].body if (body1==0) { body1 = body2; body2 = 0; joint->flags |= dJOINT_REVERSE; } else { joint->flags &= (~dJOINT_REVERSE); } // attach to new bodies joint->node[0].body = body1; joint->node[1].body = body2; if (body1) { joint->node[1].next = body1->firstjoint; body1->firstjoint = &joint->node[1]; } else joint->node[1].next = 0; if (body2) { joint->node[0].next = body2->firstjoint; body2->firstjoint = &joint->node[0]; } else { joint->node[0].next = 0; } } void dJointSetData (dxJoint *joint, void *data) { dAASSERT (joint); joint->userdata = data; } void *dJointGetData (dxJoint *joint) { dAASSERT (joint); return joint->userdata; } int dJointGetType (dxJoint *joint) { dAASSERT (joint); return joint->vtable->typenum; } dBodyID dJointGetBody (dxJoint *joint, int index) { dAASSERT (joint); if (index == 0 || index == 1) { if (joint->flags & dJOINT_REVERSE) return joint->node[1-index].body; else return joint->node[index].body; } else return 0; } void dJointSetFeedback (dxJoint *joint, dJointFeedback *f) { dAASSERT (joint); joint->feedback = f; } dJointFeedback *dJointGetFeedback (dxJoint *joint) { dAASSERT (joint); return joint->feedback; } dJointID dConnectingJoint (dBodyID in_b1, dBodyID in_b2) { dAASSERT (in_b1 || in_b2); dBodyID b1, b2; if (in_b1 == 0) { b1 = in_b2; b2 = in_b1; } else { b1 = in_b1; b2 = in_b2; } // look through b1's neighbour list for b2 for (dxJointNode *n=b1->firstjoint; n; n=n->next) { if (n->body == b2) return n->joint; } return 0; } int dConnectingJointList (dBodyID in_b1, dBodyID in_b2, dJointID* out_list) { dAASSERT (in_b1 || in_b2); dBodyID b1, b2; if (in_b1 == 0) { b1 = in_b2; b2 = in_b1; } else { b1 = in_b1; b2 = in_b2; } // look through b1's neighbour list for b2 int numConnectingJoints = 0; for (dxJointNode *n=b1->firstjoint; n; n=n->next) { if (n->body == b2) out_list[numConnectingJoints++] = n->joint; } return numConnectingJoints; } int dAreConnected (dBodyID b1, dBodyID b2) { dAASSERT (b1 && b2); // look through b1's neighbour list for b2 for (dxJointNode *n=b1->firstjoint; n; n=n->next) { if (n->body == b2) return 1; } return 0; } int dAreConnectedExcluding (dBodyID b1, dBodyID b2, int joint_type) { dAASSERT (b1 && b2); // look through b1's neighbour list for b2 for (dxJointNode *n=b1->firstjoint; n; n=n->next) { if (dJointGetType (n->joint) != joint_type && n->body == b2) return 1; } return 0; } //**************************************************************************** // world dxWorld * dWorldCreate() { dxWorld *w = new dxWorld; w->firstbody = 0; w->firstjoint = 0; w->nb = 0; w->nj = 0; dSetZero (w->gravity,4); w->global_erp = REAL(0.2); #if defined(dSINGLE) w->global_cfm = 1e-5f; #elif defined(dDOUBLE) w->global_cfm = 1e-10; #else #error dSINGLE or dDOUBLE must be defined #endif w->adis.idle_steps = 10; w->adis.idle_time = 0; w->adis_flag = 0; w->adis.average_samples = 1; // Default is 1 sample => Instantaneous velocity w->adis.angular_average_threshold = REAL(0.01)*REAL(0.01); // (magnitude squared) w->adis.linear_average_threshold = REAL(0.01)*REAL(0.01); // (magnitude squared) w->qs.num_iterations = 20; w->qs.w = REAL(1.3); w->contactp.max_vel = dInfinity; w->contactp.min_depth = 0; return w; } void dWorldDestroy (dxWorld *w) { // delete all bodies and joints dAASSERT (w); dxBody *nextb, *b = w->firstbody; while (b) { nextb = (dxBody*) b->next; if(b->average_lvel_buffer) { delete[] (b->average_lvel_buffer); b->average_lvel_buffer = 0; } if(b->average_avel_buffer) { delete[] (b->average_avel_buffer); b->average_avel_buffer = 0; } dBodyDestroy(b); // calling here dBodyDestroy for correct destroying! (i.e. the average buffers) b = nextb; } dxJoint *nextj, *j = w->firstjoint; while (j) { nextj = (dxJoint*)j->next; if (j->flags & dJOINT_INGROUP) { // the joint is part of a group, so "deactivate" it instead j->world = 0; j->node[0].body = 0; j->node[0].next = 0; j->node[1].body = 0; j->node[1].next = 0; dMessage (0,"warning: destroying world containing grouped joints"); } else { dFree (j,j->vtable->size); } j = nextj; } delete w; } void dWorldSetGravity (dWorldID w, dReal x, dReal y, dReal z) { dAASSERT (w); w->gravity[0] = x; w->gravity[1] = y; w->gravity[2] = z; } void dWorldGetGravity (dWorldID w, dVector3 g) { dAASSERT (w); g[0] = w->gravity[0]; g[1] = w->gravity[1]; g[2] = w->gravity[2]; } void dWorldSetERP (dWorldID w, dReal erp) { dAASSERT (w); w->global_erp = erp; } dReal dWorldGetERP (dWorldID w) { dAASSERT (w); return w->global_erp; } void dWorldSetCFM (dWorldID w, dReal cfm) { dAASSERT (w); w->global_cfm = cfm; } dReal dWorldGetCFM (dWorldID w) { dAASSERT (w); return w->global_cfm; } void dWorldStep (dWorldID w, dReal stepsize) { dUASSERT (w,"bad world argument"); dUASSERT (stepsize > 0,"stepsize must be > 0"); dxProcessIslands (w,stepsize,&dInternalStepIsland); } void dWorldQuickStep (dWorldID w, dReal stepsize) { dUASSERT (w,"bad world argument"); dUASSERT (stepsize > 0,"stepsize must be > 0"); dxProcessIslands (w,stepsize,&dxQuickStepper); } void dWorldImpulseToForce (dWorldID w, dReal stepsize, dReal ix, dReal iy, dReal iz, dVector3 force) { dAASSERT (w); stepsize = dRecip(stepsize); force[0] = stepsize * ix; force[1] = stepsize * iy; force[2] = stepsize * iz; // @@@ force[3] = 0; } // world auto-disable functions dReal dWorldGetAutoDisableLinearThreshold (dWorldID w) { dAASSERT(w); return dSqrt (w->adis.linear_average_threshold); } void dWorldSetAutoDisableLinearThreshold (dWorldID w, dReal linear_average_threshold) { dAASSERT(w); w->adis.linear_average_threshold = linear_average_threshold * linear_average_threshold; } dReal dWorldGetAutoDisableAngularThreshold (dWorldID w) { dAASSERT(w); return dSqrt (w->adis.angular_average_threshold); } void dWorldSetAutoDisableAngularThreshold (dWorldID w, dReal angular_average_threshold) { dAASSERT(w); w->adis.angular_average_threshold = angular_average_threshold * angular_average_threshold; } int dWorldGetAutoDisableAverageSamplesCount (dWorldID w) { dAASSERT(w); return w->adis.average_samples; } void dWorldSetAutoDisableAverageSamplesCount (dWorldID w, unsigned int average_samples_count) { dAASSERT(w); w->adis.average_samples = average_samples_count; } int dWorldGetAutoDisableSteps (dWorldID w) { dAASSERT(w); return w->adis.idle_steps; } void dWorldSetAutoDisableSteps (dWorldID w, int steps) { dAASSERT(w); w->adis.idle_steps = steps; } dReal dWorldGetAutoDisableTime (dWorldID w) { dAASSERT(w); return w->adis.idle_time; } void dWorldSetAutoDisableTime (dWorldID w, dReal time) { dAASSERT(w); w->adis.idle_time = time; } int dWorldGetAutoDisableFlag (dWorldID w) { dAASSERT(w); return w->adis_flag; } void dWorldSetAutoDisableFlag (dWorldID w, int do_auto_disable) { dAASSERT(w); w->adis_flag = (do_auto_disable != 0); } void dWorldSetQuickStepNumIterations (dWorldID w, int num) { dAASSERT(w); w->qs.num_iterations = num; } int dWorldGetQuickStepNumIterations (dWorldID w) { dAASSERT(w); return w->qs.num_iterations; } void dWorldSetQuickStepW (dWorldID w, dReal param) { dAASSERT(w); w->qs.w = param; } dReal dWorldGetQuickStepW (dWorldID w) { dAASSERT(w); return w->qs.w; } void dWorldSetContactMaxCorrectingVel (dWorldID w, dReal vel) { dAASSERT(w); w->contactp.max_vel = vel; } dReal dWorldGetContactMaxCorrectingVel (dWorldID w) { dAASSERT(w); return w->contactp.max_vel; } void dWorldSetContactSurfaceLayer (dWorldID w, dReal depth) { dAASSERT(w); w->contactp.min_depth = depth; } dReal dWorldGetContactSurfaceLayer (dWorldID w) { dAASSERT(w); return w->contactp.min_depth; } //**************************************************************************** // testing #define NUM 100 #define DO(x) extern "C" void dTestDataStructures() { int i; DO(printf ("testDynamicsStuff()\n")); dBodyID body [NUM]; int nb = 0; dJointID joint [NUM]; int nj = 0; for (i=0; i 0.5) { DO(printf ("creating body\n")); body[nb] = dBodyCreate (w); DO(printf ("\t--> %p\n",body[nb])); nb++; checkWorld (w); DO(printf ("%d BODIES, %d JOINTS\n",nb,nj)); } if (nj < NUM && nb > 2 && dRandReal() > 0.5) { dBodyID b1 = body [dRand() % nb]; dBodyID b2 = body [dRand() % nb]; if (b1 != b2) { DO(printf ("creating joint, attaching to %p,%p\n",b1,b2)); joint[nj] = dJointCreateBall (w,0); DO(printf ("\t-->%p\n",joint[nj])); checkWorld (w); dJointAttach (joint[nj],b1,b2); nj++; checkWorld (w); DO(printf ("%d BODIES, %d JOINTS\n",nb,nj)); } } if (nj > 0 && nb > 2 && dRandReal() > 0.5) { dBodyID b1 = body [dRand() % nb]; dBodyID b2 = body [dRand() % nb]; if (b1 != b2) { int k = dRand() % nj; DO(printf ("reattaching joint %p\n",joint[k])); dJointAttach (joint[k],b1,b2); checkWorld (w); DO(printf ("%d BODIES, %d JOINTS\n",nb,nj)); } } if (nb > 0 && dRandReal() > 0.5) { int k = dRand() % nb; DO(printf ("destroying body %p\n",body[k])); dBodyDestroy (body[k]); checkWorld (w); for (; k < (NUM-1); k++) body[k] = body[k+1]; nb--; DO(printf ("%d BODIES, %d JOINTS\n",nb,nj)); } if (nj > 0 && dRandReal() > 0.5) { int k = dRand() % nj; DO(printf ("destroying joint %p\n",joint[k])); dJointDestroy (joint[k]); checkWorld (w); for (; k < (NUM-1); k++) joint[k] = joint[k+1]; nj--; DO(printf ("%d BODIES, %d JOINTS\n",nb,nj)); } } /* printf ("creating world\n"); dWorldID w = dWorldCreate(); checkWorld (w); printf ("creating body\n"); dBodyID b1 = dBodyCreate (w); checkWorld (w); printf ("creating body\n"); dBodyID b2 = dBodyCreate (w); checkWorld (w); printf ("creating joint\n"); dJointID j = dJointCreateBall (w); checkWorld (w); printf ("attaching joint\n"); dJointAttach (j,b1,b2); checkWorld (w); printf ("destroying joint\n"); dJointDestroy (j); checkWorld (w); printf ("destroying body\n"); dBodyDestroy (b1); checkWorld (w); printf ("destroying body\n"); dBodyDestroy (b2); checkWorld (w); printf ("destroying world\n"); dWorldDestroy (w); */ }