initial commit

This commit is contained in:
cirdan
2008-01-16 11:45:17 +00:00
commit 8f17a3a819
1068 changed files with 384278 additions and 0 deletions

39
engine/AABB.h Normal file
View File

@ -0,0 +1,39 @@
#ifndef BLUECORE_BOUNDING_CUBE_H
#define BLUECORE_BOUNDING_CUBE_H
#include "Math/Transformation.h"
namespace BlueCore
{
class AABB
{
public:
Vector3 Min;
Vector3 Max;
bool overlaps (const AABB &aabb)
{
bool overlap = true;
overlap = (Min.x > aabb.Max.x || Max.x < aabb.Min.x) ? false : overlap;
overlap = (Min.y > aabb.Max.y || Max.y < aabb.Min.y) ? false : overlap;
overlap = (Min.z > aabb.Max.z || Max.z < aabb.Min.z) ? false : overlap;
return overlap;
}
AABB transformed (const Transformation& transformation)
{
AABB aabb;
Vector3 new_max = transformation.transform (Max);
Vector3 new_min = transformation.transform (Min);
return aabb;
}
};
}
#endif

123
engine/Camera.cpp Normal file
View File

@ -0,0 +1,123 @@
#include "Camera.h"
#include "Math/Matrix.h"
#include "GL/glfw.h"
namespace BlueCore
{
//--------------------------------------------------------------------------
Camera::Camera()
{
}
//--------------------------------------------------------------------------
Camera::~Camera()
{
}
//--------------------------------------------------------------------------
void Camera::setFoV(Scalar fov)
{
_FoV = fov;
}
//--------------------------------------------------------------------------
void Camera::setAspectRatio(Scalar aspect)
{
_AspectRatio = aspect;
}
//--------------------------------------------------------------------------
void Camera::setNearPlane(Scalar near)
{
_NearPlane = near;
}
//--------------------------------------------------------------------------
void Camera::setFarPlane(Scalar far)
{
_FarPlane = far;
}
//--------------------------------------------------------------------------
void Camera::setPosition(const Vector3& position)
{
_Position = position;
}
const Vector3& Camera::getPosition()
{
return _Position;
}
//--------------------------------------------------------------------------
void Camera::setRotation(const Quaternion& rotation)
{
_Rotation = rotation;
}
//--------------------------------------------------------------------------
void Camera::setupProjectionMatrix()
{
Scalar fW, fH;
fH = tan ( (_FoV / 2) / 180* Pi ) * _NearPlane;
fW = fH * _AspectRatio;
// setup projectiom matrix
glMatrixMode (GL_PROJECTION );
glLoadIdentity();
glFrustum ( -fW, fW, -fH, fH, _NearPlane, _FarPlane );
// save variables for frustum culling
/*
_near = nearZ;
_far = farZ;
_hNear = tan ( ( fov / 2 ) / 180 * Pi ) * nearZ;
_wNear = _hNear * aspect;
_hFar = tan ( ( fov / 2 ) / 180 * Pi ) * farZ;
_wFar = _hFar * aspect;
*/
}
//--------------------------------------------------------------------------
void Camera::setupViewMatrix()
{
// set the view matrix
glMatrixMode (GL_MODELVIEW );
glLoadIdentity();
Matrix4x4 m(_Rotation, _Rotation.applyInversed(_Position * -1.0) );
glMultMatrixd ( ( GLdouble * ) &m.m );
/*
// calculate frustum planes
Vector3 up = q.apply ( Vector3 ( 0.0, 1.0, 0.0 ) );
Vector3 right = q.apply ( Vector3 ( 1.0, 0.0, 0.0 ) );
Vector3 d = q.apply ( Vector3 ( 0.0, 0.0, -1.0 ) );
Vector3 fc = p + d * _far;
Vector3 ftl = fc + ( up * _hFar ) - ( right * _wFar );
Vector3 ftr = fc + ( up * _hFar ) + ( right * _wFar );
Vector3 fbl = fc - ( up * _hFar ) - ( right * _wFar );
Vector3 fbr = fc - ( up * _hFar ) + ( right * _wFar );
Vector3 nc = p + d * _near;
Vector3 ntl = nc + ( up * _hNear ) - ( right * _wNear );
Vector3 ntr = nc + ( up * _hNear ) + ( right * _wNear );
Vector3 nbl = nc - ( up * _hNear ) - ( right * _wNear );
Vector3 nbr = nc - ( up * _hNear ) + ( right * _wNear );
_frustumPlanes[RightPlane] = Plane ( nbr, fbr, ntr );
_frustumPlanes[LeftPlane] = Plane ( ntl, fbl, nbl );
_frustumPlanes[BottomPlane] = Plane ( nbl, fbr, nbr );
_frustumPlanes[TopPlane] = Plane ( ntr, ftl, ntl );
_frustumPlanes[FarPlane] = Plane ( ftl, ftr, fbl );
_frustumPlanes[NearPlane] = Plane ( ntl, nbl, ntr );
*/
}
} // namespace BlueCore

55
engine/Camera.h Normal file
View File

@ -0,0 +1,55 @@
#ifndef BLUECORE_CAMERA_H
#define BLUECORE_CAMERA_H
// project includes
#include "Utilities/Referenced.h"
#include "Math/Vector.h"
#include "Math/Quaternion.h"
#include "Math/Plane.h"
//#include "geometry/frustum.h"
namespace BlueCore {
class Camera : public Referenced
{
private:
Vector3 _LookAtPoint;
Vector3 _LookAtUp;
bool _LookAt;
Scalar _NearPlane, _FarPlane, _FoV, _AspectRatio;
//Frustum _Frustum;
Vector3 _Position;
Quaternion _Rotation;
public:
Camera();
~Camera();
void lookAt( const Vector3 &point );
void lookAt( const Vector3 &point, const Vector3 &up );
void lookStraight();
void setFoV( Scalar fov );
void setAspectRatio( Scalar aspect );
void setNearPlane( Scalar near );
void setFarPlane( Scalar far );
void setPosition (const Vector3& position);
const Vector3& getPosition ();
void setRotation (const Quaternion& rotation);
void setupViewMatrix ();
void setupProjectionMatrix ();
//const Frustum &getFrustum() const;
};
} // namespace BlueCore
#endif

57
engine/FileSystem.h Normal file
View File

@ -0,0 +1,57 @@
#include "Utilities/Referenced.h"
class File : public Referenced
{
public:
bool isOpen ();
unsigned long read (char *buffer, unsigned long size);
};
class FileSystem : public Referenced
{
public:
FileSystem();
File *openBinary (const std::string& filename);
private:
static bool _PhysfsInialized;
};
FileSystem::FileSystem()
{
PHYSFS_init (0);
std::string appdir = PHYSFS_getUserDir();
appdir += ".bluecore";
if( !PHYSFS_setWriteDir(appdir.c_str()) )
{
if( (PHYSFS_setWriteDir(PHYSFS_getUserDir())) && (PHYSFS_mkdir(".bluecore")) )
PHYSFS_setWriteDir( appdir.c_str() );
}
PHYSFS_addToSearchPath( appdir.c_str(), 0 );
PHYSFS_addToSearchPath( "data", 1 );
char **rc = PHYSFS_enumerateFiles ( "" );
for ( char **i = rc; *i != 0; i++ )
{
std::string filename ( *i );
if ( filename.substr ( filename.size() - 4, 4 ) == ".zip" )
{
PHYSFS_addToSearchPath ( ( "data/" + filename ).c_str(), 1 );
BlueCore::log << ">>> Using addon: " << filename << endlog;
}
}
PHYSFS_freeList ( rc );
}

204
engine/FontManager.cpp Normal file
View File

@ -0,0 +1,204 @@
#include "FontManager.h"
#include "RenderDevice.h"
// project includes
#include "Utilities/Buffer.h"
#include "Utilities/Log.h"
#include "Utilities/format.h"
// library includes
#include "physfs.h"
#include "FTGLTextureFont.h"
// system includes
#include <iostream>
using namespace std;
#include "FontManagerDefaultFont.h"
namespace BlueCore
{
//------------------------------------------------------------------------------
FontManager::FontManager(RenderDevice* device) :
_Device(device)
{
// create default font
FTFont *ftfont = new FTGLTextureFont (
DefaultFontBytes,
sizeof ( DefaultFontBytes ),
false );
ftfont->FaceSize( 16);
_DefaultFont = new Font( ftfont, 0, device );
if (_Device.valid())
_Device->DeviceShutdownSignal.connect(this,
&FontManager::DeviceShutdownSlot);
clog << ">>> FontManager constructed..."<< endline;
}
//------------------------------------------------------------------------------
FontManager::~FontManager()
{
destroy();
clog << ">>> FontManager destructed..."<< endline;
}
//------------------------------------------------------------------------------
void FontManager::DeviceShutdownSlot()
{
destroy();
}
//------------------------------------------------------------------------------
void FontManager::destroy()
{
FontMap::iterator i;
for (i = _fonts.begin(); i != _fonts.end(); i++)
{
if (i->second.valid())
i->second->destroy();
}
_DefaultFont = 0;
}
//------------------------------------------------------------------------------
Font *FontManager::loadFont(const std::string &filename, int size, bool hinting)
{
string key = format("%s-%d", filename.c_str(), size);
// check if this font is already loaded
FontMap::const_iterator result;
result = _fonts.find(key);
if (result != _fonts.end() && result->second.valid())
{
return result->second.get();
}
Font *font;
PHYSFS_file *file = PHYSFS_openRead(filename.c_str() );
if (file)
{
unsigned int file_size = PHYSFS_fileLength(file);
unsigned char *buffer = new unsigned char[file_size];
PHYSFS_read(file, buffer, 1, file_size);
PHYSFS_close(file);
// create the font
FTFont *ftfont = new FTGLTextureFont ( buffer, file_size, hinting );
ftfont->FaceSize(size);
if (ftfont->Error() == 0)
{
font = new Font( ftfont, buffer, _Device.get() );
clog << ">>> Font '"<< filename << "' ("<< size << ") loaded"
<< endline;
}
else
{
delete ftfont;
clog << "!!! Font '"<< filename << "' could not be loaded"
<< endline;
font = new Font();
}
}
else
{
clog << "!!! Font '"<< filename << "' not found"<< endline;
font = new Font();
}
_fonts[key] = font;
return font;
}
//------------------------------------------------------------------------------
Font *FontManager::getDefaultFont()
{
return _DefaultFont.get();
}
//------------------------------------------------------------------------------
Font::Font()
{
_Font = 0;
_Buffer = 0;
clog << ">>> Font constructed..."<< endline;
}
//------------------------------------------------------------------------------
Font::Font(FTFont *font, unsigned char *buffer, RenderDevice* device) :
_Font(font), _Buffer(buffer), _Device(device)
{
clog << ">>> Font constructed..."<< endline;
}
//------------------------------------------------------------------------------
Font::~Font()
{
destroy();
clog << ">>> Font destructed..."<< endline;
}
//------------------------------------------------------------------------------
void Font::destroy()
{
delete _Font;
delete [] _Buffer;
clog << ">>> Font destroyed..."<< endline;
}
//------------------------------------------------------------------------------
void Font::print(float x, float y, const std::string &text, int halign,
int valign) const
{
if (_Font == 0)
return;
if (_Device.valid() == false)
return;
_Device->begin2D();
if (x < 0.0)
x += _Device->getViewportWidth();
else if (x <= 1.0)
x *= _Device->getViewportWidth();
if (halign == 0)
x -= _Font->Advance(text.c_str() ) / 2;
else if (halign == -1)
x -= _Font->Advance(text.c_str() );
if (y < 0.0)
y += _Device->getViewportHeight();
else if (y <= 1.0)
y *= _Device->getViewportHeight();
y -= _Font->Descender();
if (valign == 0)
y -= _Font->LineHeight() / 2;
else if (valign == -1)
y -= _Font->LineHeight();
glEnable(GL_TEXTURE_2D);
glPushMatrix();
glLoadIdentity();
glTranslatef(x, y, 0);
_Font->Render(text.c_str() );
glPopMatrix();
_Device->end2D();
}
} // namespace BlueCore

70
engine/FontManager.h Normal file
View File

@ -0,0 +1,70 @@
#ifndef BLUECORE_FONT_MANAGER_H
#define BLUECORE_FONT_MANAGER_H
// system includes
#include <map>
#include <string>
// project includes
#include "Utilities/Referenced.h"
#include "RenderDevice.h"
// forward declaratins
class FTFont;
namespace BlueCore
{
class Font : public Referenced
{
FTFont *_Font;
unsigned char *_Buffer;
ref_ptr<RenderDevice> _Device;
protected:
~Font();
public:
Font(FTFont *font, unsigned char *buffer, RenderDevice *device);
Font();
void destroy();
void print(float x, float y, const std::string &text, int halign = 0,
int valign = 0) const;
};
class FontManager : public Referenced, public sigslot::has_slots<>
{
private:
typedef std::map<std::string, weak_ptr<Font> > FontMap;
FontMap _fonts;
ref_ptr<Font> _DefaultFont;
void FontDestroyedSlot(Referenced*);
void DeviceShutdownSlot();
void destroy();
public:
FontManager(RenderDevice* device);
~FontManager();
Font *loadFont(const std::string &name, int size, bool hinting = true);
Font *getDefaultFont();
private:
ref_ptr<RenderDevice> _Device;
};
} // namespace BlueCore
#endif // BLUECORE_FONT_MANAGER_H

File diff suppressed because it is too large Load Diff

66
engine/Makefile Normal file
View File

@ -0,0 +1,66 @@
include ../Makefile.common
CXXFLAGS += -I../glfw/include
LDFLAGS += -L../glfw -lglfw
CXXFLAGS += -I../trimeshloader/include
LDFLAGS += -L../trimeshloader -ltrimeshloader
CXXFLAGS += -I../physfs
LDFLAGS += -L../physfs -lphysfs
CXXFLAGS += -I../ftgl
LDFLAGS += -L../ftgl -lftgl
CXXFLAGS += -I../freetype/include
LDFLAGS += -L../freetype -lfreetype
CXXFLAGS += -I../corona/src
LDFLAGS += -L../corona -lcorona
CXXFLAGS += -I../glew/include
LDFLAGS += -L../glew -lglew
CXXFLAGS += -I../squirrel/include
LDFLAGS += -L../squirrel -lsquirrel
CXXFLAGS += -I../ode/include
LDFLAGS += -L../ode -lode
CXXFLAGS += -I../tinyxml
LDFLAGS += -L../tinyxml -ltinyxml
CXXFLAGS += -I../libpng
LDFLAGS += -L../libpng -lpng
LDFLAGS += -L../zlib -lz
ifeq ($(OS),WIN32)
LDFLAGS += -lglu32 -lwinmm -lole32 -lws2_32 -lopengl32
else
LDFLAGS += -lm -lGL -lGLU -lX11 -lXxf86vm -lXext #-lopenal -Wl,-rpath=. -L/usr/X11R6/lib
endif
SRC = $(wildcard */*.cpp) $(wildcard *.cpp)
OBJ = $(patsubst %.cpp,%.o,$(SRC) )
DEP = $(patsubst %.cpp,%.d,$(SRC) )
NAME = redcore$(EXT)
all: $(NAME)
$(NAME): $(OBJ)
@echo Linking $@...
@g++ -o $(NAME) $(OBJ) $(LDFLAGS)
@echo done
clean:
-@$(RMSUB) *.o
-@$(RMSUB) *.d
-@$(RMSUB) Utilities$(SLASH)*.o
-@$(RMSUB) Utilities$(SLASH)*.d
-@$(RMSUB) Math$(SLASH)*.o
-@$(RMSUB) Math$(SLASH)*.d
-@$(RM) $(NAME)
-include $(SRC:%.cpp=%.d)

866
engine/Math/Matrix.h Normal file
View File

@ -0,0 +1,866 @@
#ifndef BLUECORE_MATRIX_H
#define BLUECORE_MATRIX_H
// system includes
#include <algorithm>
#include <cmath>
// local includes
#include "Scalar.h"
#include "Vector.h"
#include "Quaternion.h"
namespace BlueCore
{
template <class T>
class Matrix3x3Template
{
public:
T m[9];
/**
* default constructor
*/
inline Matrix3x3Template()
{
identity();
}
/**
* constructor from array
*/
template <class S>
inline Matrix3x3Template( const S a[9] )
{
m[0] = static_cast<T>(a[0]);
m[1] = static_cast<T>(a[1]);
m[2] = static_cast<T>(a[2]);
m[3] = static_cast<T>(a[3]);
m[4] = static_cast<T>(a[4]);
m[5] = static_cast<T>(a[5]);
m[6] = static_cast<T>(a[6]);
m[7] = static_cast<T>(a[7]);
m[8] = static_cast<T>(a[8]);
}
/**
* copy constructor
*/
template <class S>
inline Matrix3x3Template( const Matrix3x3Template<S> &a )
{
m[0] = static_cast<T>(a.m[0]);
m[1] = static_cast<T>(a.m[1]);
m[2] = static_cast<T>(a.m[2]);
m[3] = static_cast<T>(a.m[3]);
m[4] = static_cast<T>(a.m[4]);
m[5] = static_cast<T>(a.m[5]);
m[6] = static_cast<T>(a.m[6]);
m[7] = static_cast<T>(a.m[7]);
m[8] = static_cast<T>(a.m[8]);
}
/**
* constructor from heading and up vectors
*/
inline Matrix3x3Template(
const Vector3Template<T> &h,
const Vector3Template<T> &u )
{
Vector3Template<T> a, b, c;
c = h.unit();
a = h.crossProduct( u ).unit();
b = c.crossProduct( a ).unit();
m[0] = a.x;
m[1] = b.x;
m[2] = c.x;
m[3] = a.y;
m[4] = b.y;
m[5] = c.y;
m[6] = a.z;
m[7] = b.z;
m[8] = c.z;
}
/**
* contructor from euler angles
*/
inline Matrix3x3Template( T a, T e, T t )
{
T ch = cos( a );
T sh = sin( a );
T ca = cos( e );
T sa = sin( e );
T cb = cos( t );
T sb = sin( t );
m[0] = ch * ca;
m[1] = sh*sb - ch*sa*cb;
m[2] = ch*sa*sb + sh*cb;
m[3] = sa;
m[4] = ca*cb;
m[5] = -ca*sb;
m[6] = -sh*ca;
m[7] = sh*sa*cb + ch*sb;
m[8] = -sh*sa*sb + ch*cb;
}
/**
* contructor from quaternion
*/
template <class S>
inline Matrix3x3Template( const QuaternionTemplate<S> &q )
{
T xx = static_cast<T>(q.x*q.x),
xy = static_cast<T>(q.x*q.y),
xz = static_cast<T>(q.x*q.z),
xw = static_cast<T>(q.x*q.w),
yy = static_cast<T>(q.y*q.y),
yz = static_cast<T>(q.y*q.z),
yw = static_cast<T>(q.y*q.w),
zz = static_cast<T>(q.z*q.z),
zw = static_cast<T>(q.z*q.w);
m[0] = 1 - yy - yy - zz - zz;
m[1] = xy + xy + zw + zw;
m[2] = xz + xz - yw - yw;
m[3] = xy + xy - zw - zw;
m[4] = 1 - xx - xx - zz - zz;
m[5] = yz + yz + xw + xw;
m[6] = xz + xz + yw + yw;
m[7] = yz + yz - xw - xw;
m[8] = 1 - xx - xx - yy - yy;
}
/**
* set matrix to identity matrix
*/
inline void identity()
{
m[0] = static_cast<T>(1);
m[1] = static_cast<T>(0);
m[2] = static_cast<T>(0);
m[3] = static_cast<T>(0);
m[4] = static_cast<T>(1);
m[5] = static_cast<T>(0);
m[6] = static_cast<T>(0);
m[7] = static_cast<T>(0);
m[8] = static_cast<T>(1);
}
/**
* get transposed matrix
*/
inline Matrix3x3Template<T> transposed() const
{
Matrix3x3Template<T> a;
a.m[0] = m[0]; a.m[3] = m[1]; a.m[6] = m[2];
a.m[1] = m[3]; a.m[4] = m[4]; a.m[7] = m[5];
a.m[2] = m[6]; a.m[5] = m[7]; a.m[8] = m[8];
return a;
}
/**
* transpose
*/
inline void transpose()
{
swap( m[3], m[1] );
swap( m[6], m[2] );
swap( m[7], m[5] );
}
/**
* determinate
*/
inline T determinant() const
{
return ( m[0]*m[4]*m[8] + m[1]*m[5]*m[6] + m[2]*m[3]*m[7] )
- ( m[6]*m[4]*m[2] + m[7]*m[5]*m[0] + m[8]*m[3]*m[1] );
}
inline Matrix3x3Template<T> inverted()
{
T det = determinant();
T one_over_det = 1.0f / det;
Matrix3x3Template<T> result;
result.m[0] = +(m[4] * m[8] - m[5] * m[7]) * one_over_det;
result.m[1] = -(m[1] * m[8] - m[2] * m[7]) * one_over_det;
result.m[2] = +(m[1] * m[5] - m[2] * m[4]) * one_over_det;
result.m[3] = -(m[3] * m[8] - m[5] * m[6]) * one_over_det;
result.m[4] = +(m[0] * m[8] - m[2] * m[6]) * one_over_det;
result.m[5] = -(m[0] * m[5] - m[2] * m[3]) * one_over_det;
result.m[6] = +(m[3] * m[7] - m[4] * m[6]) * one_over_det;
result.m[7] = -(m[0] * m[7] - m[1] * m[6]) * one_over_det;
result.m[8] = +(m[0] * m[4] - m[1] * m[3]) * one_over_det;
return result;
}
/**
* add/assign operator
*/
template <class S>
inline Matrix3x3Template<T> &operator += (
const Matrix3x3Template<S> &a )
{
m[0] += static_cast<T>(a.m[0]);
m[1] += static_cast<T>(a.m[1]);
m[2] += static_cast<T>(a.m[2]);
m[3] += static_cast<T>(a.m[3]);
m[4] += static_cast<T>(a.m[4]);
m[5] += static_cast<T>(a.m[5]);
m[6] += static_cast<T>(a.m[6]);
m[7] += static_cast<T>(a.m[7]);
m[8] += static_cast<T>(a.m[8]);
return *this;
}
/**
* matrix multiplication
*/
template <class S>
inline Matrix3x3Template<T> operator * ( const Matrix3x3Template<S> &a )
{
Matrix3x3Template<T> result;
result.m[0] = m[0] * static_cast<T>(a.m[0])
+ m[3] * static_cast<T>(a.m[1])
+ m[6] * static_cast<T>(a.m[2]);
result.m[1] = m[1] * static_cast<T>(a.m[0])
+ m[4] * static_cast<T>(a.m[1])
+ m[7] * static_cast<T>(a.m[2]);
result.m[2] = m[2] * static_cast<T>(a.m[0])
+ m[5] * static_cast<T>(a.m[1])
+ m[8] * static_cast<T>(a.m[2]);
result.m[3] = m[0] * static_cast<T>(a.m[3])
+ m[3] * static_cast<T>(a.m[4])
+ m[6] * static_cast<T>(a.m[5]);
result.m[4] = m[1] * static_cast<T>(a.m[3])
+ m[4] * static_cast<T>(a.m[4])
+ m[7] * static_cast<T>(a.m[5]);
result.m[5] = m[2] * static_cast<T>(a.m[3])
+ m[5] * static_cast<T>(a.m[4])
+ m[8] * static_cast<T>(a.m[5]);
result.m[6] = m[0] * static_cast<T>(a.m[6])
+ m[3] * static_cast<T>(a.m[7])
+ m[6] * static_cast<T>(a.m[8]);
result.m[7] = m[1] * static_cast<T>(a.m[6])
+ m[4] * static_cast<T>(a.m[7])
+ m[7] * static_cast<T>(a.m[8]);
result.m[8] = m[2] * static_cast<T>(a.m[6])
+ m[5] * static_cast<T>(a.m[7])
+ m[8] * static_cast<T>(a.m[8]);
return result;
}
/**
* matrix vector multiplication
*/
template <class S>
Vector3Template<T> operator * ( const Vector3Template<S>& a )
{
return Vector3Template<T>(
m[0] * static_cast<T>(a.x)
+ m[3] * static_cast<T>(a.y)
+ m[6] * static_cast<T>(a.z),
m[1] * static_cast<T>(a.x)
+ m[4] * static_cast<T>(a.y)
+ m[7] * static_cast<T>(a.z),
m[2] * static_cast<T>(a.x)
+ m[5] * static_cast<T>(a.y)
+ m[8] * static_cast<T>(a.z) );
}
/**
* matrix scalar multiplication
*/
template <class S>
Matrix3x3Template<T> operator * ( const S a )
{
Matrix3x3Template<T> result;
result.m[0] = m[0] * static_cast<T>(a);
result.m[1] = m[1] * static_cast<T>(a);
result.m[2] = m[2] * static_cast<T>(a);
result.m[3] = m[3] * static_cast<T>(a);
result.m[4] = m[4] * static_cast<T>(a);
result.m[5] = m[5] * static_cast<T>(a);
result.m[6] = m[6] * static_cast<T>(a);
result.m[7] = m[7] * static_cast<T>(a);
result.m[8] = m[8] * static_cast<T>(a);
return result;
}
friend std::ostream &operator << ( std::ostream& os, Matrix3x3Template<T> m )
{
os << "( " << m.m[0] << ", " << m.m[1] << ", " << m.m[2] << " )" << std::endl;
os << "( " << m.m[3] << ", " << m.m[4] << ", " << m.m[5] << " )" << std::endl;
os << "( " << m.m[6] << ", " << m.m[7] << ", " << m.m[8] << " )" << std::endl;
return os;
}
};
typedef Matrix3x3Template<float> Matrix3x3Float;
typedef Matrix3x3Template<double> Matrix3x3Double;
typedef Matrix3x3Template<Scalar> Matrix3x3;
template <class T>
class Matrix4x4Template
{
public:
T m[16];
/**
* default constructor
*/
inline Matrix4x4Template()
{
identity();
}
inline void identity()
{
m[0] = static_cast<T>(1);
m[1] = static_cast<T>(0);
m[2] = static_cast<T>(0);
m[3] = static_cast<T>(0);
m[4] = static_cast<T>(0);
m[5] = static_cast<T>(1);
m[6] = static_cast<T>(0);
m[7] = static_cast<T>(0);
m[8] = static_cast<T>(0);
m[9] = static_cast<T>(0);
m[10] = static_cast<T>(1);
m[11] = static_cast<T>(0);
m[12] = static_cast<T>(0);
m[13] = static_cast<T>(0);
m[14] = static_cast<T>(0);
m[15] = static_cast<T>(1);
}
/**
* constructor from array
*/
inline Matrix4x4Template( const T a[16] )
{
m[0] = a[0]; m[1] = a[1]; m[2] = a[2]; m[3] = a[3];
m[4] = a[4]; m[5] = a[5]; m[6] = a[6]; m[7] = a[7];
m[8] = a[8]; m[9] = a[9]; m[10] = a[10]; m[11] = a[11];
m[12] = a[12]; m[13] = a[13]; m[14] = a[14]; m[15] = a[15];
}
/**
* constructor from 3x3 matrix, add. element are set to zero
*/
inline Matrix4x4Template( const Matrix3x3Template<T> &a )
{
m[0] = a[0];
m[1] = a[1];
m[2] = a[2];
m[3] = static_cast<T>(0);
m[4] = a[3];
m[5] = a[4];
m[6] = a[5];
m[7] = static_cast<T>(0);
m[8] = a[6];
m[9] = a[7];
m[10] = a[8];
m[11] = static_cast<T>(0);
m[12] = static_cast<T>(0);
m[13] = static_cast<T>(0);
m[14] = static_cast<T>(0);
m[15] = static_cast<T>(1);
}
/**
* constructor from 3x3 rotation matrix and translation vector
*/
inline Matrix4x4Template(
const Matrix3x3Template<T> &a,
const Vector3Template<T> &b )
{
m[0] = a[0];
m[1] = a[1];
m[2] = a[2];
m[3] = static_cast<T>(0);
m[4] = a[3];
m[5] = a[4];
m[6] = a[5];
m[7] = static_cast<T>(0);
m[8] = a[6];
m[9] = a[7];
m[10] = a[8];
m[11] = static_cast<T>(0);
m[12] = b.x;
m[13] = b.y;
m[14] = b.z;
m[15] = static_cast<T>(1);
}
/**
* copy constructor
*/
inline Matrix4x4Template( const Matrix4x4Template<T> &a )
{
m[0] = a.m[0];
m[1] = a.m[1];
m[2] = a.m[2];
m[3] = a.m[3];
m[4] = a.m[4];
m[5] = a.m[5];
m[6] = a.m[6];
m[7] = a.m[7];
m[8] = a.m[8];
m[9] = a.m[9];
m[10] = a.m[10];
m[11] = a.m[11];
m[12] = a.m[12];
m[13] = a.m[13];
m[14] = a.m[14];
m[15] = a.m[15];
}
/**
* constructor from quaternion
*/
inline Matrix4x4Template( const QuaternionTemplate<T> &q )
{
m[0] = 1 - 2*q.y*q.y - 2*q.z*q.z;
m[1] = 2*q.x*q.y - 2*q.z*q.w;
m[2] = 2*q.x*q.z + 2*q.y*q.w;
m[3] = static_cast<T>(0);
m[4] = 2*q.x*q.y + 2*q.z*q.w;
m[5] = 1 - 2*q.x*q.x - 2*q.z*q.z;
m[6] = 2*q.y*q.z - 2*q.x*q.w;
m[7] = static_cast<T>(0);
m[8] = 2*q.x*q.z - 2*q.y*q.w;
m[9] = 2*q.y*q.z + 2*q.x*q.w;
m[10] = 1 - 2*q.x*q.x - 2*q.y*q.y;
m[11] = static_cast<T>(0);
m[12] = static_cast<T>(0);
m[13] = static_cast<T>(0);
m[14] = static_cast<T>(0);
m[15] = static_cast<T>(1);
}
/**
* constructor from quaternion and translation vector
*/
inline Matrix4x4Template(
const QuaternionTemplate<T> &q,
const Vector3Template<T> &a )
{
m[0] = 1 - 2*q.y*q.y - 2*q.z*q.z;
m[1] = 2*q.x*q.y - 2*q.z*q.w;
m[2] = 2*q.x*q.z + 2*q.y*q.w;
m[3] = static_cast<T>(0);
m[4] = 2*q.x*q.y + 2*q.z*q.w;
m[5] = 1 - 2*q.x*q.x - 2*q.z*q.z;
m[6] = 2*q.y*q.z - 2*q.x*q.w;
m[7] = static_cast<T>(0);
m[8] = 2*q.x*q.z - 2*q.y*q.w;
m[9] = 2*q.y*q.z + 2*q.x*q.w;
m[10] = 1 - 2*q.x*q.x - 2*q.y*q.y;
m[11] = static_cast<T>(0);
m[12] = a.x;
m[13] = a.y;
m[14] = a.z;
m[15] = static_cast<T>(1);
}
/**
* constructor from heading, up and translation vectors
*/
inline Matrix4x4Template(
const Vector3Template<T> &h,
const Vector3Template<T> &u,
const Vector3Template<T> &t )
{
Vector3Template<T> a, b, c;
c = h.unit();
a = h.crossProduct( u ).unit();
b = c.crossProduct( a ).unit();
m[0] = a.x;
m[1] = b.x;
m[2] = c.x;
m[3] = static_cast<T>(0);
m[4] = a.y;
m[5] = b.y;
m[6] = c.y;
m[7] = static_cast<T>(0);
m[8] = a.z;
m[9] = b.z;
m[10] = c.z;
m[11] = static_cast<T>(0);
m[12] = t.x;
m[13] = t.y;
m[14] = t.z;
m[15] = static_cast<T>(1);
}
/**
* contructor from euler angles
*/
inline Matrix4x4Template(
T a,
T e,
T t,
const Vector3Template<T> &tr )
{
T ch = cos( a );
T sh = sin( a );
T ca = cos( e );
T sa = sin( e );
T cb = cos( t );
T sb = sin( t );
m[0] = ch * ca;
m[1] = sh*sb - ch*sa*cb;
m[2] = ch*sa*sb + sh*cb;
m[3] = static_cast<T>(0);
m[4] = sa;
m[5] = ca*cb;
m[6] = -ca*sb;
m[7] = static_cast<T>(0);
m[8] = -sh*ca;
m[9] = sh*sa*cb + ch*sb;
m[10] = -sh*sa*sb + ch*cb;
m[11] = static_cast<T>(0);
m[12] = tr.x;
m[13] = tr.y;
m[14] = tr.z;
m[15] = static_cast<T>(1);
}
/**
* transpose this matrix
*/
inline void transpose()
{
std::swap( m[4], m[1] );
std::swap( m[8], m[2] );
std::swap( m[12], m[3] );
std::swap( m[9], m[6] );
std::swap( m[13], m[7] );
std::swap( m[14], m[11] );
}
/**
* get transposed matrix
*/
inline Matrix4x4Template<T> transposed()
{
Matrix4x4Template<T> a;
a.m[0] = m[0]; a.m[4] = m[1]; a.m[8] = m[2]; a.m[12] = m[3];
a.m[1] = m[4]; a.m[5] = m[5]; a.m[9] = m[6]; a.m[13] = m[7];
a.m[2] = m[8]; a.m[6] = m[9]; a.m[10] = m[10]; a.m[14] = m[11];
a.m[3] = m[12]; a.m[7] = m[13]; a.m[11] = m[14]; a.m[15] = m[15];
return a;
}
/**
* matrix multiplication
*/
template <class S>
inline Matrix4x4Template<T> operator * ( const Matrix4x4Template<S> &a )
{
Matrix4x4Template<T> result;
result.m[0] = m[0] * static_cast<T>(a.m[0])
+ m[4] * static_cast<T>(a.m[1])
+ m[8] * static_cast<T>(a.m[2])
+ m[12] * static_cast<T>(a.m[3]);
result.m[1] = m[1] * static_cast<T>(a.m[0])
+ m[5] * static_cast<T>(a.m[1])
+ m[9] * static_cast<T>(a.m[2])
+ m[13] * static_cast<T>(a.m[3]);
result.m[2] = m[2] * static_cast<T>(a.m[0])
+ m[6] * static_cast<T>(a.m[1])
+ m[10] * static_cast<T>(a.m[2])
+ m[14] * static_cast<T>(a.m[3]);
result.m[3] = m[3] * static_cast<T>(a.m[0])
+ m[7] * static_cast<T>(a.m[1])
+ m[11] * static_cast<T>(a.m[2])
+ m[15] * static_cast<T>(a.m[3]);
result.m[4] = m[0] * static_cast<T>(a.m[4])
+ m[4] * static_cast<T>(a.m[5])
+ m[8] * static_cast<T>(a.m[6])
+ m[12] * static_cast<T>(a.m[7]);
result.m[5] = m[1] * static_cast<T>(a.m[4])
+ m[5] * static_cast<T>(a.m[5])
+ m[9] * static_cast<T>(a.m[6])
+ m[13] * static_cast<T>(a.m[7]);
result.m[6] = m[2] * static_cast<T>(a.m[4])
+ m[6] * static_cast<T>(a.m[5])
+ m[10] * static_cast<T>(a.m[6])
+ m[14] * static_cast<T>(a.m[7]);
result.m[7] = m[3] * static_cast<T>(a.m[4])
+ m[7] * static_cast<T>(a.m[5])
+ m[11] * static_cast<T>(a.m[6])
+ m[15] * static_cast<T>(a.m[7]);
result.m[8] = m[0] * static_cast<T>(a.m[8])
+ m[4] * static_cast<T>(a.m[9])
+ m[8] * static_cast<T>(a.m[10])
+ m[12] * static_cast<T>(a.m[11]);
result.m[9] = m[1] * static_cast<T>(a.m[8])
+ m[5] * static_cast<T>(a.m[9])
+ m[9] * static_cast<T>(a.m[10])
+ m[13] * static_cast<T>(a.m[11]);
result.m[10] = m[2] * static_cast<T>(a.m[8])
+ m[6] * static_cast<T>(a.m[9])
+ m[10] * static_cast<T>(a.m[10])
+ m[14] * static_cast<T>(a.m[11]);
result.m[11] = m[3] * static_cast<T>(a.m[8])
+ m[7] * static_cast<T>(a.m[9])
+ m[11] * static_cast<T>(a.m[10])
+ m[15] * static_cast<T>(a.m[11]);
result.m[12] = m[0] * static_cast<T>(a.m[12])
+ m[4] * static_cast<T>(a.m[13])
+ m[8] * static_cast<T>(a.m[14])
+ m[12] * static_cast<T>(a.m[15]);
result.m[13] = m[1] * static_cast<T>(a.m[12])
+ m[5] * static_cast<T>(a.m[13])
+ m[9] * static_cast<T>(a.m[14])
+ m[13] * static_cast<T>(a.m[15]);
result.m[14] = m[2] * static_cast<T>(a.m[12])
+ m[6] * static_cast<T>(a.m[13])
+ m[10] * static_cast<T>(a.m[14])
+ m[14] * static_cast<T>(a.m[15]);
result.m[15] = m[3] * static_cast<T>(a.m[12])
+ m[7] * static_cast<T>(a.m[13])
+ m[11] * static_cast<T>(a.m[14])
+ m[15] * static_cast<T>(a.m[15]);
return result;
}
/**
* matrix multiplication
*/
/*
template <class S>
inline Matrix4x4Template<T> operator *= ( const Matrix4x4Template<S> &a )
{
Matrix4x4Template<T> result;
result.m[0] = m[0] * static_cast<T>(a.m[0])
+ m[4] * static_cast<T>(a.m[1])
+ m[8] * static_cast<T>(a.m[2]);
+ m[12] * static_cast<T>(a.m[3]);
result.m[1] = m[1] * static_cast<T>(a.m[0])
+ m[5] * static_cast<T>(a.m[1])
+ m[9] * static_cast<T>(a.m[2]);
+ m[13] * static_cast<T>(a.m[3]);
result.m[2] = m[2] * static_cast<T>(a.m[0])
+ m[6] * static_cast<T>(a.m[1])
+ m[10] * static_cast<T>(a.m[2]);
+ m[14] * static_cast<T>(a.m[3]);
result.m[3] = m[3] * static_cast<T>(a.m[0])
+ m[7] * static_cast<T>(a.m[1])
+ m[11] * static_cast<T>(a.m[2]);
+ m[15] * static_cast<T>(a.m[3]);
result.m[4] = m[0] * static_cast<T>(a.m[4])
+ m[4] * static_cast<T>(a.m[5])
+ m[8] * static_cast<T>(a.m[6]);
+ m[12] * static_cast<T>(a.m[7]);
result.m[5] = m[1] * static_cast<T>(a.m[4])
+ m[5] * static_cast<T>(a.m[5])
+ m[9] * static_cast<T>(a.m[6]);
+ m[13] * static_cast<T>(a.m[7]);
result.m[6] = m[2] * static_cast<T>(a.m[4])
+ m[6] * static_cast<T>(a.m[5])
+ m[10] * static_cast<T>(a.m[6]);
+ m[14] * static_cast<T>(a.m[7]);
result.m[7] = m[3] * static_cast<T>(a.m[4])
+ m[7] * static_cast<T>(a.m[5])
+ m[11] * static_cast<T>(a.m[6]);
+ m[15] * static_cast<T>(a.m[7]);
result.m[8] = m[0] * static_cast<T>(a.m[8])
+ m[4] * static_cast<T>(a.m[9])
+ m[8] * static_cast<T>(a.m[10]);
+ m[12] * static_cast<T>(a.m[11]);
result.m[9] = m[1] * static_cast<T>(a.m[8])
+ m[5] * static_cast<T>(a.m[9])
+ m[9] * static_cast<T>(a.m[10]);
+ m[13] * static_cast<T>(a.m[11]);
result.m[10] = m[2] * static_cast<T>(a.m[8])
+ m[6] * static_cast<T>(a.m[9])
+ m[10] * static_cast<T>(a.m[10]);
+ m[14] * static_cast<T>(a.m[11]);
result.m[11] = m[3] * static_cast<T>(a.m[8])
+ m[7] * static_cast<T>(a.m[9])
+ m[11] * static_cast<T>(a.m[10]);
+ m[15] * static_cast<T>(a.m[11]);
result.m[12] = m[0] * static_cast<T>(a.m[12])
+ m[4] * static_cast<T>(a.m[13])
+ m[8] * static_cast<T>(a.m[14]);
+ m[12] * static_cast<T>(a.m[15]);
result.m[13] = m[1] * static_cast<T>(a.m[12])
+ m[5] * static_cast<T>(a.m[13])
+ m[9] * static_cast<T>(a.m[14]);
+ m[13] * static_cast<T>(a.m[15]);
result.m[14] = m[2] * static_cast<T>(a.m[12])
+ m[6] * static_cast<T>(a.m[13])
+ m[10] * static_cast<T>(a.m[14]);
+ m[14] * static_cast<T>(a.m[15]);
result.m[15] = m[3] * static_cast<T>(a.m[12])
+ m[7] * static_cast<T>(a.m[13])
+ m[11] * static_cast<T>(a.m[14]);
+ m[15] * static_cast<T>(a.m[15]);
m = result.m;
return *this;
}
*/
/**
* matrix vector multiplication
*/
Vector3Template<T> operator * ( const Vector3Template<T> &a )
{
Vector3Template<T> result;
result.x = m[0] * a.x + m[4] * a.y + m[8] * a.z + m[12];
result.y = m[1] * a.x + m[5] * a.y + m[9] * a.z + m[13];
result.z = m[2] * a.x + m[6] * a.y + m[11] * a.z + m[14];
return result;
}
T *data()
{
return &m[0];
}
};
typedef Matrix4x4Template<float> Matrix4x4Float;
typedef Matrix4x4Template<double> Matrix4x4Double;
typedef Matrix4x4Template<Scalar> Matrix4x4;
} // namespace bc
#endif // BLUECORE_MATRIX_H

51
engine/Math/Plane.h Normal file
View File

@ -0,0 +1,51 @@
#ifndef BLUECORE_PLANE_H
#define BLUECORE_PLANE_H
#include "Scalar.h"
#include "Vector.h"
namespace BlueCore
{
template <class T>
class PlaneTemplate
{
public:
Vector3Template<T> _n;
T _d;
/**
* contructor
*/
inline PlaneTemplate() : _d( 0. )
{
}
/**
* contructor
*/
inline PlaneTemplate(
Vector3Template<T> a,
Vector3Template<T> b,
Vector3Template<T> c )
{
_n = (a - b).cross(a - c).normalized();
_d = _n.dot( a );
}
/**
* distance
*/
inline T distance( const Vector3Template<T> a )
{
return _n.dot( a ) - _d;
}
};
typedef PlaneTemplate<float> PlaneFloat;
typedef PlaneTemplate<double> PlaneDouble;
typedef PlaneTemplate<Scalar> Plane;
}
#endif

57
engine/Math/Point.h Normal file
View File

@ -0,0 +1,57 @@
//------------------------------------------------------------------------------
// Author: Gero Mueller <gero.mueller@cloo.de>
// Copyright: (c) 2006 Gero Mueller
// License: MIT License
//------------------------------------------------------------------------------
#ifndef BLUECORE_POINT_H
#define BLUECORE_POINT_H
#include "rectangle.h"
namespace BlueCore
{
template<typename type>
struct Rectangle2DTemplate;
template<typename type>
struct Point2DTemplate
{
type _x, _y;
Point2DTemplate() : _x(0), _y(0)
{
}
Point2DTemplate( type x, type y ) : _x(x), _y(y)
{
}
bool in( const Rectangle2DTemplate<type> &rect );
};
#include "rectangle.h"
template<typename type>
bool Point2DTemplate<type>::in( const Rectangle2DTemplate<type> &rect )
{
if( _x < rect._x )
return false;
if( _x > (rect._x + rect._width) )
return false;
if( _y < rect._y )
return false;
if( _y > (rect._y + rect._height) )
return false;
return true;
}
typedef Point2DTemplate<int> Point2D;
};
#endif

366
engine/Math/Quaternion.h Normal file
View File

@ -0,0 +1,366 @@
#ifndef BLUECORE_QUATERNION_H
#define BLUECORE_QUATERNION_H
#include "Vector.h"
namespace BlueCore
{
template <class T>
class QuaternionTemplate
{
public:
T w, x, y, z;
/**
* constructor
*/
inline QuaternionTemplate()
{
w = static_cast<T>(1.0);
x = static_cast<T>(0.0);
y = static_cast<T>(0.0);
z = static_cast<T>(0.0);
}
/**
* contructor
*/
template <class S>
inline QuaternionTemplate( S w, S x, S y, S z )
{
this->w = static_cast<T>(w);
this->x = static_cast<T>(x);
this->y = static_cast<T>(y);
this->z = static_cast<T>(z);
}
/**
* contructor
*/
template <class S>
inline QuaternionTemplate( Vector3Template<S> axis, S angle )
{
T half_angle = static_cast<T>(angle)/static_cast<T>(2.0);
T sin_half_angle = static_cast<T>( sin( half_angle ) );
w = static_cast<T>( cos( half_angle ) );
x = sin_half_angle * static_cast<T>(axis.x);
y = sin_half_angle * static_cast<T>(axis.y);
z = sin_half_angle * static_cast<T>(axis.z);
}
/**
* contructor
*/
template <class S>
inline QuaternionTemplate( S h, S a, S b )
{
T c1 = static_cast<T>( cos(h / 2.0) );
T c2 = static_cast<T>( cos(a / 2.0) );
T c3 = static_cast<T>( cos(b / 2.0) );
T s1 = static_cast<T>( sin(h / 2.0) );
T s2 = static_cast<T>( sin(a / 2.0) );
T s3 = static_cast<T>( sin(b / 2.0) );
w = c1 * c2 * c3 - s1 * s2 * s3;
x = s1 * s2 * c3 + c1 * c2 * s3;
y = s1 * c2 * c3 + c1 * s2 * s3;
z = c1 * s2 * c3 - s1 * c2 * s3;
}
/**
* identity
*/
inline void identity()
{
w = static_cast<T>(1.0);
x = static_cast<T>(0.0);
y = static_cast<T>(0.0);
z = static_cast<T>(0.0);
}
/**
* operator +
*/
template <class S>
inline QuaternionTemplate<T> operator + (
const QuaternionTemplate<S> &a ) const
{
return QuaternionTemplate<T>(
w + static_cast<T>(a.w),
x + static_cast<T>(a.x),
y + static_cast<T>(a.y),
z + static_cast<T>(a.z) );
}
/**
* operator +=
*/
template <class S>
inline QuaternionTemplate<T> &operator += (
const QuaternionTemplate<S> &a )
{
w += static_cast<T>(a.w);
x += static_cast<T>(a.x);
y += static_cast<T>(a.y);
z += static_cast<T>(a.z);
return *this;
}
/**
* operator -
*/
template <class S>
inline QuaternionTemplate<T> operator - (
const QuaternionTemplate<S> &a ) const
{
return QuaternionTemplate<T>(
w - static_cast<T>(a.w),
x - static_cast<T>(a.x),
y - static_cast<T>(a.y),
z - static_cast<T>(a.z) );
}
/**
* operator *
*/
template <class S>
inline QuaternionTemplate<T> operator * (
const QuaternionTemplate<S> &a ) const
{
return QuaternionTemplate<T>(
w * static_cast<T>(a.w) -
x * static_cast<T>(a.x) -
y * static_cast<T>(a.y) -
z * static_cast<T>(a.z),
w * static_cast<T>(a.x) +
x * static_cast<T>(a.w) +
y * static_cast<T>(a.z) -
z * static_cast<T>(a.y),
w * static_cast<T>(a.y) -
x * static_cast<T>(a.z) +
y * static_cast<T>(a.w) +
z * static_cast<T>(a.x),
w * static_cast<T>(a.z) +
x * static_cast<T>(a.y) -
y * static_cast<T>(a.x) +
z * static_cast<T>(a.w) );
}
/**
* operator *=
*/
template <class S>
inline QuaternionTemplate<T> &operator *=(
const QuaternionTemplate<S> &a )
{
w = w * static_cast<T>(a.w) - x * static_cast<T>(a.x) -
y * static_cast<T>(a.y) - z * static_cast<T>(a.z);
x = w * static_cast<T>(a.x) + x * static_cast<T>(a.w) +
y * static_cast<T>(a.z) - z * static_cast<T>(a.y);
y = w * static_cast<T>(a.y) - x * static_cast<T>(a.z) +
y * static_cast<T>(a.w) + z * static_cast<T>(a.x);
z = w * static_cast<T>(a.z) + x * static_cast<T>(a.y) -
y * static_cast<T>(a.x) + z * static_cast<T>(a.w);
return *this;
}
/**
* operator -=
*/
template <class S>
inline QuaternionTemplate<T> &operator -= (
const QuaternionTemplate<S> &a )
{
w -= static_cast<T>(a.w);
x -= static_cast<T>(a.x);
y -= static_cast<T>(a.y);
z -= static_cast<T>(a.z);
return *this;
}
/**
* operator =
*/
template <class S>
inline QuaternionTemplate<T> &operator = (
const QuaternionTemplate<S> &a )
{
w = static_cast<T>(a.w);
x = static_cast<T>(a.x);
y = static_cast<T>(a.y);
z = static_cast<T>(a.z);
return *this;
}
/**
* unit
*/
inline QuaternionTemplate<T> unit() const
{
T d = 1/sqrt( w*w + x*x + y*y + z*z );
return QuaternionTemplate<T>( w * d, x * d, y * d, z * d );
}
/**
* inversed
*/
inline QuaternionTemplate<T> inversed() const
{
return QuaternionTemplate<T>( w, -x, -y, -z );
}
/**
* inversed
*/
inline void inverse()
{
x = -x;
y = -y;
z = -z;
}
/**
* normalize
*/
inline QuaternionTemplate<T> &normalize()
{
T d = 1/sqrt( w*w + x*x + y*y + z*z );
w *= d;
x *= d;
y *= d;
z *= d;
return *this;
}
/**
* apply
*/
template <class S>
inline const Vector3Template<T> apply(
const Vector3Template<S> &a ) const
{
T xx = x*x, xy = x*y, xz = x*z, xw = x*w,
yy = y*y, yz = y*z, yw = y*w,
zz = z*z, zw = z*w;
return Vector3Template<T>(
2.0 * ( static_cast<T>(a.x) * ( 0.5 - yy - zz ) +
static_cast<T>(a.y) * ( xy - zw ) +
static_cast<T>(a.z) * ( xz + yw ) ),
2.0 * ( static_cast<T>(a.x) * ( xy + zw ) +
static_cast<T>(a.y) * ( 0.5 - xx - zz ) +
static_cast<T>(a.z) * ( yz - xw ) ),
2.0 * ( static_cast<T>(a.x) * ( xz - yw ) +
static_cast<T>(a.y) * ( yz + xw ) +
static_cast<T>(a.z) * ( 0.5 - xx - yy ) ) );
}
/**
* apply
*/
template <class S>
inline const Vector3Template<T> operator * (
const Vector3Template<S> &a ) const
{
T xx = x*x, xy = x*y, xz = x*z, xw = x*w,
yy = y*y, yz = y*z, yw = y*w,
zz = z*z, zw = z*w;
return Vector3Template<T>(
2.0 * ( static_cast<T>(a.x) * ( 0.5 - yy - zz ) +
static_cast<T>(a.y) * ( xy - zw ) +
static_cast<T>(a.z) * ( xz + yw ) ),
2.0 * ( static_cast<T>(a.x) * ( xy + zw ) +
static_cast<T>(a.y) * ( 0.5 - xx - zz ) +
static_cast<T>(a.z) * ( yz - xw ) ),
2.0 * ( static_cast<T>(a.x) * ( xz - yw ) +
static_cast<T>(a.y) * ( yz + xw ) +
static_cast<T>(a.z) * ( 0.5 - xx - yy ) ) );
}
/**
* applyInversed
*/
template <class S>
inline Vector3Template<T> applyInversed(
const Vector3Template<S> &a ) const
{
T xx = x*x, xy = x*y, xz = x*z, xw = -x*w,
yy = y*y, yz = y*z, yw = -y*w,
zz = z*z, zw = -z*w;
return Vector3Template<T>(
2.0 * ( static_cast<T>(a.x) * ( 0.5 - yy - zz ) +
static_cast<T>(a.y) * ( xy - zw ) +
static_cast<T>(a.z) * ( xz + yw ) ),
2.0 * ( static_cast<T>(a.x) * ( xy + zw ) +
static_cast<T>(a.y) * ( 0.5 - xx - zz ) +
static_cast<T>(a.z) * ( yz - xw ) ),
2.0 * ( static_cast<T>(a.x) * ( xz - yw ) +
static_cast<T>(a.y) * ( yz + xw ) +
static_cast<T>(a.z) * ( 0.5 - xx - yy ) ) );
}
/**
* transform from ode to gl coodinates
*/
inline QuaternionTemplate<T> toGl() const
{
return QuaternionTemplate<T>( w, x, z, -y );
}
/**
* transform from gl to ode coodinates
*/
inline QuaternionTemplate<T> toOde() const
{
return QuaternionTemplate<T>( w, x, -z, y );
}
inline QuaternionTemplate<T> slerp( const QuaternionTemplate<T> &q, const Scalar &t )
{
Scalar phi = acos(w*q.w + x*q.x + y*q.y + z*q.z);
Scalar s = 1 / sin(phi);
Scalar a = sin(phi*(1-t)) * s;
Scalar b = sin(phi*t) * s;
return QuaternionTemplate<T>( a*w+b*q.w, a*x+b*q.x, a*y+b*q.y, a*z+b*q.z );
}
};
typedef QuaternionTemplate<float> QuaternionFloat;
typedef QuaternionTemplate<double> QuaternionDouble;
typedef QuaternionTemplate<Scalar> Quaternion;
}
#endif

119
engine/Math/Ray.h Normal file
View File

@ -0,0 +1,119 @@
//------------------------------------------------------------------------------
// Author: Gero Mueller <gero.mueller@cloo.de>
// Copyright: (c) 2006 Gero Mueller
// License: MIT License
//------------------------------------------------------------------------------
#ifndef BLUECORE_RAY_H
#define BLUECORE_RAY_H
#include "scalar.h"
#include "vector.h"
namespace BlueCore
{
template <class T>
class RayTemplate
{
Vector3Template<T> point, direction;
public:
/**
* normalize the vector to length 1
*/
inline RayTemplate()
{
}
/**
* constructor from point and direction
*/
template <class S>
inline RayTemplate(
const Vector3Template<S> &point,
const Vector3Template<S> &direction )
{
this->point = point;
this->direction = direction.normalized();
}
/**
* set the point
*/
template <class S>
inline setPoint( const Vector3Template<S> &point )
{
this->point = point;
}
/**
* set the direction
*/
template <class S>
inline setDirection( const Vector3Template<S> &direction )
{
this->direction = direction.normalized();
}
/**
* get point
*/
inline const Vector3Template<T> &getPoint() const
{
return point;
}
/**
* get direction
*/
inline const Vector3Template<T> &getDirection() const
{
return direction;
}
/**
* checks if a point lies on the ray
*/
template <class S>
inline bool contains( const Vector3Template<T> &a )
{
return (a - point).parallel( direction );
}
/**
* calculate the distance between a point and the ray
*/
template <class S>
inline T distance( const Vector3Template<S> &a ) const
{
T t = direction.dot( a - point );
Vector3Template<T> b = at(t) - a;
return b.length();
}
/**
* gets the position at distance t
*/
template <class S>
inline Vector3Template<S> at( const T a ) const
{
return Vector3Template<T>( point + direction * a );
}
};
typedef RayTemplate<float> RayFloat;
typedef RayTemplate<double> RayDouble;
typedef RayTemplate<Scalar> Ray;
}
#endif

91
engine/Math/Rectangle.h Normal file
View File

@ -0,0 +1,91 @@
//------------------------------------------------------------------------------
// Author: Gero Mueller <gero.mueller@cloo.de>
// Copyright: (c) 2006 Gero Mueller
// License: MIT License
//------------------------------------------------------------------------------
#ifndef BLUECORE_RECTANGLE_H
#define BLUECORE_RECTANGLE_H
#include "point.h"
namespace BlueCore
{
template<typename type>
struct Rectangle2DTemplate
{
type _x, _y, _width, _height;
Rectangle2DTemplate() :
_x(0),
_y(0),
_width(0),
_height(0)
{
}
Rectangle2DTemplate( int x, int y, int width, int height ) :
_x(x),
_y(y),
_width(width),
_height(height)
{
}
Rectangle2DTemplate( const Point2DTemplate<type> &topLeft, const Point2DTemplate<type> &bottomRight ) :
_x(topLeft._x),
_y(topLeft._y),
_width(bottomRight._x - topLeft._x),
_height(bottomRight._y - topLeft._y)
{
}
Rectangle2DTemplate &operator=(const Rectangle2DTemplate<type> &rect)
{
_x = rect._x;
_y = rect._y;
_width = rect._width;
_height = rect._height;
return *this;
}
bool overlaps( const Rectangle2DTemplate<type> &rect )
{
if( (rect._x + rect._width) < _x )
return false;
if( rect._x > (_x + _width) )
return false;
if( rect._y < (_y - _height) )
return false;
if( (rect._y - rect._height) > _y )
return false;
return true;
}
bool contains( const Point2DTemplate<type> &point ) const
{
if( point._x < _x )
return false;
if( point._y < _y )
return false;
if( point._x > (_x + _width) )
return false;
if( point._y > (_y + _height) )
return false;
return true;
}
};
typedef Rectangle2DTemplate<int> Rectangle2D;
}
#endif

19
engine/Math/Scalar.h Normal file
View File

@ -0,0 +1,19 @@
//------------------------------------------------------------------------------
// Author: Gero Mueller <gero.mueller@cloo.de>
// Copyright: (c) 2006 Gero Mueller
// License: MIT License
//------------------------------------------------------------------------------
#ifndef BLUECORE_COMMON_H
#define BLUECORE_COMMON_H
namespace BlueCore
{
/* Scalar defines the default floating point type */
typedef double Scalar;
const Scalar Pi = 3.141592653589793;
} // namespace bc
#endif // BLUECORE_COMMON_H

View File

@ -0,0 +1,51 @@
#ifndef BLUECORE_TRANSFORMATION_H
#define BLUECORE_TRANSFORMATION_H
#include "Quaternion.h"
#include "Vector.h"
namespace BlueCore
{
template<class T> class TransformationTemplate
{
public:
QuaternionTemplate<T> rotation;
Vector3Template<T> translation;
TransformationTemplate()
{
}
template<class S> TransformationTemplate(
const QuaternionTemplate<S> &rot) :
rotation(rot)
{
}
template<class S> TransformationTemplate(
const Vector3Template<S> &trans) :
translation(trans)
{
}
template<class R, class S> TransformationTemplate(
const QuaternionTemplate<S> &rot,
const Vector3Template<S> &trans) :
rotation(rot), translation(trans)
{
}
template<class S> Vector3Template<T> transform(const Vector3Template<S> &v)
{
return rotation.apply(v) + translation;
}
};
typedef TransformationTemplate<float> TransformationFloat;
typedef TransformationTemplate<double> TransformationDouble;
typedef TransformationTemplate<Scalar> Transformation;
} // namespace BlueCore
#endif /*TRANSFORMATION_H_*/

432
engine/Math/Vector.h Normal file
View File

@ -0,0 +1,432 @@
//------------------------------------------------------------------------------
// Author: Gero Mueller <gero.mueller@cloo.de>
// Copyright: (c) 2006 Gero Mueller
// License: MIT License
//------------------------------------------------------------------------------
#ifndef BLUECORE_VECTOR_H
#define BLUECORE_VECTOR_H
// system includes
#include <cmath>
#include <ostream>
// project includes
#include "Scalar.h"
namespace BlueCore
{
template <class T>
class Vector3Template
{
public:
T x, y, z;
/**
* Default Contructor
*/
inline Vector3Template()
{
x = static_cast<T>(0);
y = static_cast<T>(0);
z = static_cast<T>(0);
}
/**
* Constructor from three values
*/
template <class S>
inline Vector3Template( S x, S y, S z )
{
this->x = static_cast<T>(x);
this->y = static_cast<T>(y);
this->z = static_cast<T>(z);
}
/**
* copy contructor
*/
template <class S>
inline Vector3Template( Vector3Template<S> &a )
{
x = static_cast<T>(a.x);
y = static_cast<T>(a.y);
z = static_cast<T>(a.z);
}
/**
* add operataor
*/
template <class S>
inline Vector3Template<T> operator + (
const Vector3Template<S> &a ) const
{
return Vector3Template<T>(
x + static_cast<T>(a.x),
y + static_cast<T>(a.y),
z + static_cast<T>(a.z) );
}
/**
* zero the vector
*/
inline void zero()
{
x = static_cast<T>(0);
y = static_cast<T>(0);
z = static_cast<T>(0);
}
/**
* zero the vector
*/
inline bool isZero() const
{
if( x != 0.0 )
return false;
if( y != 0.0 )
return false;
if( z != 0.0 )
return false;
return true;
}
/**
* add-assign operator
*/
template <class S>
inline Vector3Template<T> &operator += (
const Vector3Template<S> &a )
{
x += static_cast<T>(a.x);
y += static_cast<T>(a.y);
z += static_cast<T>(a.z);
return *this;
}
/**
* sub operator
*/
template <class S>
inline Vector3Template<T> operator - (
const Vector3Template<S> &a ) const
{
return Vector3Template<T>(
x - static_cast<T>(a.x),
y - static_cast<T>(a.y),
z - static_cast<T>(a.z)
);
}
/**
* sub-assign operator
*/
template <class S>
inline Vector3Template<T> &operator -= (
const Vector3Template<S> &a )
{
x -= static_cast<T>(a.x);
y -= static_cast<T>(a.y);
z -= static_cast<T>(a.z);
return *this;
}
/**
* multiply by scalar operator
*/
template <class S>
inline Vector3Template<T> operator * ( const S a ) const
{
return Vector3Template<T>(
x * static_cast<T>(a),
y * static_cast<T>(a),
z * static_cast<T>(a)
);
}
/**
* multiply-assign by scalar operator
*/
template <class S>
inline Vector3Template<T> &operator *= ( const S a )
{
x *= static_cast<T>(a);
y *= static_cast<T>(a);
z *= static_cast<T>(a);
return *this;
}
/**
* divide by scalar operator
*/
template <class S>
inline Vector3Template<T> operator / ( const S a ) const
{
return Vector3Template<T>(
x / static_cast<T>(a),
y / static_cast<T>(a),
z / static_cast<T>(a)
);
}
/**
* divide-assign by scalar operator
*/
template <class S>
inline Vector3Template<T> &operator /= ( const S a )
{
x /= static_cast<T>(a);
y /= static_cast<T>(a);
z /= static_cast<T>(a);
return *this;
}
/**
* assign operator
*/
template <class S>
inline Vector3Template<T> operator = (
const Vector3Template<S> &a )
{
x = static_cast<T>(a.x);
y = static_cast<T>(a.y);
z = static_cast<T>(a.z);
return *this;
}
inline Vector3Template<T> operator - (void) const
{
return Vector3Template<T>( -x, -y, -z );
}
/**
* compare operator
*/
template <class S>
inline bool operator == ( const Vector3Template<S> &a )
{
if( x != static_cast<T>(a.x) )
return false;
if( y != static_cast<T>(a.y) )
return false;
if( z != static_cast<T>(a.z) )
return false;
return true;
}
/**
* anti compare operator
*/
template <class S>
inline bool operator != ( const Vector3Template<S> &a )
{
if( x != static_cast<T>(a.x) )
return true;
if( y != static_cast<T>(a.y) )
return true;
if( z != static_cast<T>(a.z) )
return true;
return false;
}
/**
* return the length of the vector
*/
inline T length() const
{
return static_cast<T>( sqrt(x*x + y*y + z*z) );
}
/**
* length squared
*/
inline T length2() const
{
return x*x + y*y + z*z;
}
/**
* calculate the cross product
*/
template <class S>
inline Vector3Template<T> cross(
const Vector3Template<S> &a ) const
{
return Vector3Template<T>(
y * static_cast<T>(a.z) - z * static_cast<T>(a.y),
z * static_cast<T>(a.x) - x * static_cast<T>(a.z),
x * static_cast<T>(a.y) - y * static_cast<T>(a.x)
);
}
/**
* calculate dot product
*/
template <class S>
inline T dot( const Vector3Template<S> &a ) const
{
return (
x * static_cast<T>(a.x) +
y * static_cast<T>(a.y) +
z * static_cast<T>(a.z) );
}
/**
* check if vectors are nearly equal
*/
template <class S>
inline bool nearlyEquals(
const Vector3Template<S> &a,
T epsilon = 0.00001 ) const
{
if( fabs(x-static_cast<T>(a.x)) > epsilon )
return false;
if( fabs(y-static_cast<T>(a.y)) > epsilon )
return false;
if( fabs(z-static_cast<T>(a.z)) > epsilon )
return false;
return true;
}
/**
* normalize the vector to length 1
*/
inline void normalize()
{
T a = length();
if( a == 0 )
return;
x /= a;
y /= a;
z /= a;
}
/**
* get normalized vector
*/
inline Vector3Template<T> normalized() const
{
T a = length();
if( a == 0 )
return Vector3Template<T>( 0.0, 0.0, 1.0 );
return Vector3Template<T>( x / a, y / a, z / a );
}
/**
* check if vectors are parallel
*/
inline bool parallel( const Vector3Template<T> &a ) const
{
return ( (static_cast<T>(a.x) / x) ==
(static_cast<T>(a.y) / y) ==
(static_cast<T>(a.z) / z) );
}
/**
* check if vectors are parallel
*/
template <class S>
inline bool nearlyParallel(
const Vector3Template<S> &a,
T epsilon = 0.00001 ) const
{
T ax = static_cast<T>(a.x) / x;
T ay = static_cast<T>(a.y) / y;
T az = static_cast<T>(a.z) / z;
if( fabs(ax - ay) > epsilon )
return false;
if( fabs(ax - az) > epsilon )
return false;
if( fabs(ay - az) > epsilon )
return false;
return true;
}
/**
* check if vectors are orthogonal
*/
inline bool orthogonal( const Vector3Template<T> &a ) const
{
return ( dot(a) == static_cast<T>(0) );
}
/**
* check if vectors are orthogonal
*/
template <class S>
inline bool nearlyOrthogonal(
const Vector3Template<S> &a,
T epsilon = 0.00001 ) const
{
return ( dot(a) < epsilon );
}
T& operator[] (unsigned int i)
{
if( i == 0 )
return x;
else if( i == 1 )
return y;
else if( i == 2 )
return z;
else
throw "index out of bound";
}
friend std::ostream &operator << ( std::ostream& os, Vector3Template<T> v )
{
os << "( " << v.x << ", " << v.y << ", " << v.z << " )";
return os;
}
};
typedef Vector3Template<float> Vector3Float;
typedef Vector3Template<double> Vector3Double;
typedef Vector3Template<Scalar> Vector3;
}
#endif

419
engine/MeshManager.cpp Normal file
View File

@ -0,0 +1,419 @@
#include "MeshManager.h"
#include "Utilities/format.h"
#include "Utilities/Log.h"
#include "physfs.h"
#include "trimeshloader.h"
#include <iostream>
#include <vector>
using namespace std;
namespace BlueCore
{
//------------------------------------------------------------------------------
Mesh::Mesh(RenderDevice* device) :
_Device(device)
{
}
//------------------------------------------------------------------------------
Mesh::~Mesh()
{
clog << ">>> Mesh destructed ..."<< endline;
}
//------------------------------------------------------------------------------
void Mesh::render()
{
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glVertexPointer( 3, GL_FLOAT, sizeof(Vertex), &VertexBuffer[0].point.x);
glTexCoordPointer( 2, GL_FLOAT, sizeof(Vertex), &VertexBuffer[0].u);
glNormalPointer(GL_FLOAT, sizeof(Vertex), &VertexBuffer[0].normal.x);
glDrawElements(GL_TRIANGLES, IndexBuffer.count() * 3, GL_UNSIGNED_SHORT,
IndexBuffer.data() );
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
}
#if 0
//--------------------------------------------------------------------------
void Mesh::createVBO()
{
if ( GLEW_ARB_vertex_buffer_object && !vbo )
{
glGenBuffersARB ( 1, &vbo );
glBindBufferARB ( GL_ARRAY_BUFFER_ARB, vbo );
glBufferDataARB (
GL_ARRAY_BUFFER_ARB,
size(),
data(),
GL_STATIC_DRAW_ARB );
}
}
//--------------------------------------------------------------------------
void Mesh::releaseVBO()
{
if ( GLEW_ARB_vertex_buffer_object && vbo )
{
glDeleteBuffersARB ( 1, &vbo );
vbo = 0;
}
}
//--------------------------------------------------------------------------
void Mesh::bind()
{
if ( GLEW_ARB_vertex_buffer_object && vbo )
{
glBindBufferARB ( GL_ARRAY_BUFFER_ARB, vbo );
// hardcoded offset and stride
glVertexPointer ( 3, GL_FLOAT, sizeof ( Vertex ), 0 );
glTexCoordPointer ( 2, GL_FLOAT, sizeof ( Vertex ), ( const GLvoid* ) ( sizeof ( float ) * 3 ) );
glNormalPointer ( GL_FLOAT, sizeof ( Vertex ), ( const GLvoid* ) ( sizeof ( float ) * 5 ) );
}
else
{
// hardcoded offset and stride
glVertexPointer ( 3, GL_FLOAT, sizeof ( Vertex ), data() );
glTexCoordPointer ( 2, GL_FLOAT, sizeof ( Vertex ), data() + sizeof ( float ) * 3 );
glNormalPointer ( GL_FLOAT, sizeof ( Vertex ), data() + sizeof ( float ) * 5 );
}
}
#endif
//------------------------------------------------------------------------------
MeshManager::MeshManager(RenderDevice* device) :
_Device(device)
{
BlueCore::clog << ">>> MeshManager constructed..." << endlog;
}
//------------------------------------------------------------------------------
MeshManager::~MeshManager()
{
clog << ">>> MeshManager destructed ..." << endlog;
}
//------------------------------------------------------------------------------
bool loadTrimesh(const char* filename, Mesh *mesh)
{
PHYSFS_file* file = PHYSFS_openRead(filename);
if (file != 0)
{
char buffer[1024];
unsigned int size = 0;
if (tlObjCheckFileExtension(filename) == 0)
{
tlObjState *state = tlObjCreateState();
while (PHYSFS_eof(file) == 0)
{
size = (unsigned int) PHYSFS_read(file, buffer, 1,
sizeof(buffer));
tlObjParse(state, buffer, size, size < sizeof(buffer) ? 1 : 0);
}
mesh->VertexBuffer.create(tlObjVertexCount(state));
for (unsigned int i = 0; i < mesh->VertexBuffer.count(); i++)
tlObjGetVertex(state, i, &mesh->VertexBuffer[i].point.x,
&mesh->VertexBuffer[i].point.y,
&mesh->VertexBuffer[i].point.z,
&mesh->VertexBuffer[i].u, &mesh->VertexBuffer[i].v,
&mesh->VertexBuffer[i].normal.x,
&mesh->VertexBuffer[i].normal.y,
&mesh->VertexBuffer[i].normal.z);
mesh->IndexBuffer.create(tlObjFaceCount(state));
for (unsigned int i = 0; i < mesh->IndexBuffer.count(); i++)
tlObjGetFace(state, i, &mesh->IndexBuffer[i].a,
&mesh->IndexBuffer[i].b, &mesh->IndexBuffer[i].c);
mesh->SubsetBuffer.create(tlObjObjectCount(state));
for (unsigned int i = 0; i < mesh->SubsetBuffer.count(); i++)
{
mesh->SubsetBuffer[i].first = tlObjObjectFaceIndex(state, i);
mesh->SubsetBuffer[i].count = tlObjObjectFaceCount(state, i);
}
tlObjDestroyState(state);
}
else if (tl3dsCheckFileExtension(filename) == 0)
{
tl3dsState *state = tl3dsCreateState();
while (PHYSFS_eof(file) == 0)
{
size = (unsigned int) PHYSFS_read(file, buffer, 1,
sizeof(buffer));
tl3dsParse(state, buffer, size, size < sizeof(buffer) ? 1 : 0);
}
mesh->VertexBuffer.create(tl3dsVertexCount(state));
for (unsigned int i = 0; i < mesh->VertexBuffer.count(); i++)
tl3dsGetVertex(state, i, &mesh->VertexBuffer[i].point.x,
&mesh->VertexBuffer[i].point.y,
&mesh->VertexBuffer[i].point.z,
&mesh->VertexBuffer[i].u, &mesh->VertexBuffer[i].v,
&mesh->VertexBuffer[i].normal.x,
&mesh->VertexBuffer[i].normal.y,
&mesh->VertexBuffer[i].normal.z);
mesh->IndexBuffer.create(tl3dsFaceCount(state));
for (unsigned int i = 0; i < mesh->IndexBuffer.count(); i++)
tl3dsGetFace(state, i, &mesh->IndexBuffer[i].a,
&mesh->IndexBuffer[i].b, &mesh->IndexBuffer[i].c);
mesh->SubsetBuffer.create(tl3dsObjectCount(state));
for (unsigned int i = 0; i < mesh->SubsetBuffer.count(); i++)
{
mesh->SubsetBuffer[i].first = tl3dsObjectFaceIndex(state, i);
mesh->SubsetBuffer[i].count = tl3dsObjectFaceCount(state, i);
}
tl3dsDestroyState(state);
}
PHYSFS_close(file);
return 0;
}
return 1;
}
//------------------------------------------------------------------------------
Mesh *MeshManager::loadMesh(const string &filename)
{
// check if this mesh is already loaded
std::map<std::string, weak_ptr<Mesh> >::const_iterator result;
result = _Meshes.find(filename);
if (result != _Meshes.end() && result->second.valid())
{
return result->second.get();
}
Mesh *mesh = new Mesh (_Device.get());
// check cache
PHYSFS_sint64 mod_file = PHYSFS_getLastModTime(filename.c_str());
std::string cachename = filename + ".msc";
PHYSFS_sint64 mod_cache = PHYSFS_getLastModTime(cachename.c_str());
if ( (mod_cache > mod_file) && loadFromCache(mesh, filename) )
{
clog << ">>> Mesh '" << filename << "' loaded from cache." << endline;
_Meshes[filename] = mesh;
return mesh;
}
clog << ">>> Mesh '" << filename << "': loading from file..." << endlog;
if (loadTrimesh(filename.c_str(), mesh) != 0)
{
mesh->removeReference();
clog << "!!! Mesh not found!" << endline;
return 0;
}
#if 0
mesh->buildShadowFaceBuffer();
mesh->buildTangentBuffer();
unsigned int counter;
// calculate bounding sphere
clog << " calculate bounding sphere";
mesh->bounding_sphere.center().zero();
for ( counter = 0; counter < mesh->vertex_buffer.count(); counter++ )
{
mesh->bounding_sphere.center() += mesh->vertex_buffer[counter].point;
}
mesh->bounding_sphere.center() /= mesh->vertex_buffer.size();
mesh->bounding_sphere.radius() = 0.;
for ( counter = 0; counter < mesh->vertex_buffer.count(); counter++ )
{
Scalar distance = ( mesh->vertex_buffer[counter].point - mesh->bounding_sphere.center() ).length();
if ( distance > mesh->bounding_sphere.radius() )
mesh->bounding_sphere.radius() = distance;
}
clog << ": " << mesh->bounding_sphere.radius() << endline;
// create normlas, tangents, and binomials
clog << " create normlas, tangents, and binomials" << endline;
for ( counter = 0; counter < mesh->vertex_buffer.count(); counter += 1 )
{
mesh->vertex_buffer[counter].normal.zero();
}
for ( counter = 0; counter < mesh->index_buffer.count(); counter += 3 )
{
Index a = mesh->index_buffer[counter];
Index b = mesh->index_buffer[counter+1];
Index c = mesh->index_buffer[counter+2];
Vector3Template<float> ab = mesh->vertex_buffer[ a ].point - mesh->vertex_buffer[ b ].point;
Vector3Template<float> ac = mesh->vertex_buffer[ a ].point - mesh->vertex_buffer[ c ].point;
Vector3Template<float> n = ab.cross ( ac );
mesh->vertex_buffer[ a ].normal += n;
mesh->vertex_buffer[ b ].normal += n;
mesh->vertex_buffer[ c ].normal += n;
}
for ( counter = 0; counter < mesh->vertex_buffer.count(); counter += 1 )
{
mesh->vertex_buffer[counter].normal.normalize();
}
clog << " create vbos" << endline;
mesh->vertex_buffer.createVBO();
mesh->index_buffer.createVBO();
mesh->tangent_buffer.createVBO();
mesh->bitangent_buffer.createVBO();
#endif
_Meshes[filename] = mesh;
saveToCache(mesh, filename);
return mesh;
}
//------------------------------------------------------------------------------
bool MeshManager::loadFromCache(Mesh *mesh, const std::string &name)
{
std::string filename = name + ".msc";
PHYSFS_file *file = PHYSFS_openRead(filename.c_str());
if (file == 0)
return false;
unsigned int size;
// read vertex_buffer
PHYSFS_read(file, &size, sizeof (size ), 1);
mesh->VertexBuffer.create(size);
PHYSFS_read(file, mesh->VertexBuffer.data(), mesh->VertexBuffer.size(), 1);
// read index buffer
PHYSFS_read(file, &size, sizeof (size ), 1);
mesh->IndexBuffer.create(size);
PHYSFS_read(file, mesh->IndexBuffer.data(), mesh->IndexBuffer.size(), 1);
#if 0
// read tangent buffer
PHYSFS_read ( file, &size, sizeof ( size ), 1 );
mesh->tangent_buffer.create ( size );
PHYSFS_read ( file, mesh->tangent_buffer.data(), mesh->tangent_buffer.size(), 1 );
// read bitangent buffer
PHYSFS_read ( file, &size, sizeof ( size ), 1 );
mesh->bitangent_buffer.create ( size );
PHYSFS_read ( file, mesh->bitangent_buffer.data(), mesh->bitangent_buffer.size(), 1 );
// read bounding sphere
PHYSFS_read ( file, &mesh->bounding_sphere, sizeof ( mesh->bounding_sphere ), 1 );
#endif
// read subsets
PHYSFS_read(file, &size, sizeof (size ), 1);
mesh->SubsetBuffer.create(size);
PHYSFS_read(file, mesh->SubsetBuffer.data(), mesh->SubsetBuffer.size(), 1);
#if 0
// read bitangent buffer
PHYSFS_read ( file, &size, sizeof ( size ), 1 );
mesh->shadowface_buffer.create ( size );
PHYSFS_read ( file, mesh->shadowface_buffer.data(), mesh->shadowface_buffer.size(), 1 );
#endif
PHYSFS_close(file);
return true;
}
//------------------------------------------------------------------------------
bool MeshManager::saveToCache(Mesh *mesh, const std::string &name)
{
std::string filename = name + ".msc";
PHYSFS_file *file = PHYSFS_openWrite(filename.c_str() );
if (file == 0)
{
clog << ">>> cannot open cache file for mesh: " << name << endline;
return false;
}
// write vertex_buffer
unsigned int size = mesh->VertexBuffer.count();
PHYSFS_write(file, &size, sizeof (size ), 1);
PHYSFS_write(file, mesh->VertexBuffer.data(), mesh->VertexBuffer.size(), 1);
// write index_buffer
size = mesh->IndexBuffer.count();
PHYSFS_write(file, &size, sizeof (size ), 1);
PHYSFS_write(file, mesh->IndexBuffer.data(), mesh->IndexBuffer.size(), 1);
// write subsets
size = mesh->SubsetBuffer.count();
PHYSFS_write(file, &size, sizeof (size ), 1);
PHYSFS_write(file, mesh->SubsetBuffer.data(), mesh->SubsetBuffer.size(), 1);
#if 0
// write tangent_buffer
size = mesh->tangent_buffer.count();
PHYSFS_write ( file, &size, sizeof ( size ), 1 );
PHYSFS_write ( file, mesh->tangent_buffer.data(), mesh->tangent_buffer.size(), 1 );
// write bitangent_buffer
size = mesh->bitangent_buffer.count();
PHYSFS_write ( file, &size, sizeof ( size ), 1 );
PHYSFS_write ( file, mesh->bitangent_buffer.data(), mesh->bitangent_buffer.size(), 1 );
// write bounding sphere
PHYSFS_write ( file, &mesh->bounding_sphere, sizeof ( mesh->bounding_sphere ), 1 );
// write shadowfaces
size = mesh->shadowface_buffer.count();
PHYSFS_write ( file, &size, sizeof ( size ), 1 );
PHYSFS_write ( file, mesh->shadowface_buffer.data(), mesh->shadowface_buffer.size(), 1 );
#endif
PHYSFS_close(file);
return true;
}
} // namespace BlueCore

94
engine/MeshManager.h Normal file
View File

@ -0,0 +1,94 @@
#ifndef BLUECORE_MESH_MANAGER_H
#define BLUECORE_MESH_MANAGER_H
#include <map>
#include <string>
#include "RenderDevice.h"
#include "Math/Vector.h"
#include "Math/Plane.h"
#include "Utilities/Buffer.h"
#include "Utilities/Referenced.h"
namespace BlueCore {
typedef struct
{
Vector3Float point;
float u, v;
Vector3Float normal;
} Vertex;
typedef struct
{
unsigned short a, b, c;
} TriangleIndices;
typedef struct
{
public:
unsigned int first;
unsigned int count;
} Subset;
typedef struct
{
unsigned short neighbours[3];
PlaneFloat plane;
bool backFace;
} ShadowFace;
class Mesh : public Referenced
{
ref_ptr<RenderDevice> _Device;
public:
Buffer<Vertex> VertexBuffer;
Buffer<TriangleIndices> IndexBuffer;
Buffer<Subset> SubsetBuffer;
Buffer<Vector3Float> tangents;
Buffer<Vector3Float> bitangents;
Buffer<ShadowFace> shadowfaces;
public:
Mesh (RenderDevice* device);
void render ();
void upload ();
protected:
~Mesh();
};
class MeshManager : public Referenced
{
private:
std::map<std::string, weak_ptr<Mesh> > _Meshes;
bool saveToCache ( Mesh *mesh, const std::string &name );
bool loadFromCache ( Mesh *mesh, const std::string &name );
ref_ptr<RenderDevice> _Device;
public:
MeshManager (RenderDevice *device);
~MeshManager();
Mesh *loadMesh (const std::string &name);
};
} // namespace BlueCore
#endif

322
engine/ModelManager.cpp Normal file
View File

@ -0,0 +1,322 @@
#include "ModelManager.h"
#include "MeshManager.h"
#include "ShaderManager.h"
#include "Utilities/StringUtilities.h"
#include "Utilities/Log.h"
#include "tinyxml.h"
#include "physfs.h"
#include <iostream>
using namespace std;
namespace BlueCore
{
//------------------------------------------------------------------------------
void Model::render()
{
ModelMesh->render();
//glEnable(GL_LIGHTING);
//glDepthFunc ( GL_LEQUAL );
//glEnable ( GL_DEPTH_TEST );
//glDepthMask ( GL_TRUE );
/*
glEnableClientState (GL_VERTEX_ARRAY );
glEnableClientState (GL_TEXTURE_COORD_ARRAY );
glEnableClientState (GL_NORMAL_ARRAY );
glMatrixMode (GL_MODELVIEW );
glPushMatrix();
Matrix4x4 m(_AbsoluteRotation, _AbsoluteTranslation);
glMultMatrixd ( ( GLdouble * ) &m.m );
mesh->vertex_buffer.bind();
mesh->index_buffer.bind();
*/
/*
glMaterialfv (GL_FRONT, GL_SHININESS, &pass.Shininess);
glMaterialfv (GL_FRONT, GL_SPECULAR, ( GLfloat * ) &pass.Specular );
// setup shader
if (pass.Program && ShaderManager::getSingleton()->usingShaders() )
{
ShaderManager::getSingleton()->useShaderProgram(pass.Program);
int textureId = 0;
std::vector<Model::TextureUnit>::iterator titer;
for (titer = pass.Textures.begin(); titer != pass.Textures.end(); titer++)
{
Renderer::getSingleton()->bindTexture(( *titer ).mTexture, textureId );
ShaderManager::getSingleton()->useTexture(pass.Program, textureId, ( *titer ).mName);
textureId++;
}
if (pass.Tangents)
{
ShaderManager::getSingleton()->useTangentBuffer(pass.Program, &mesh->tangent_buffer, "tangent");
ShaderManager::getSingleton()->useTangentBuffer(pass.Program, &mesh->bitangent_buffer,
"bitangent");
}
}
else
{
glActiveTextureARB (GL_TEXTURE2_ARB );
glDisable (GL_TEXTURE_2D );
glActiveTextureARB (GL_TEXTURE1_ARB );
glDisable (GL_TEXTURE_2D );
int textureId = 0;
std::vector<Model::TextureUnit>::iterator titer;
for (titer = pass.Textures.begin(); titer != pass.Textures.end(); titer++)
{
Renderer::getSingleton()->bindTexture(( *titer ).mTexture, textureId );
ShaderManager::getSingleton()->useTexture(pass.Program, textureId, ( *titer ).mName);
textureId++;
break;
}
}
// render subsets
SubsetVector::iterator iter;
for (iter = mesh->surface_subsets.begin(); iter
!= mesh->surface_subsets.end(); iter++)
{
Subset subset = *iter;
mesh->index_buffer.draw(subset.first, subset.count);
}
// cleanup
if (pass.Program && ShaderManager::getSingleton()->usingShaders() )
{
ShaderManager::getSingleton()->useShaderProgram( 0);
if (pass.Tangents)
{
ShaderManager::getSingleton()->disableTangentBuffer(pass.Program, "tangent");
ShaderManager::getSingleton()->disableTangentBuffer(pass.Program, "bitangent");
}
}
glPopMatrix();
glActiveTextureARB (GL_TEXTURE2_ARB );
glDisable (GL_TEXTURE_2D );
glActiveTextureARB (GL_TEXTURE1_ARB );
glDisable (GL_TEXTURE_2D );
glActiveTextureARB (GL_TEXTURE0_ARB );
glDisable (GL_TEXTURE_2D );
*/
/*
glDisableClientState (GL_VERTEX_ARRAY );
glDisableClientState (GL_TEXTURE_COORD_ARRAY );
glDisableClientState (GL_NORMAL_ARRAY );
*/
}
//------------------------------------------------------------------------------
ModelManager::ModelManager(TextureManager *texturemanager,
ShaderManager* shadermanager, MeshManager* meshmanager) :
_TextureManager(texturemanager), _ShaderManager(shadermanager),
_MeshManager(meshmanager)
{
}
//------------------------------------------------------------------------------
ModelManager::~ModelManager()
{
}
//------------------------------------------------------------------------------
void ModelManager::parseRenderPassDefinition(
Model::RenderPassDefinition &Definition,
const TiXmlElement* DefinitionElement)
{
const TiXmlElement * TextureElement =
DefinitionElement->FirstChildElement("Texture");
while (TextureElement)
{
Model::TextureUnit unit;
unit.mName = TextureElement->Attribute("name");
const char *file = TextureElement->Attribute("file");
if (file)
unit.mTexture = _TextureManager->loadTexture(file);
else
unit.mTexture = 0;
Definition.Textures.push_back(unit);
TextureElement = TextureElement->NextSiblingElement("Texture");
}
const TiXmlElement * ShaderElement =
DefinitionElement->FirstChildElement("Shader");
if (ShaderElement)
{
Definition.Program
= _ShaderManager->loadShaderProgram(ShaderElement->Attribute("name") );
const char *t = ShaderElement->Attribute("tangents");
if (t && string("true") == t)
Definition.Tangents = true;
else
Definition.Tangents = false;
}
else
Definition.Program = 0;
const TiXmlElement * MaterialElement =
DefinitionElement->FirstChildElement("Material");
if (MaterialElement)
{
double s;
MaterialElement->QueryDoubleAttribute("shininess", &s);
Definition.Shininess = s;
std::vector<std::string> components;
explode(MaterialElement->Attribute("specular"), components);
for (unsigned int i = 0; i < components.size(); i++)
{
Definition.Specular[i] = atof(components[i].c_str() );
if (i == 3)
break;
}
}
Definition.Enabled = true;
}
//------------------------------------------------------------------------------
Model *ModelManager::loadModel(const string &name)
{
// check if this model is already loaded
ModelContainer::const_iterator result;
result = _Models.find(name);
if (result != _Models.end() )
{
return result->second.get();
}
string filename = name + ".model.xml";
// load the document
PHYSFS_file *file = PHYSFS_openRead(filename.c_str());
if ( !file)
{
clog << "!!! XML-File '"<< name << "' not found"<< endline;
return 0;
}
unsigned int fileSize = PHYSFS_fileLength(file);
Buffer<char> buffer(fileSize);
PHYSFS_read(file, buffer.data(), 1, buffer.size() );
buffer[buffer.count() - 1] = 0;
PHYSFS_close(file);
TiXmlDocument *document = new TiXmlDocument();
document->Parse(buffer.data() );
if (document->Error() )
{
clog << "!!! Error loading XML-File'"<< name << "': ";
clog << document->ErrorRow() << ","<< document->ErrorCol();
clog << " "<< document->ErrorDesc() << endline;
return 0;
}
Model *model = new Model();
if (document == 0)
{
clog << "!!! Model '"<< name << "' not found!"<< endline;
return 0;
}
const TiXmlElement *model_element = document->FirstChildElement("Model");
if (model_element)
{
const TiXmlElement* MeshElement =
model_element->FirstChildElement("Mesh");
if (MeshElement)
{
model->ModelMesh
= _MeshManager->loadMesh(MeshElement->Attribute("file") );
}
const TiXmlElement * ShadowMeshElement =
model_element->FirstChildElement("ShadowMesh");
if (ShadowMeshElement)
{
model->ShadowMesh
= _MeshManager->loadMesh(ShadowMeshElement->Attribute("file") );
}
else
{
model->ShadowMesh = 0;
}
const TiXmlElement* definition_element;
definition_element
= model_element->FirstChildElement("AmbientRenderPass");
if (definition_element)
parseRenderPassDefinition(model->AmbientPass, definition_element);
else
model->AmbientPass.Enabled = false;
definition_element = model_element->FirstChildElement("LitRenderPass");
if (definition_element)
parseRenderPassDefinition(model->LitPass, definition_element);
else
model->LitPass.Enabled = false;
definition_element
= model_element->FirstChildElement("DefaultRenderPass");
if (definition_element)
parseRenderPassDefinition(model->DefaultPass, definition_element);
else
model->DefaultPass.Enabled = false;
}
_Models[name] = model;
return model;
}
#if 0
//------------------------------------------------------------------------------
void ModelManager::unload()
{
ModelContainer::iterator iter;
for (iter = _Models.begin(); iter != _Models.end(); iter++)
{
clog << ">>> ModelManager: unload " << iter->first << endlog;
delete iter->second;
}
_Models.clear();
}
#endif
} // namespace BlueCore

80
engine/ModelManager.h Normal file
View File

@ -0,0 +1,80 @@
#ifndef BLUECORE_MODEL_MANAGER_H
#define BLUECORE_MODEL_MANAGER_H
// system includes
#include <map>
#include <string>
// project includes
#include "Utilities/Referenced.h"
#include "Utilities/Named.h"
#include "TextureManager.h"
#include "ShaderManager.h"
#include "MeshManager.h"
// forward declaration
class TiXmlElement;
namespace BlueCore
{
class Model : public Referenced, public Named
{
public:
struct TextureUnit
{
std::string mName;
ref_ptr<Texture> mTexture;
};
struct RenderPassDefinition
{
bool Enabled;
std::vector<TextureUnit> Textures;
ShaderProgram Program;
bool Tangents;
float Shininess;
float Specular[4];
};
ref_ptr<Mesh> ModelMesh;
ref_ptr<Mesh> ShadowMesh;
RenderPassDefinition AmbientPass;
RenderPassDefinition LitPass;
RenderPassDefinition DefaultPass;
void render();
};
class ModelManager : public Referenced
{
private:
typedef std::map< std::string, weak_ptr<Model> > ModelContainer;
ModelContainer _Models;
weak_ptr<TextureManager> _TextureManager;
weak_ptr<ShaderManager> _ShaderManager;
weak_ptr<MeshManager> _MeshManager;
void parseRenderPassDefinition(Model::RenderPassDefinition &Definition,
const TiXmlElement* DefinitionElement);
void unload();
public:
ModelManager(TextureManager *texturemanager, ShaderManager* shadermanager,
MeshManager* meshmanager);
~ModelManager();
Model *loadModel(const std::string &name);
};
} // namespace BlueCore
#endif

26
engine/Node.h Normal file
View File

@ -0,0 +1,26 @@
#ifndef NODE_H_
#define NODE_H_
class Node
{
class UpdateListener
{
virtual void update() = 0;
virtual ~UpdateListener() = 0;
};
typedef std::list<Node*> NodeContainer;
typedef std::list<Node*> NodeContainer;
Node *parent;
NodeContainer children;
Vector3 getRelativePosition;
Vector3 getAbsolutePosition;
/* ... */
bool _Updating;
void update (double time);
void render (Camera *camera, RenderDevice *device);
};
#endif /*NODE_H_*/

329
engine/RenderDevice.cpp Normal file
View File

@ -0,0 +1,329 @@
#include "RenderDevice.h"
#include "Utilities/Log.h"
#include "GL/gl.h"
#include "GL/glu.h"
namespace BlueCore
{
//------------------------------------------------------------------------------
void RenderDevice::WindowResizeSlot(int width, int height)
{
glViewport( 0, 0, width, height);
_ViewportWidth = width;
_ViewportHeight = height;
}
//------------------------------------------------------------------------------
RenderDevice::RenderDevice(RenderWindow* renderWindow) :
_RenderWindow(renderWindow)
{
if (_RenderWindow.valid())
{
_RenderWindow->WindowResizeSignal.connect(this,
&RenderDevice::WindowResizeSlot);
_RenderWindow->WindowCloseSignal.connect(this,
&RenderDevice::WindowCloseSlot);
_ViewportWidth = _RenderWindow->getWidth();
_ViewportHeight = _RenderWindow->getHeight();
glViewport( 0, 0, _ViewportWidth, _ViewportHeight);
}
clog << ">>> RenderDevice constructed..."<< endlog;
}
//------------------------------------------------------------------------------
RenderDevice::~RenderDevice()
{
clog << ">>> RenderDevice destructed..."<< endlog;
}
//------------------------------------------------------------------------------
void RenderDevice::WindowCloseSlot()
{
DeviceShutdownSignal();
}
//------------------------------------------------------------------------------
int RenderDevice::getViewportWidth()
{
return _ViewportWidth;
}
//------------------------------------------------------------------------------
int RenderDevice::getViewportHeight()
{
return _ViewportHeight;
}
//------------------------------------------------------------------------------
void RenderDevice::begin2D()
{
// prepare state
glDisable(GL_DEPTH_TEST);
glDisable(GL_LIGHTING);
glNormal3f( 0.0, 0.0, 1.0);
// set projection matrix
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
//int newheight = (_width / 16.0) * 9.0;
gluOrtho2D( 0, _ViewportWidth-1, 0, _ViewportHeight-1);
// prepare model matrix
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
}
//------------------------------------------------------------------------------
void RenderDevice::end2D()
{
// restore projection matrix
glMatrixMode(GL_PROJECTION);
glPopMatrix();
// restore model matrix
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
// restore old state
glEnable(GL_DEPTH_TEST);
glEnable(GL_LIGHTING);
}
//------------------------------------------------------------------------------
void RenderDevice::clear()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
}
//------------------------------------------------------------------------------
void RenderDevice::setAmbientLight(float r, float g, float b)
{
GLfloat lightAmbient[] =
{ r, g, b, 1.0f };
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lightAmbient);
}
//------------------------------------------------------------------------------
/*
void RenderDevice::renderShadowVolume(Mesh *mesh,
const Vector3Float &direction, const Vector3Float &extrude)
{
// Calculate visibility
unsigned int i, frontface_count = 0;
for (i=0; i < mesh->shadowfaces.count(); i++)
{
if (mesh->shadowfaces[i].plane.distance(extrude) < 0)
{
shadow_faces[i].backFace = false;
frontface_count++;
}
else
{
shadow_faces[i].backFace = true;
}
}
unsigned int max_edges = (frontface_count) * 3;
if (_extrudeVertexBuffer.count() < (max_edges * 4))
{
clog << ">>> increase shadow buffers to "<< max_edges << " Edges"<< endline;
_extrudeVertexBuffer.create( (max_edges + 100) * 4);
}
if (_extrudeIndexBuffer.count() < (max_edges * 6))
_extrudeIndexBuffer.create( (max_edges + 100) * 6);
// fill the buffer
unsigned int j, k;
extrude_quad_count = 0;
Vertex *face_vertices[3];
for (i=0; i<shadow_faces.count(); i++)
{
if (shadow_faces[i].backFace == false)
{
for (j=0; j<3; j++)
{
k = shadow_faces[i].neighbours[j];
if ( (k == 0) || (shadow_faces[k-1].backFace == true))
{
unsigned int src_index_offset = i * 3;
face_vertices[0]
= &mesh->vertex_buffer[ mesh->index_buffer[ src_index_offset ] ];
face_vertices[1]
= &mesh->vertex_buffer[ mesh->index_buffer[ src_index_offset + 1] ];
face_vertices[2]
= &mesh->vertex_buffer[ mesh->index_buffer[ src_index_offset + 2] ];
#ifdef DEBUG_SILHOUETTE
glBegin( GL_LINES );
glVertex3f( face_vertices[j]->point.x, face_vertices[j]->point.y, face_vertices[j]->point.z );
glVertex3f( face_vertices[(j+1)%3]->point.x, face_vertices[(j+1)%3]->point.y, face_vertices[(j+1)%3]->point.z );
glEnd();
#endif
unsigned int vertex_offset = extrude_quad_count*4;
_extrudeVertexBuffer[vertex_offset] = face_vertices[j]->point;
_extrudeVertexBuffer[vertex_offset+1] = face_vertices[(j+1)%3]->point;
_extrudeVertexBuffer[vertex_offset+2] = face_vertices[(j+1)%3]->point + extrude_vector;
_extrudeVertexBuffer[vertex_offset+3] = face_vertices[j]->point
+ extrude_vector;
unsigned int index_offset = extrude_quad_count*6;
_extrudeIndexBuffer[index_offset] = vertex_offset;
_extrudeIndexBuffer[index_offset+1] = vertex_offset + 3;
_extrudeIndexBuffer[index_offset+2] = vertex_offset + 1;
_extrudeIndexBuffer[index_offset+3] = vertex_offset + 1;
_extrudeIndexBuffer[index_offset+4] = vertex_offset + 3;
_extrudeIndexBuffer[index_offset+5] = vertex_offset + 2;
extrude_quad_count++;
}
}
}
}
if (_capIndexBuffer.count() < mesh->index_buffer.count() )
_capIndexBuffer.create(mesh->index_buffer.count() );
bf = 0;
ff = 0;
for (i=0; i<shadow_faces.count(); i++)
{
unsigned int dst_offset, src_offset = i*3;
if (shadow_faces[i].backFace == false)
{
dst_offset = ff*3;
ff++;
}
else
{
dst_offset = _capIndexBuffer.count() - (bf + 1)*3;
bf++;
}
_capIndexBuffer[dst_offset] = mesh->index_buffer[src_offset];
_capIndexBuffer[dst_offset+1] = mesh->index_buffer[src_offset+1];
_capIndexBuffer[dst_offset+2] = mesh->index_buffer[src_offset+2];
}
_lastOrientation = _AbsoluteRotation;
}
if (_extrudeVertexBuffer.count() > 0)
{
// draw the volume
glPushAttrib( GL_ALL_ATTRIB_BITS);
glDisable(GL_TEXTURE_2D);
glDisable(GL_LIGHTING);
glEnable( GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
#if defined(DEBUG_SILHOUETTE) || defined(DEBUG_CAPS) || defined(DEBUG_VOLUME)
glColorMask( 1, 1, 1, 1 );
glDepthFunc(GL_LEQUAL);
#else
glColorMask(0, 0, 0, 0);
glDepthFunc(GL_LESS);
#endif
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 0, ~0);
glStencilMask( ~0);
glEnable(GL_CULL_FACE);
glMatrixMode ( GL_MODELVIEW);
glPushMatrix();
Matrix4x4 m(_AbsoluteRotation, _AbsoluteTranslation);
glMultMatrixd ( ( GLdouble * ) &m.m );
glActiveTextureARB ( GL_TEXTURE2_ARB);
glDisable ( GL_TEXTURE_2D);
glActiveTextureARB ( GL_TEXTURE1_ARB);
glDisable ( GL_TEXTURE_2D);
glActiveTextureARB ( GL_TEXTURE0_ARB);
glDisable ( GL_TEXTURE_2D);
ShaderManager::getSingleton()->useShaderProgram( 0);
#ifndef DEBUG_SILHOUETTE
glEnableClientState( GL_VERTEX_ARRAY);
glDisableClientState( GL_TEXTURE_COORD_ARRAY);
glDisableClientState( GL_NORMAL_ARRAY);
glDisableClientState( GL_ARRAY_BUFFER_ARB);
glDisableClientState( GL_ELEMENT_ARRAY_BUFFER_ARB);
for (int p=0; p<2; p++)
{
if (p==0)
{
glStencilOp(GL_KEEP, GL_INCR, GL_KEEP);
glCullFace(GL_FRONT);
//glColorMask(0, 1, 0, 0);
}
else
{
glStencilOp(GL_KEEP, GL_DECR, GL_KEEP);
glCullFace(GL_BACK);
//glColorMask(1, 0, 0, 0);
}
if (GLEW_ARB_vertex_buffer_object )
{
glBindBufferARB ( GL_ARRAY_BUFFER_ARB, 0);
glBindBufferARB ( GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
}
// #if !defined(DEBUG_CAPS) || defined(DEBUG_VOLUME)
glVertexPointer ( 3, GL_FLOAT, 0, _extrudeVertexBuffer.data() );
glDrawElements (
GL_TRIANGLES,
extrude_quad_count * 6,
GL_UNSIGNED_SHORT,
_extrudeIndexBuffer.data());
// #endif
// #if !defined(DEBUG_VOLUME) || defined(DEBUG_CAPS)
// draw caps
mesh->vertex_buffer.bind();
//glVertexPointer ( 3, GL_FLOAT, sizeof(Vertex), mesh->vertex_buffer.data() );
glDrawElements (
GL_TRIANGLES,
ff*3,
GL_UNSIGNED_SHORT,
_capIndexBuffer.data());
//&_capIndexBuffer[_capIndexBuffer.count() - bf*3]);
glPushMatrix();
glTranslatef(extrude_vector.x, extrude_vector.y, extrude_vector.z);
glDrawElements (
GL_TRIANGLES,
bf*3,
GL_UNSIGNED_SHORT,
&_capIndexBuffer[_capIndexBuffer.count() - bf*3]);
//_capIndexBuffer.data() );
glPopMatrix();
// #endif
}
#endif
glPopAttrib();
glPopMatrix();
}
*/
} // namespace BlueCore

58
engine/RenderDevice.h Normal file
View File

@ -0,0 +1,58 @@
#ifndef BLUECORE_RENDERDEVICE_H
#define BLUECORE_RENDERDEVICE_H
#include "RenderWindow.h"
#include "Utilities/Buffer.h"
#include "Utilities/Referenced.h"
#include "Utilities/sigslot.h"
namespace BlueCore
{
class RenderDevice : public Referenced, public sigslot::has_slots<>
{
public:
class RenderItem
{
public:
//virtual void render ( RenderPass pass ) = 0;
virtual ~RenderItem()
{};
};
private:
int _ViewportWidth, _ViewportHeight;
void WindowResizeSlot(int width, int height);
void WindowCloseSlot();
ref_ptr<RenderWindow> _RenderWindow;
public:
RenderDevice(RenderWindow* renderWindow);
~RenderDevice();
int getViewportWidth();
int getViewportHeight();
void begin2D();
void end2D();
void clear();
void setAmbientLight(float r, float g, float b);
void setTexture(unsigned int unit, unsigned int texture);
sigslot::signal0<> DeviceShutdownSignal;
//Buffer<ShadowFace> &_ShadowFaces;
};
} // namespaced BlueCore
#endif // BLUECORE_RENDERDEVICE_H

176
engine/RenderWindow.cpp Normal file
View File

@ -0,0 +1,176 @@
#include "RenderWindow.h"
#include "Utilities/Log.h"
using namespace std;
namespace BlueCore
{
static RenderWindow* gRenderWindow = 0;
//------------------------------------------------------------------------------
RenderWindow::RenderWindow() :
_Initialized(false)
{
glfwInit();
gRenderWindow = this;
clog << ">>> RenderWindow constructed..."<< endlog;
}
//------------------------------------------------------------------------------
RenderWindow::~RenderWindow()
{
destroy();
glfwTerminate();
gRenderWindow = 0;
clog << ">>> RenderWindow destructed..."<< endlog;
}
//------------------------------------------------------------------------------
void RenderWindow::WindowRefreshCallback()
{
gRenderWindow->WindowRefreshSignal();
}
//------------------------------------------------------------------------------
int RenderWindow::WindowCloseCallback()
{
clog << ">>> RenderWindow closed..."<< endlog;
gRenderWindow->closeWindow();
return GL_FALSE;
}
//------------------------------------------------------------------------------
void RenderWindow::closeWindow()
{
_Closed = true;
}
//------------------------------------------------------------------------------
void RenderWindow::WindowSizeCallback(int width, int height)
{
gRenderWindow->resizeWindow(width, height);
}
//------------------------------------------------------------------------------
void RenderWindow::resizeWindow(int width, int height)
{
_Resized = true;
if ( !_Initialized)
return;
clog << ">>> RenderWindow resized: "<< width << "x"<< height << endlog;
_Width = width;
_Height = height;
WindowResizeSignal(width, height);
}
//------------------------------------------------------------------------------
int RenderWindow::getWidth()
{
return _Width;
}
//------------------------------------------------------------------------------
int RenderWindow::getHeight()
{
return _Height;
}
//------------------------------------------------------------------------------
bool RenderWindow::create(int width, int height, int pixelbits, int depthbits,
int stencilbits, bool fullscreen)
{
int channelbits = 8;
if (pixelbits == 16)
channelbits = 4;
if (glfwOpenWindow(width, height, channelbits, channelbits, channelbits,
channelbits, depthbits, stencilbits, fullscreen ? GLFW_FULLSCREEN
: GLFW_WINDOW) == GL_FALSE)
return false;
glfwSetWindowSizeCallback(WindowSizeCallback);
glfwSetWindowCloseCallback(WindowCloseCallback);
glfwSetWindowRefreshCallback(WindowRefreshCallback);
glfwSetMousePosCallback(MousePosCallback);
glfwSetMouseButtonCallback(MouseButtonCallback);
glfwSetMouseWheelCallback(MouseWheelCallback);
glfwSetKeyCallback(KeyCallback);
glfwSetCharCallback(CharCallback);
clog << ">>> RenderWindow created"<< endlog;
_Initialized = true;
glfwGetWindowSize( &_Width, &_Height);
resizeWindow(_Width, _Height);
return true;
}
//------------------------------------------------------------------------------
void RenderWindow::swap()
{
glfwSwapBuffers();
}
//------------------------------------------------------------------------------
void RenderWindow::destroy()
{
if (_Initialized)
{
glfwCloseWindow();
clog << ">>> RenderWindow destroyed"<< endlog;
_Initialized = false;
}
}
//------------------------------------------------------------------------------
bool RenderWindow::isOpen()
{
if (_Initialized == false)
return false;
if (_Closed)
return false;
return (glfwGetWindowParam(GLFW_OPENED) == GL_TRUE);
}
//------------------------------------------------------------------------------
void RenderWindow::MousePosCallback(int x, int y)
{
gRenderWindow->MouseMoveSignal(x, y);
}
//------------------------------------------------------------------------------
void RenderWindow::MouseButtonCallback(int button, int action)
{
gRenderWindow->MouseButtonSignal(button, action);
}
//------------------------------------------------------------------------------
void RenderWindow::MouseWheelCallback(int pos)
{
gRenderWindow->MouseWheelSignal(pos);
}
//------------------------------------------------------------------------------
void RenderWindow::KeyCallback(int key, int action)
{
gRenderWindow->KeySignal(key, action);
}
//------------------------------------------------------------------------------
void RenderWindow::CharCallback(int character, int action)
{
gRenderWindow->CharSignal(character);
}
} // namespace BlueCore

71
engine/RenderWindow.h Normal file
View File

@ -0,0 +1,71 @@
#ifndef BLUECORE_RENDER_WINDOW_H
#define BLUECORE_RENDER_WINDOW_H
// system includes
#include <vector>
// library includes
#include "GL/glfw.h"
// project includes
#include "Math/Vector.h"
#include "Utilities/sigslot.h"
#include "Utilities/Referenced.h"
namespace BlueCore
{
class RenderWindow : public Referenced
{
private:
static void WindowSizeCallback(int width, int height);
static int WindowCloseCallback();
static void WindowRefreshCallback();
static void MousePosCallback(int x, int y);
static void MouseButtonCallback(int button, int action);
static void MouseWheelCallback(int pos);
static void KeyCallback(int key, int action);
static void CharCallback(int character, int action);
bool _Resized;
bool _Initialized;
bool _Closed;
int _Width, _Height;
void resizeWindow(int width, int height);
public:
sigslot::signal0<> WindowCloseSignal;
sigslot::signal2<int, int> WindowResizeSignal;
sigslot::signal0<> WindowRefreshSignal;
sigslot::signal2<int, int> MouseMoveSignal;
sigslot::signal2<int, int> MouseButtonSignal;
sigslot::signal1<int> MouseWheelSignal;
sigslot::signal2<int, int> KeySignal;
sigslot::signal1<int> CharSignal;
public:
RenderWindow();
~RenderWindow();
bool create(int width, int height, int pixelbits, int depthbits,
int stencilbits, bool fullscreen);
void destroy();
void closeWindow();
int getWidth();
int getHeight();
bool isOpen();
void swap();
};
}
#endif

View File

@ -0,0 +1,618 @@
#include "RigidBodySimulation.h"
// local includes
//#include "scriptsystem.h"
// library includes
#include "Utilities/StringUtilities.h"
#include "Utilities/Log.h"
//#include "Utilities/xmlconfig.h"
// system includes
#include <iostream>
using namespace std;
namespace BlueCore
{
static RigidBodySimulation* gRigidBodySimulation;
//------------------------------------------------------------------------------
RigidBody::RigidBody(RigidBodySimulation* simulation, dWorldID world,
dSpaceID space) :
_Body( 0), _Space( 0), _Simulation(simulation)
{
_Body = dBodyCreate(world);
_Space = dHashSpaceCreate(space);
dHashSpaceSetLevels(_Space, -10, 10);
dBodySetData(_Body, this);
clog << ">>> RigidBody constructed..."<< endlog;
}
//------------------------------------------------------------------------------
RigidBody::~RigidBody()
{
dSpaceDestroy(_Space);
dBodyDestroy(_Body);
std::vector<CollisionMesh>::iterator iter;
for (iter = _CollisionMeshes.begin(); iter != _CollisionMeshes.end(); iter++)
{
dGeomTriMeshDataDestroy((*iter).trimeshdata);
}
clog << ">>> RigidBody destructed..."<< endlog;
}
//------------------------------------------------------------------------------
const Vector3 &RigidBody::getPosition() const
{
return _Position;
}
//------------------------------------------------------------------------------
void RigidBody::setPosition(const Vector3 &v)
{
dBodySetPosition(_Body, v.x, v.y, v.z);
_Position = v;
}
//------------------------------------------------------------------------------
const Vector3 &RigidBody::getLinearVelocity() const
{
return _LinearVelocity;
}
//------------------------------------------------------------------------------
void RigidBody::setLinearVelocity(const Vector3 &v)
{
dBodySetLinearVel(_Body, v.x, v.y, v.z);
_LinearVelocity = v;
}
//------------------------------------------------------------------------------
const Quaternion &RigidBody::getOrientation() const
{
return _Orientation;
}
//------------------------------------------------------------------------------
void RigidBody::setOrientation(const Quaternion &q)
{
dBodySetQuaternion(_Body, ( const dQuaternion & ) q );
_Orientation = q;
}
//------------------------------------------------------------------------------
const Vector3 &RigidBody::getAngularVelocity() const
{
return _AngularVelocity;
}
//------------------------------------------------------------------------------
void RigidBody::applyGlobalForce(const Vector3 &force, const Vector3 &point)
{
dBodyAddForceAtPos(_Body, force.x, force.y, force.z, point.x, point.y,
point.z);
}
//------------------------------------------------------------------------------
void RigidBody::applyGlobalForce(const Vector3 &force)
{
dBodyAddForce(_Body, force.x, force.y, force.z);
}
//------------------------------------------------------------------------------
void RigidBody::applyLocalForce(const Vector3 &force, const Vector3 &point)
{
if (point.isZero() )
{
dBodyAddRelForce(_Body, force.x, force.y, force.z);
}
else
{
dBodyAddRelForceAtRelPos(_Body, force.x, force.y, force.z, point.x,
point.y, point.z);
}
}
//------------------------------------------------------------------------------
void RigidBody::applyLocalForce(const Vector3 &force)
{
dBodyAddRelForce(_Body, force.x, force.y, force.z);
}
//------------------------------------------------------------------------------
Scalar RigidBody::getMass() const
{
dMass m;
dBodyGetMass(_Body, &m);
return m.mass;
}
//------------------------------------------------------------------------------
void RigidBody::saveState()
{
// save position
const Scalar *p = dBodyGetPosition(_Body);
_Position.x = p[0];
_Position.y = p[1];
_Position.z = p[2];
// save linear velocity
const Scalar *v = dBodyGetLinearVel(_Body);
_LinearVelocity.x = v[0];
_LinearVelocity.y = v[1];
_LinearVelocity.z = v[2];
// save orientation
const Scalar *q = dBodyGetQuaternion(_Body);
_Orientation.w = q[0];
_Orientation.x = q[1];
_Orientation.y = q[2];
_Orientation.z = q[3];
// save angular velocity
const Scalar *a = dBodyGetAngularVel(_Body);
_AngularVelocity.x = a[0];
_AngularVelocity.y = a[1];
_AngularVelocity.z = a[2];
}
//------------------------------------------------------------------------------
unsigned int RigidBody::addCollisionMesh(const std::string &meshname,
Scalar density)
{
if (_Simulation.valid() == false)
return 0;
const RigidBodySimulation::Trimesh *trimesh =
_Simulation->getTrimesh(meshname);
if (trimesh)
{
CollisionMesh collisionmesh;
collisionmesh.trimeshdata = dGeomTriMeshDataCreate();
dGeomTriMeshDataBuildSingle(collisionmesh.trimeshdata,
trimesh->vertices.const_data(), 3 * sizeof(float),
trimesh->vertices.count() / 3, trimesh->indices.const_data(),
trimesh->indices.count(), 3 * sizeof(int));
collisionmesh.geom = dCreateTriMesh(_Space, collisionmesh.trimeshdata,
0, 0, 0);
dGeomSetBody(collisionmesh.geom, _Body);
dMass mass;
dMassSetTrimesh( &mass, density, collisionmesh.geom);
//dMassSetBox( &mass, density, 5.0, 5.0, 5.0 );
dBodySetMass(_Body, &mass);
_CollisionMeshes.push_back(collisionmesh);
return _CollisionMeshes.size();
}
return 0;
}
//------------------------------------------------------------------------------
void RigidBody::setCollisionMeshPosition(unsigned int geom,
const Vector3 &position)
{
if ( (geom > 0) && (geom <= _CollisionMeshes.size() ))
{
dGeomSetOffsetPosition(_CollisionMeshes[geom-1].geom, position.x,
position.y, position.z);
}
}
//------------------------------------------------------------------------------
void RigidBody::setCollisionMeshRotation(unsigned int geom,
const Quaternion &rotation)
{
if ( (geom > 0) && (geom <= _CollisionMeshes.size() ))
{
dGeomSetOffsetQuaternion(_CollisionMeshes[geom-1].geom,
( dReal * ) &rotation );
}
}
//------------------------------------------------------------------------------
void RigidBody::getCollisionMeshPosition(unsigned int geom, Vector3 &position)
{
if ( (geom > 0) && (geom <= _CollisionMeshes.size() ))
{
const Scalar*p = dGeomGetOffsetPosition(_CollisionMeshes[geom-1].geom);
position.x = p[0];
position.y = p[1];
position.z = p[2];
}
}
//------------------------------------------------------------------------------
void RigidBody::getCollisionMeshRotation(unsigned int geom,
Quaternion &rotation)
{
if ( (geom > 0) && (geom <= _CollisionMeshes.size() ))
{
dGeomGetOffsetQuaternion(_CollisionMeshes[geom-1].geom,
( dReal * ) &rotation );
}
}
//------------------------------------------------------------------------------
void RigidBody::enableCollisionMesh(unsigned int geom)
{
if ( (geom > 0) && (geom <= _CollisionMeshes.size() ))
{
dGeomEnable(_CollisionMeshes[geom-1].geom);
}
}
//------------------------------------------------------------------------------
void RigidBody::disableCollisionMesh(unsigned int geom)
{
if ( (geom > 0) && (geom <= _CollisionMeshes.size() ))
{
dGeomDisable(_CollisionMeshes[geom-1].geom);
}
}
//------------------------------------------------------------------------------
unsigned int RigidBody::getCollisionMeshId(dGeomID geom)
{
for (unsigned int i = 0; i < _CollisionMeshes.size(); i++)
{
if (_CollisionMeshes[i].geom == geom)
return i + 1;
}
return 0;
}
//------------------------------------------------------------------------------
HSQOBJECT RigidBody::getCollisionHandler()
{
return _CollisionHandler;
}
//------------------------------------------------------------------------------
void RigidBody::setCollisionHandler(HSQOBJECT handler)
{
_CollisionHandler = handler;
}
//------------------------------------------------------------------------------
RigidBodySimulation::RigidBodySimulation(ScriptSystem *scriptsystem) :
_world( 0), _space( 0), _contactgroup( 0), _delta( 0.0), _steps( 0),
_ScriptSystem(scriptsystem)
{
dInitODE();
gRigidBodySimulation = this;
//XmlConfig config("config.xml");
clog << ">>> initialize RigidBodySimulation..."<< endline;
Scalar erp = 1.0, cfm = 0.0;
_stepSize = 0.02;
_maxContacts = 5;
/*
config.getDouble("RigidBodySimulation", "ERP", erp, 1.0);
config.getDouble("RigidBodySimulation", "CFM", cfm, 0.0);
config.getDouble("RigidBodySimulation", "StepSize", _stepSize, 0.02);
config.getInt("RigidBodySimulation", "MaxContacts", _maxContacts, 5);
*/
// sanity check
if (erp > 1.0)
erp = 1.0;
else if (erp < 0.0001)
erp = 0.0001;
clog << " ERP: "<< erp << endline;
// sanity check
if (cfm > 1.0)
cfm = 1.0;
else if (cfm < 0.0)
cfm = 0.0;
clog << " CFM: "<< cfm << endline;
// sanity check
if (_stepSize < 0.0001)
_stepSize = 0.0001;
else if (_stepSize > 1.0)
_stepSize = 1.0;
clog << " step size: "<< _stepSize << endline;
// sanity check
if (_maxContacts < 1)
_maxContacts = 1;
else if (_maxContacts > 500)
_maxContacts = 500;
clog << " max counts: "<< _maxContacts << endline;
_world = dWorldCreate();
dWorldSetERP(_world, erp);
dWorldSetCFM(_world, cfm);
_space = dHashSpaceCreate( 0);
dHashSpaceSetLevels(_space, -10, 10);
_contactgroup = dJointGroupCreate( 0);
/*
// Bullet
btVector3 worldAabbMin(-100000,-100000,-100000);
btVector3 worldAabbMax(100000,100000,100000);
btOverlappingPairCache* broadphase = new btAxisSweep3(worldAabbMin,worldAabbMax,32766);
btCollisionDispatcher* dispatcher = new btCollisionDispatcher();
btSequentialImpulseConstraintSolver* solver = new btSequentialImpulseConstraintSolver();
_World = new btDiscreteDynamicsWorld(dispatcher,broadphase,solver);
*/
}
//------------------------------------------------------------------------------
RigidBodySimulation::~RigidBodySimulation()
{
if (_contactgroup)
dJointGroupDestroy(_contactgroup);
if (_space)
dSpaceDestroy(_space);
if (_world)
dWorldDestroy(_world);
std::map<std::string, Trimesh *>::iterator iter;
for (iter = _Trimeshes.begin(); iter != _Trimeshes.end(); iter++)
{
Trimesh *trimesh = iter->second;
if (trimesh)
delete trimesh;
}
_Trimeshes.clear();
dCloseODE();
gRigidBodySimulation = 0;
clog << ">>> RigidBodySimulation destructed ..."<< endline;
}
//------------------------------------------------------------------------------
RigidBody *RigidBodySimulation::createRigidBody()
{
RigidBody *rigidBody = new RigidBody ( this, _world, _space );
_bodies.push_back(rigidBody);
return rigidBody;
}
//------------------------------------------------------------------------------
void RigidBodySimulation::deleteRigidBody(RigidBody *rigidBody)
{
#ifdef DEBUG_PHYSICS
clog << ">>> delete rigid body" << endline;
#endif
_bodies.remove(rigidBody);
delete rigidBody;
}
//------------------------------------------------------------------------------
void RigidBodySimulation::removeAll()
{
std::list<RigidBody *>::iterator i;
for (i = _bodies.begin(); i != _bodies.end(); i++)
delete *i;
_bodies.clear();
}
//------------------------------------------------------------------------------
void RigidBodySimulation::saveStates()
{
std::list<RigidBody *>::iterator i;
for (i = _bodies.begin(); i != _bodies.end(); i++)
( *i )->saveState();
}
//------------------------------------------------------------------------------
void RigidBodySimulation::nearCallback(void *data, dGeomID o1, dGeomID o2)
{
if (gRigidBodySimulation == 0)
return;
if (dGeomIsSpace(o1) && dGeomIsSpace(o2) )
{
// colliding a space with something
dSpaceCollide2(o1, o2, data, &nearCallback);
/*
// collide all geoms internal to the space(s)
if( dGeomIsSpace(o1) )
dSpaceCollide( (dxSpace *)o1, data, &nearCallback );
if( dGeomIsSpace(o2) )
dSpaceCollide( (dxSpace *)o2, data,&nearCallback );
*/
}
else
{
static Buffer<dContact> contacts;
if (contacts.count() == 0)
contacts.create(gRigidBodySimulation->getMaxContacts());
dBodyID b1, b2;
b1 = dGeomGetBody(o1);
b2 = dGeomGetBody(o2);
// exit without doing anything if the two bodies are connected by a joint
if (b1 && b2 && dAreConnected(b1, b2) )
return;
for (unsigned int i = 0; i < contacts.count(); i++)
{
contacts[i].surface.mode = 0; //dContactBounce;
contacts[i].surface.mu = 1.0;
contacts[i].surface.mu2 = 0;
contacts[i].surface.bounce = 0.1;
contacts[i].surface.bounce_vel = 0.1;
contacts[i].surface.soft_cfm = 0.01;
}
unsigned int collisions = dCollide(o1, o2, contacts.count(),
&contacts[0].geom, sizeof(dContact));
//clog << "collide" << endline;
unsigned int actual_collisions = 0;
for (unsigned int i = 0; i < collisions; i++)
{
clog << "depth: "<< contacts[i].geom.depth<< endline;
dJointID joint = dJointCreateContact(gRigidBodySimulation->_world,
gRigidBodySimulation->_contactgroup, &contacts[i]);
dJointAttach(joint, b1, b2);
}
#ifdef DEBUG_PHYSICS
if ( collisions == contacts.count() )
clog << "!!! Max collisions reached!" << endline;
#endif
if (collisions > 0)
{
//clog << "rbsim handle collision" << endline;
//ScriptManager::getSingleton()->handleCollision ( o1, o2 );
}
}
}
//------------------------------------------------------------------------------
int RigidBodySimulation::getSteps()
{
return _steps;
}
//------------------------------------------------------------------------------
Scalar RigidBodySimulation::getStepSize()
{
return _stepSize;
}
//------------------------------------------------------------------------------
int RigidBodySimulation::getMaxContacts()
{
return _maxContacts;
}
//------------------------------------------------------------------------------
void RigidBodySimulation::updateSteps(Scalar delta)
{
_delta += delta;
if (_delta < 0.0)
return;
_steps = ( int ) floor(_delta / _stepSize);
if (_steps > 10)
_steps = 10;
_delta -= _steps * _stepSize;
}
//------------------------------------------------------------------------------
bool RigidBodySimulation::step()
{
if (_steps > 0)
{
_ScriptSystem->callFunction("OnStep", _stepSize);
dSpaceCollide(_space, 0, &nearCallback);
dWorldQuickStep(_world, _stepSize);
StepSignal(_stepSize);
dJointGroupEmpty(_contactgroup);
_steps--;
}
if (_steps > 0)
return true;
return false;
}
//------------------------------------------------------------------------------
const RigidBodySimulation::Trimesh *RigidBodySimulation::getTrimesh(
const std::string &name)
{
Trimesh *trimesh = 0;
std::map<std::string, Trimesh *>::const_iterator result;
result = _Trimeshes.find(name);
if (result != _Trimeshes.end() )
{
trimesh = result->second;
}
/*
if ( trimesh == 0 )
{
MeshLoader loader;
clog << ">>> loading collision trimesh: " << name << endline;
loader.load ( name + ".3ds" );
if ( loader.objects().count() > 0 )
{
trimesh = new Trimesh();
MeshLoader::Object &object = loader.objects().item ( 0 );
clog << " " << object.vertices.count() << " Vertices" << endline;
trimesh->vertices.create ( object.vertices.count() * 3 );
clog << " " << object.faces.count() * 3 << " Indices" << endline;
trimesh->indices.create ( object.faces.count() * 3 );
unsigned int i;
for ( i = 0; i < object.vertices.count(); i++ )
{
trimesh->vertices[i*3] = -object.vertices[i].x;
trimesh->vertices[i*3+1] = object.vertices[i].y;
trimesh->vertices[i*3+2] = object.vertices[i].z;
}
for ( i = 0; i < object.faces.count(); i++ )
{
trimesh->indices[i*3] = object.faces[i].a;
trimesh->indices[i*3+2] = object.faces[i].b;
trimesh->indices[i*3+1] = object.faces[i].c;
}
_Trimeshes[name] = trimesh;
}
}
*/
return trimesh;
}
} // namespace BlueCore

View File

@ -0,0 +1,180 @@
#ifndef BLUECORE_RIGID_BODY_SIMULATION_H
#define BLUECORE_RIGID_BODY_SIMULATION_H
// system includes
#include <list>
#include <map>
#include <vector>
#include "ode/ode.h"
#include "squirrel.h"
#include "trimeshloader.h"
// project includes
#include "Utilities/Referenced.h"
#include "Utilities/Buffer.h"
#include "Utilities/sigslot.h"
#include "Math/Vector.h"
#include "Math/Matrix.h"
#include "Math/Quaternion.h"
#include "ScriptSystem.h"
namespace BlueCore
{
class RigidBodySimulation;
class RigidBody
{
Vector3 _Position;
Quaternion _Orientation;
Vector3 _LinearVelocity;
Vector3 _AngularVelocity;
dBodyID _Body;
dSpaceID _Space;
struct CollisionMesh
{
dTriMeshDataID trimeshdata;
dGeomID geom;
};
std::vector<CollisionMesh> _CollisionMeshes;
HSQOBJECT _CollisionHandler;
weak_ptr<RigidBodySimulation> _Simulation;
public:
RigidBody(RigidBodySimulation* simulation, dWorldID world, dSpaceID space);
~RigidBody();
const Vector3 &getPosition() const;
void setPosition(const Vector3 &v);
const Vector3 &getLinearVelocity() const;
void setLinearVelocity(const Vector3 &v);
const Quaternion &getOrientation() const;
void setOrientation(const Quaternion &q);
const Vector3 &getAngularVelocity() const;
void applyGlobalForce(const Vector3 &force, const Vector3 &point);
void applyGlobalForce(const Vector3 &force);
void applyLocalForce(const Vector3 &force, const Vector3 &point);
void applyLocalForce(const Vector3 &force);
void applyGlobalMomentum(const Vector3 &momentum, const Vector3 &point);
void applyLocalMomentum(const Vector3 &momentum, const Vector3 &point);
Vector3 getLocalLinearMomentum() const;
Vector3 getGlobalLinearMomentum() const;
Vector3 getLocalAngularMomentum() const;
Vector3 getGlobalAngularMomentum() const;
Vector3 getLocalVelocity() const;
Vector3 getGlobalVelocity() const;
Scalar getMass() const;
sigslot::signal1<RigidBody *> CollisionSignal;
void saveState();
unsigned int addCollisionMesh(const std::string &meshname, Scalar density);
void setCollisionMeshPosition(unsigned int geom, const Vector3 &position);
void
setCollisionMeshRotation(unsigned int geom,
const Quaternion &rotation);
void getCollisionMeshPosition(unsigned int geom, Vector3 &position);
void getCollisionMeshRotation(unsigned int geom, Quaternion &rotation);
void enableCollisionMesh(unsigned int geom);
void disableCollisionMesh(unsigned int geom);
unsigned int getCollisionMeshId(dGeomID geom);
HSQOBJECT getCollisionHandler();
void setCollisionHandler(HSQOBJECT handler);
};
class RigidBodySimulation : public Referenced
{
public:
typedef struct
{
Buffer<float> vertices;
Buffer<int> indices;
} Trimesh;
private:
static void nearCallback(void *data, dGeomID o1, dGeomID o2);
dWorldID _world;
dSpaceID _space;
dJointGroupID _contactgroup;
int _maxContacts;
Scalar _delta;
Scalar _stepSize;
int _steps;
std::list<RigidBody *> _bodies;
std::map<std::string, Trimesh *> _Trimeshes;
ref_ptr<ScriptSystem> _ScriptSystem;
public:
RigidBodySimulation(ScriptSystem *scriptsystem);
~RigidBodySimulation();
void initializeSingleton();
void shutdownSingleton();
RigidBody *createRigidBody();
void deleteRigidBody(RigidBody *rigid_body);
void removeAll();
int getSteps();
Scalar getStepSize();
int getMaxContacts();
void saveStates();
void updateSteps(Scalar time);
bool step();
sigslot::signal1<Scalar> StepSignal;
const Trimesh *getTrimesh(const std::string &name);
};
}
#endif

162
engine/SceneNode.cpp Normal file
View File

@ -0,0 +1,162 @@
#include "SceneNode.h"
namespace BlueCore {
#define DEBUG_SCENEGRAPH
//------------------------------------------------------------------------------
SceneNode::SceneNode() :
Named("unnamed SceneNode"), _Parent(0)
{
#ifdef DEBUG_SCENEGRAPH
clog << "SceneNode 'Unnamed SceneNode' created." << endline;
#endif
}
//------------------------------------------------------------------------------
SceneNode::SceneNode(const std::string &name) :
Named(name), _Parent(0)
{
#ifdef DEBUG_SCENEGRAPH
clog << "SceneNode '" << name << "' created." << endline;
#endif
}
//------------------------------------------------------------------------------
SceneNode::~SceneNode()
{
detachAll();
#ifdef DEBUG_SCENEGRAPH
clog << "SceneNode '" << getName() << "' deleted." << endline;
#endif
}
//------------------------------------------------------------------------------
void SceneNode::attach(SceneNode *node)
{
if (node == 0)
return;
_Children.push_back(node );
node->_Parent = this;
node->addReference();
#ifdef DEBUG_SCENEGRAPH
clog << "SceneNode '" << node->getName() << "' attached to '" << this->getName() << "'" << endline;
#endif
}
//------------------------------------------------------------------------------
void SceneNode::detach(SceneNode *node)
{
node->_Parent = 0;
node->removeReference();
_Children.remove(node );
#ifdef DEBUG_SCENEGRAPH
clog << "SceneNode '" << node->getName() << "' detach from '" << this->getName() << "'" << endline;
#endif
}
//------------------------------------------------------------------------------
void SceneNode::detachAll()
{
SceneNodeList::iterator i;
for (i = _Children.begin(); i != _Children.end(); i++)
{
( *i )->_Parent = 0;
( *i )->removeReference();
}
_Children.clear();
}
//------------------------------------------------------------------------------
SceneNode *SceneNode::getParent() const
{
return _Parent;
}
//------------------------------------------------------------------------------
void SceneNode::detachFromParent()
{
if (_Parent )
_Parent->detach( this);
}
//------------------------------------------------------------------------------
const SceneNode::SceneNodeList& SceneNode::getChildren () const
{
return _Children;
}
//------------------------------------------------------------------------------
void SceneNode::update(Scalar time)
{
updateAbsoluteTransformation();
// if (isActive() )
{
SceneNodeList::iterator i;
for (i = _Children.begin(); i != _Children.end(); i++)
( *i )->update(time );
}
}
//------------------------------------------------------------------------------
void SceneNode::render(RenderDevice *device, Camera *camera)
{
if (isActive() )
{
SceneNodeList::iterator i;
for (i = _Children.begin(); i != _Children.end(); i++)
{
( *i )->render(device, camera);
}
}
}
//------------------------------------------------------------------------------
const Transformation& SceneNode::getRelativeTransformation()
{
return _RelativeTransformation;
}
const Transformation& SceneNode::getAbsoluteTransformation()
{
return _AbsoluteTransformation;
}
//------------------------------------------------------------------------------
void SceneNode::setRelativeTranslation(const Vector3 &translation)
{
_RelativeTransformation.translation = translation;
}
//------------------------------------------------------------------------------
void SceneNode::setRelativeRotation (const Quaternion &rotation)
{
_RelativeTransformation.rotation = rotation;
}
//------------------------------------------------------------------------------
void SceneNode::updateAbsoluteTransformation()
{
/*
if (_Parent )
_AbsoluteTranslation = _Parent->getAbsoluteTranslation()
+_Parent->getAbsoluteRotation().inversed() * _RelativeTranslation;
else
_AbsoluteTranslation = _RelativeTranslation;
*/
}
} // namespace BlueCore

61
engine/SceneNode.h Normal file
View File

@ -0,0 +1,61 @@
#ifndef BLUECORE_SCENE_NODE_H
#define BLUECORE_SCENE_NODE_H
#include "Camera.h"
#include "RenderDevice.h"
#include "Utilities/Referenced.h"
#include "Utilities/Named.h"
#include "Utilities/Log.h"
#include "Utilities/Activated.h"
#include "Math/Transformation.h"
#include <iostream>
#include <list>
namespace BlueCore
{
class SceneNode : public Referenced, public Named, public Activated
{
public:
typedef std::list< ref_ptr<SceneNode> > SceneNodeList;
protected:
SceneNode *_Parent;
SceneNodeList _Children;
Transformation _RelativeTransformation;
Transformation _AbsoluteTransformation;
public:
SceneNode();
SceneNode(const std::string &name);
virtual ~SceneNode();
SceneNode *getParent() const;
const SceneNodeList &getChildren() const;
void attach(SceneNode *node);
void detach(SceneNode *node);
void detachAll();
void detachFromParent();
virtual void update(Scalar time);
virtual void render (RenderDevice *device, Camera *camera);
const Transformation& getRelativeTransformation();
const Transformation& getAbsoluteTransformation();
void setRelativeTranslation (const Vector3 &translation);
void setRelativeRotation (const Quaternion &rotation);
virtual void updateAbsoluteTransformation();
};
} // namespace BlueCore
#endif

203
engine/ScriptSystem.cpp Normal file
View File

@ -0,0 +1,203 @@
#include "ScriptSystem.h"
#include "Utilities/Log.h"
// library includes
#include "physfs.h"
// system includes
#include <iostream>
#include <cmath>
#include <stdio.h>
#include <stdarg.h>
using namespace std;
namespace BlueCore
{
//--------------------------------------------------------------------------
static ScriptSystem* gScriptSystem = 0;
//--------------------------------------------------------------------------
void _sq_compiler_error_handler(HSQUIRRELVM vm, const SQChar *error,
const SQChar *source, SQInteger line, SQInteger column)
{
clog << "!!! Error compiling script '"<< source << ":"<< line << ": "
<< error << endlog;
}
//--------------------------------------------------------------------------
static SQInteger _sq_runtime_error_handler(HSQUIRRELVM vm)
{
const SQChar *error = 0;
if (sq_gettop(vm) >= 1)
{
if (SQ_SUCCEEDED(sq_getstring(vm, 2, &error) ) )
{
clog << "!!! Script Error: "<< error << endlog;
}
else
{
clog << "!!! Script Error: unknown"<< endlog;
}
}
return 0;
}
//--------------------------------------------------------------------------
void _sq_print(HSQUIRRELVM vm, const SQChar* s, ...)
{
va_list vl;
va_start ( vl, s );
vprintf(s, vl);
va_end ( vl );
}
//--------------------------------------------------------------------------
static SQInteger _sq_require(HSQUIRRELVM v)
{
const SQChar *scriptname = 0;
if (SQ_SUCCEEDED(sq_getstring(v, 2, &scriptname) ))
{
if (gScriptSystem)
gScriptSystem->loadScript(scriptname);
}
return 0;
}
//--------------------------------------------------------------------------
SQInteger _sq_file_reader(SQUserPointer file)
{
char c;
unsigned int count;
count = PHYSFS_read( (PHYSFS_file *)file, &c, sizeof (c), 1);
if (count > 0)
return c;
return 0;
}
//--------------------------------------------------------------------------
ScriptSystem::ScriptSystem()
{
gScriptSystem = this;
_VM = sq_open( 1024);
sq_setcompilererrorhandler(_VM, _sq_compiler_error_handler);
sq_newclosure(_VM, _sq_runtime_error_handler, 0);
sq_seterrorhandler(_VM);
sq_setprintfunc(_VM, _sq_print);
sq_pushroottable(_VM);
sq_pushstring(_VM, "require", -1);
sq_newclosure(_VM, _sq_require, 0);
sq_setparamscheck(_VM, 2, ".s");
sq_newslot(_VM, -3, false);
sq_pop(_VM, 1);
clog << ">>> ScriptSystem constructed ..."<< endlog;
}
//--------------------------------------------------------------------------
ScriptSystem::~ScriptSystem()
{
sq_close(_VM);
clog << ">>> ScriptSystem destructed ..."<< endlog;
}
//--------------------------------------------------------------------------
HSQUIRRELVM ScriptSystem::getVM()
{
return _VM;
}
//--------------------------------------------------------------------------
bool ScriptSystem::loadScript(const std::string &name)
{
for (unsigned int i = 0; i < _LoadedScripts.size(); i++)
{
if (_LoadedScripts[i] == name)
return true;
}
if (executeScript(name) )
{
_LoadedScripts.push_back(name);
return true;
}
else
clog << "!!! Script '"<< name << "' not found!"<< endlog;
return false;
}
//--------------------------------------------------------------------------
bool ScriptSystem::executeScript(const std::string &name)
{
string filename = name + ".nut";
PHYSFS_file *file = PHYSFS_openRead(filename.c_str() );
if ( !file)
{
clog << "!!! Script '"<< name << "' not found!"<< endlog;
return false;
}
SQInteger ret;
ret = sq_compile(_VM, _sq_file_reader, file, name.c_str(), 1);
PHYSFS_close(file);
if (SQ_FAILED(ret) )
{
return false;
}
sq_pushroottable(_VM);
ret = sq_call(_VM, 1, SQFalse, SQTrue);
sq_pop(_VM, 1);
if (SQ_FAILED(ret) )
{
clog << "!!! Script execution failed: "<< name << endlog;
return false;
}
else
return true;
}
//--------------------------------------------------------------------------
void ScriptSystem::callFunction(const std::string &name)
{
sq_pushroottable(_VM);
sq_pushstring(_VM, name.c_str(), -1);
if (SQ_SUCCEEDED(sq_get(_VM, -2)) )
{
sq_pushroottable(_VM);
if (sq_call(_VM, 1, SQTrue, SQTrue) )
sq_pop(_VM, 1);
}
sq_pop(_VM, 1);
}
//--------------------------------------------------------------------------
void ScriptSystem::callFunction(const std::string &name, double value)
{
sq_pushroottable(_VM);
sq_pushstring(_VM, name.c_str(), -1);
if (SQ_SUCCEEDED(sq_get(_VM, -2)) )
{
sq_pushroottable(_VM);
sq_pushfloat(_VM, value);
if (sq_call(_VM, 2, SQTrue, SQTrue) )
sq_pop(_VM, 1);
}
sq_pop(_VM, 1);
}
}

38
engine/ScriptSystem.h Normal file
View File

@ -0,0 +1,38 @@
#ifndef BLUECORE_SCRIPT_SYSTEM_H
#define BLUECORE_SCRIPT_SYSTEM_H
// system includes
#include <vector>
#include <string>
// library includes
#include "squirrel.h"
// project includes
#include "Utilities/Referenced.h"
namespace BlueCore{
class ScriptSystem : public Referenced
{
HSQUIRRELVM _VM;
std::vector<std::string> _LoadedScripts;
public:
ScriptSystem();
~ScriptSystem();
HSQUIRRELVM getVM();
bool executeScript(const std::string &filename);
bool loadScript(const std::string &filename);
void callFunction(const std::string &name);
void callFunction(const std::string &name, double value);
};
} // namespace BlueCore
#endif

View File

@ -0,0 +1,126 @@
#include "ScriptSystem_Font.h"
namespace BlueCore
{
//------------------------------------------------------------------------------
static weak_ptr<FontManager> gFontManager;
//------------------------------------------------------------------------------
static SQInteger _font_releasehook(SQUserPointer p, SQInteger size)
{
Font *font = (Font *)p;
if (font)
font->removeReference();
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _font_constructor(HSQUIRRELVM vm)
{
SQInteger argc = sq_gettop (vm );
Font *font = 0;
if (argc < 3)
{
if (gFontManager.valid())
font = gFontManager->getDefaultFont();
}
else
{
const SQChar *name = 0;
SQInteger size = 1;
SQBool hinting = SQFalse;
sq_getstring (vm, 2, &name );
sq_getinteger (vm, 3, &size );
if (argc > 3)
sq_getbool(vm, 4, &hinting );
if (gFontManager.valid())
{
font = gFontManager->loadFont(name, size, hinting == SQTrue );
if (font)
font->addReference();
}
}
sq_setinstanceup(vm, 1, (void *)font );
sq_setreleasehook (vm, 1, _font_releasehook );
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _font_print(HSQUIRRELVM vm)
{
int argc = sq_gettop (vm );
if (argc < 4)
return 0;
const Font *font = 0;
sq_getinstanceup (vm, 1, ( void ** ) &font, 0);
if (font)
{
SQFloat x, y;
const char *text;
SQInteger halign = 0, valign = 0;
sq_getfloat (vm, 2, &x );
sq_getfloat (vm, 3, &y );
sq_getstring(vm, 4, &text);
if (argc > 4)
{
sq_getinteger(vm, 5, &halign );
}
if (argc > 5)
{
sq_getinteger(vm, 6, &valign );
}
font->print( (float)x, (float)y, text, halign, valign );
}
return 0;
}
//------------------------------------------------------------------------------
void setupScriptSystem_Font (ScriptSystem* scriptsystem, FontManager* fontmanager)
{
if (scriptsystem && fontmanager)
{
HSQUIRRELVM vm = scriptsystem->getVM();
gFontManager = fontmanager;
sq_pushroottable (vm );
// push class
sq_pushstring (vm, "Font", -1);
if (SQ_SUCCEEDED (sq_newclass (vm, SQFalse ) ) )
{
// register constructor
sq_pushstring (vm, "constructor", -1);
sq_newclosure (vm, _font_constructor, 0);
sq_newslot (vm, -3, false);
sq_pushstring (vm, "print", -1);
sq_newclosure (vm, _font_print, 0);
sq_newslot (vm, -3, false);
// create class
sq_newslot (vm, -3, false);
}
sq_poptop (vm );
}
}
}

View File

@ -0,0 +1,14 @@
#ifndef BLUECORE_SCRIPTING_FONT_H
#define BLUECORE_SCRIPTING_FONT_H
#include "FontManager.h"
#include "ScriptSystem.h"
#include "squirrel.h"
namespace BlueCore
{
void setupScriptSystem_Font(ScriptSystem* scriptsystem, FontManager* fontmanager);
}
#endif

View File

@ -0,0 +1,126 @@
#include "ScriptSystem_Image.h"
#include "TextureImage.h"
namespace BlueCore
{
//------------------------------------------------------------------------------
static weak_ptr<TextureManager> gTextureManager;
static weak_ptr<RenderDevice> gRenderDevice;
//------------------------------------------------------------------------------
static SQInteger _image_releasehook(SQUserPointer p, SQInteger size)
{
TextureImage *image = (TextureImage *)p;
if (image)
image->removeReference();
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _image_constructor(HSQUIRRELVM vm)
{
SQInteger argc = sq_gettop (vm );
if (argc < 6)
return 0;
TextureImage *image = 0;
const SQChar *texturename = 0;
SQFloat ax, ay, bx, by;
sq_getstring(vm, 2, &texturename );
sq_getfloat(vm, 3, &ax );
sq_getfloat(vm, 4, &ay );
sq_getfloat(vm, 5, &bx );
sq_getfloat(vm, 6, &by );
Texture *texture = gTextureManager->loadTexture(texturename, 0, 0);
image = new TextureImage( gRenderDevice.get(), texture, ax, ay, bx, by );
image->addReference();
sq_setinstanceup(vm, 1, (void *)image );
sq_setreleasehook (vm, 1, _image_releasehook );
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _image_draw(HSQUIRRELVM vm)
{
int argc = sq_gettop (vm );
if (argc < 3)
return 0;
TextureImage *image = 0;
sq_getinstanceup (vm, 1, ( void ** ) &image, 0);
if (image )
{
SQFloat x, y, r = 0.0;
SQInteger halign = 0, valign = 0;
sq_getfloat (vm, 2, &x );
sq_getfloat (vm, 3, &y );
if (argc > 3)
{
sq_getinteger(vm, 4, &halign );
}
if (argc > 4)
{
sq_getinteger(vm, 5, &valign );
}
if (argc > 5)
{
sq_getfloat(vm, 6, &r );
}
image->draw(x, y, halign, valign, r );
}
return 0;
}
//------------------------------------------------------------------------------
void setupScriptSystem_Image(ScriptSystem* scriptsystem,
TextureManager* texturemanager, RenderDevice* renderdevice)
{
if (scriptsystem == 0|| texturemanager == 0|| renderdevice == 0)
return;
gTextureManager = texturemanager;
gRenderDevice = renderdevice;
HSQUIRRELVM vm = scriptsystem->getVM();
sq_pushroottable (vm );
// push class
sq_pushstring (vm, "Image", -1);
if (SQ_SUCCEEDED (sq_newclass (vm, SQFalse ) ) )
{
// register constructor
sq_pushstring (vm, "constructor", -1);
sq_newclosure (vm, _image_constructor, 0);
sq_newslot (vm, -3, false);
sq_pushstring (vm, "draw", -1);
sq_newclosure (vm, _image_draw, 0);
sq_newslot (vm, -3, false);
// create class
sq_newslot (vm, -3, false);
}
sq_poptop (vm );
}
}

View File

@ -0,0 +1,13 @@
#ifndef BLUECORE_SCRIPTING_IMAGE_H
#define BLUECORE_SCRIPTING_IMAGE_H
#include "ScriptSystem.h"
#include "TextureManager.h"
#include "RenderDevice.h"
namespace BlueCore
{
void setupScriptSystem_Image (ScriptSystem* scriptsystem, TextureManager* texturemanager, RenderDevice* renderdevice);
}
#endif

View File

@ -0,0 +1,440 @@
#include "ScriptSystem_Math.h"
#include "Utilities/MersenneTwister.h"
#include <cmath>
namespace BlueCore
{
static MTRand mtrand;
//------------------------------------------------------------------------------
static SQInteger _sin(HSQUIRRELVM v)
{
SQFloat f;
sq_getfloat (v, 2, &f );
sq_pushfloat (v, ( SQFloat ) sin (f ) );
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _cos(HSQUIRRELVM v)
{
SQFloat f;
sq_getfloat (v, 2, &f );
sq_pushfloat (v, ( SQFloat ) cos (f ) );
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _tan(HSQUIRRELVM v)
{
SQFloat f;
sq_getfloat (v, 2, &f );
sq_pushfloat (v, ( SQFloat ) tan (f ) );
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _sqrt(HSQUIRRELVM v)
{
SQFloat f;
sq_getfloat (v, 2, &f );
sq_pushfloat (v, ( SQFloat ) sqrt (f ) );
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _trunc(HSQUIRRELVM v)
{
SQFloat f;
sq_getfloat (v, 2, &f );
sq_pushfloat (v, ( SQFloat ) f - fmod(f, 1.0) );
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _floor(HSQUIRRELVM v)
{
SQFloat f;
sq_getfloat (v, 2, &f );
sq_pushfloat (v, ( SQFloat ) floor (f ) );
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _ceil(HSQUIRRELVM v)
{
SQFloat f;
sq_getfloat (v, 2, &f );
sq_pushfloat (v, ( SQFloat ) ceil (f ) );
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _rand(HSQUIRRELVM v)
{
sq_pushfloat (v, mtrand.rand() );
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _seed_rand(HSQUIRRELVM v)
{
SQInteger seed;
sq_getinteger(v, 2, &seed );
mtrand.seed(seed );
return 0;
}
//------------------------------------------------------------------------------
static void _setup_basic_math (HSQUIRRELVM vm)
{
sq_pushroottable (vm);
sq_pushstring (vm, "sin", -1);
sq_newclosure (vm, _sin, 0);
sq_setparamscheck (vm, 2, ".n");
sq_newslot (vm, -3, false);
sq_pushstring (vm, "cos", -1);
sq_newclosure (vm, _cos, 0);
sq_setparamscheck (vm, 2, ".n");
sq_newslot (vm, -3, false);
sq_pushstring (vm, "tan", -1);
sq_newclosure (vm, _tan, 0);
sq_setparamscheck (vm, 2, ".n");
sq_newslot (vm, -3, false);
sq_pushstring (vm, "sqrt", -1);
sq_newclosure (vm, _sqrt, 0);
sq_setparamscheck (vm, 2, ".n");
sq_newslot (vm, -3, false);
sq_pushstring (vm, "trunc", -1);
sq_newclosure (vm, _trunc, 0);
sq_setparamscheck (vm, 2, ".n");
sq_newslot (vm, -3, false);
sq_pushstring (vm, "floor", -1);
sq_newclosure (vm, _floor, 0);
sq_setparamscheck (vm, 2, ".n");
sq_newslot (vm, -3, false);
sq_pushstring (vm, "ceil", -1);
sq_newclosure (vm, _ceil, 0);
sq_setparamscheck (vm, 2, ".n");
sq_newslot (vm, -3, false);
sq_pushstring (vm, "rand", -1);
sq_newclosure (vm, _rand, 0);
sq_setparamscheck (vm, 1, ".");
sq_newslot (vm, -3, false);
sq_pushstring (vm, "seed_rand", -1);
sq_newclosure (vm, _seed_rand, 0);
sq_setparamscheck (vm, 2, ".n");
sq_newslot (vm, -3, false);
// pop the root table
sq_pop (vm, 1);
}
//------------------------------------------------------------------------------
static SQInteger _vector__add ( HSQUIRRELVM v )
{
SQFloat ax, ay, az;
SQFloat bx = 0.0, by = 0.0, bz = 0.0;
_getvectorvalues ( v, 1, ax, ay, az );
_getvectorvalues ( v, 2, bx, by, bz );
_pushvector ( v, ax + bx, ay + by, az + bz );
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _vector__sub ( HSQUIRRELVM v )
{
SQFloat ax, ay, az;
SQFloat bx = 0.0, by = 0.0, bz = 0.0;
_getvectorvalues ( v, 1, ax, ay, az );
_getvectorvalues ( v, 2, bx, by, bz );
_pushvector ( v, ax - bx, ay - by, az - bz );
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _vector__mul ( HSQUIRRELVM v )
{
SQFloat x, y, z, f;
_getvectorvalues ( v, 1, x, y, z );
sq_getfloat ( v, 2, &f );
_pushvector ( v, x*f, y*f, z*f );
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _vector__div ( HSQUIRRELVM v )
{
SQFloat x, y, z, f;
_getvectorvalues ( v, 1, x, y, z );
sq_getfloat ( v, 2, &f );
_pushvector ( v, x / f, y / f, y / f );
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _vector_length ( HSQUIRRELVM v )
{
SQFloat x, y, z;
_getvectorvalues ( v, 1, x, y, z );
sq_pushfloat ( v, std::sqrt ( x*x + y*y + z*z ) );
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _vector_normalize ( HSQUIRRELVM v )
{
SQFloat x, y, z;
_getvectorvalues ( v, 1, x, y, z );
SQFloat l = 1 / std::sqrt ( x * x + y * y + z * z );
_setvectorvalues ( v, 1, x*l, y*l, z*l );
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _vector_constructor ( HSQUIRRELVM v )
{
SQFloat x = 0.0;
SQFloat y = 0.0;
SQFloat z = 0.0;
SQInteger argc = sq_gettop ( v );
if ( argc > 1 )
sq_getfloat ( v, 2, &x );
if ( argc > 2 )
sq_getfloat ( v, 3, &y );
if ( argc > 3 )
sq_getfloat ( v, 4, &z );
_setvectorvalues ( v, 1, x, y, z );
return 0;
}
//------------------------------------------------------------------------------
static void _register_vector_class( HSQUIRRELVM _vm )
{
sq_pushroottable ( _vm );
// push class
sq_pushstring ( _vm, "Vector", -1 );
if ( SQ_SUCCEEDED ( sq_newclass ( _vm, SQFalse ) ) )
{
// register variables
sq_pushstring ( _vm, "x", -1 );
sq_pushfloat ( _vm, 0.0 );
sq_newslot ( _vm, -3, false );
sq_pushstring ( _vm, "y", -1 );
sq_pushfloat ( _vm, 0.0 );
sq_newslot ( _vm, -3, false );
sq_pushstring ( _vm, "z", -1 );
sq_pushfloat ( _vm, 0.0 );
sq_newslot ( _vm, -3, false );
// register constructor
sq_pushstring ( _vm, "constructor", -1 );
sq_newclosure ( _vm, _vector_constructor, 0 );
sq_newslot ( _vm, -3, false );
// register _add
sq_pushstring ( _vm, "_add", -1 );
sq_newclosure ( _vm, _vector__add, 0 );
sq_newslot ( _vm, -3, false );
// register _sub
sq_pushstring ( _vm, "_sub", -1 );
sq_newclosure ( _vm, _vector__sub, 0 );
sq_newslot ( _vm, -3, false );
// register _mul
sq_pushstring ( _vm, "_mul", -1 );
sq_newclosure ( _vm, _vector__mul, 0 );
sq_newslot ( _vm, -3, false );
// register _div
sq_pushstring ( _vm, "_div", -1 );
sq_newclosure ( _vm, _vector__div, 0 );
sq_newslot ( _vm, -3, false );
// register length
sq_pushstring ( _vm, "length", -1 );
sq_newclosure ( _vm, _vector_length, 0 );
sq_newslot ( _vm, -3, false );
// register normalize
sq_pushstring ( _vm, "normalize", -1 );
sq_newclosure ( _vm, _vector_normalize, 0 );
sq_newslot ( _vm, -3, false );
// create_vector class
sq_newslot ( _vm, -3, false );
}
sq_poptop ( _vm );
}
//------------------------------------------------------------------------------
static SQInteger _quaternion_constructor ( HSQUIRRELVM v )
{
SQFloat w = 0.0;
SQFloat x = 0.0;
SQFloat y = 0.0;
SQFloat z = 0.0;
SQInteger argc = sq_gettop ( v );
if ( argc > 1 )
sq_getfloat ( v, 2, &w );
if ( argc > 2 )
sq_getfloat ( v, 3, &x );
if ( argc > 3 )
sq_getfloat ( v, 4, &y );
if ( argc > 4 )
sq_getfloat ( v, 5, &z );
_setquaternionvalues ( v, 1, w, x, y, z );
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _quaternion_apply ( HSQUIRRELVM vm )
{
SQFloat qw, qx, qy, qz;
SQFloat vx, vy, vz;
_getquaternionvalues ( vm, 1, qw, qx, qy, qz );
_getvectorvalues ( vm, 2, vx, vy, vz );
SQFloat xx = qx*qx, xy = qx*qy, xz = qx*qz, xw = qx*qw,
yy = qy*qy, yz = qy*qz, yw = qy*qw,
zz = qz*qz, zw = qz*qw;
SQFloat rx = 2.0 * (vx * (0.5 - yy - zz) + vy * (xy - zw) + vz * (xz + yw));
SQFloat ry = 2.0 * (vx * (xy + zw) + vy * (0.5 - xx - zz) + vz * (yz - xw));
SQFloat rz = 2.0 * (vx * (xz - yw) + vy * (yz + xw) + vz * (0.5 - xx - yy));
_pushvector ( vm, rx, ry, rz );
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _quaternion_applyinversed ( HSQUIRRELVM vm )
{
SQFloat qw, qx, qy, qz;
SQFloat vx, vy, vz;
_getquaternionvalues ( vm, 1, qw, qx, qy, qz );
_getvectorvalues ( vm, 2, vx, vy, vz );
SQFloat xx = qx*qx, xy = qx*qy, xz = qx*qz, xw = -qx*qw,
yy = qy*qy, yz = qy*qz, yw = -qy*qw,
zz = qz*qz, zw = -qz*qw;
SQFloat rx = 2.0 * (vx * (0.5 - yy - zz) + vy * (xy - zw) + vz * (xz + yw));
SQFloat ry = 2.0 * (vx * (xy + zw) + vy * (0.5 - xx - zz) + vz * (yz - xw));
SQFloat rz = 2.0 * (vx * (xz - yw) + vy * (yz + xw) + vz * (0.5 - xx - yy));
_pushvector ( vm, rx, ry, rz );
return 1;
}
//------------------------------------------------------------------------------
static void _register_quaternion_class (HSQUIRRELVM vm)
{
sq_pushroottable ( vm );
// push class
sq_pushstring ( vm, "Quaternion", -1 );
if ( SQ_SUCCEEDED ( sq_newclass ( vm, SQFalse ) ) )
{
// register variables
sq_pushstring ( vm, "w", -1 );
sq_pushfloat ( vm, 0.0 );
sq_newslot ( vm, -3, false );
sq_pushstring ( vm, "x", -1 );
sq_pushfloat ( vm, 0.0 );
sq_newslot ( vm, -3, false );
sq_pushstring ( vm, "y", -1 );
sq_pushfloat ( vm, 0.0 );
sq_newslot ( vm, -3, false );
sq_pushstring ( vm, "z", -1 );
sq_pushfloat ( vm, 0.0 );
sq_newslot ( vm, -3, false );
// register constructor
sq_pushstring ( vm, "constructor", -1 );
sq_newclosure ( vm, _quaternion_constructor, 0 );
sq_newslot ( vm, -3, false );
sq_pushstring ( vm, "apply", -1 );
sq_newclosure ( vm, _quaternion_apply, 0 );
sq_newslot ( vm, -3, false );
sq_pushstring ( vm, "applyInversed", -1 );
sq_newclosure ( vm, _quaternion_applyinversed, 0 );
sq_newslot ( vm, -3, false );
// create_vector class
sq_newslot ( vm, -3, false );
}
sq_poptop ( vm );
}
//------------------------------------------------------------------------------
void setupScriptSystem_Math (ScriptSystem* scriptsystem)
{
if (scriptsystem == 0)
return;
HSQUIRRELVM vm = scriptsystem->getVM();
if (vm)
{
_setup_basic_math (vm);
_register_vector_class(vm);
_register_quaternion_class(vm);
}
}
} // namespace BlueCore

138
engine/ScriptSystem_Math.h Normal file
View File

@ -0,0 +1,138 @@
#ifndef BLUECORE_SCRIPTING_MATH_H
#define BLUECORE_SCRIPTING_MATH_H
#include "ScriptSystem.h"
namespace BlueCore
{
//------------------------------------------------------------------------------
inline void _setvectorvalues(HSQUIRRELVM &v, const SQInteger &idx,
const SQFloat &x, const SQFloat &y, const SQFloat &z)
{
sq_pushstring (v, "x", 1);
sq_pushfloat (v, x );
sq_rawset (v, idx );
sq_pushstring (v, "y", 1);
sq_pushfloat (v, y );
sq_rawset (v, idx );
sq_pushstring (v, "z", 1);
sq_pushfloat (v, z );
sq_rawset (v, idx );
}
//------------------------------------------------------------------------------
inline void _getvectorvalues(HSQUIRRELVM &v, const SQInteger &idx, SQFloat &x,
SQFloat &y, SQFloat &z)
{
sq_pushstring (v, "x", 1);
sq_rawget (v, idx );
sq_getfloat (v, -1, &x );
sq_pushstring (v, "y", 1);
sq_rawget (v, idx );
sq_getfloat (v, -1, &y );
sq_pushstring (v, "z", 1);
sq_rawget (v, idx );
sq_getfloat (v, -1, &z );
sq_pop (v, 3);
}
//------------------------------------------------------------------------------
inline void _pushvector(HSQUIRRELVM &v, const SQFloat &x, const SQFloat &y,
const SQFloat &z)
{
// get closure/class
// TODO: use SQObject rfom creation
sq_pushroottable (v );
sq_pushstring (v, "Vector", -1);
sq_get (v, -2);
sq_remove (v, -2);
// call constructor
sq_pushroottable (v );
sq_pushfloat (v, x );
sq_pushfloat (v, y );
sq_pushfloat (v, z );
sq_call (v, 4, SQTrue, SQTrue );
// remove class, leave instance
sq_remove (v, -2);
}
//------------------------------------------------------------------------------
inline void _pushquaternion(HSQUIRRELVM &v, const SQFloat &w, const SQFloat &x,
const SQFloat &y, const SQFloat &z)
{
// get closure/class
// TODO: use SQObject rfom creation!!!!!!
sq_pushroottable (v );
sq_pushstring (v, "Quaternion", -1);
sq_get (v, -2);
sq_remove (v, -2);
// call constructor
sq_pushroottable (v );
sq_pushfloat (v, w );
sq_pushfloat (v, x );
sq_pushfloat (v, y );
sq_pushfloat (v, z );
sq_call (v, 5, SQTrue, SQTrue );
// remove class, leave instance
sq_remove (v, -2);
}
//------------------------------------------------------------------------------
inline void _setquaternionvalues(HSQUIRRELVM &v, const SQInteger &idx,
const SQFloat &w, const SQFloat &x, const SQFloat &y, const SQFloat &z)
{
sq_pushstring (v, "w", -1);
sq_pushfloat (v, w );
sq_rawset (v, idx );
sq_pushstring (v, "x", -1);
sq_pushfloat (v, x );
sq_rawset (v, idx );
sq_pushstring (v, "y", -1);
sq_pushfloat (v, y );
sq_rawset (v, idx );
sq_pushstring (v, "z", -1);
sq_pushfloat (v, z );
sq_rawset (v, idx );
}
//------------------------------------------------------------------------------
inline void _getquaternionvalues(HSQUIRRELVM &v, const SQInteger &idx,
SQFloat &w, SQFloat &x, SQFloat &y, SQFloat &z)
{
sq_pushstring (v, "w", -1);
sq_get (v, idx );
sq_getfloat (v, -1, &w );
sq_pushstring (v, "x", -1);
sq_get (v, idx );
sq_getfloat (v, -1, &x );
sq_pushstring (v, "y", -1);
sq_get (v, idx );
sq_getfloat (v, -1, &y );
sq_pushstring (v, "z", -1);
sq_get (v, idx );
sq_getfloat (v, -1, &z );
sq_pop (v, 3);
}
void setupScriptSystem_Math(ScriptSystem* scriptsystem);
} // namespace BlueCore
#endif

View File

@ -0,0 +1,542 @@
#include "RigidBodySimulation.h"
#include "ScriptSystem_Math.h"
namespace BlueCore
{
//------------------------------------------------------------------------------
static weak_ptr<RigidBodySimulation> gRigidBodySimulation;
//------------------------------------------------------------------------------
static SQInteger _rigidbody_getposition(HSQUIRRELVM v)
{
RigidBody *body = 0;
Vector3 position;
if (sq_gettop (v ) == 1)
{
sq_getinstanceup (v, 1, ( void ** ) &body, 0);
}
if (body )
{
position = body->getPosition();
_pushvector (v, position.x, position.y, position.z);
return 1;
}
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _rigidbody_getrotation(HSQUIRRELVM v)
{
RigidBody *body = 0;
Quaternion q;
if (sq_gettop (v ) == 1)
{
sq_getinstanceup (v, 1, ( void ** ) &body, 0);
}
if (body )
{
q = body->getOrientation();
_pushquaternion (v, q.w, q.x, q.y, q.z);
return 1;
}
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _rigidbody_getangularvelocity(HSQUIRRELVM v)
{
RigidBody *body = 0;
Vector3 velocity;
if (sq_gettop (v ) == 1)
{
sq_getinstanceup (v, 1, ( void ** ) &body, 0);
}
if (body )
{
velocity = body->getAngularVelocity();
_pushvector (v, velocity.x, velocity.y, velocity.z);
return 1;
}
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _rigidbody_getlinearvelocity(HSQUIRRELVM v)
{
RigidBody *body = 0;
Vector3 velocity;
if (sq_gettop (v ) == 1)
{
sq_getinstanceup (v, 1, ( void ** ) &body, 0);
}
if (body )
{
velocity = body->getLinearVelocity();
_pushvector (v, velocity.x, velocity.y, velocity.z);
return 1;
}
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _rigidbody_setposition(HSQUIRRELVM v)
{
RigidBody *body = 0;
sq_getinstanceup (v, 1, ( void ** ) &body, 0);
if (body )
{
Vector3 position;
int argc = sq_gettop (v );
if (argc == 2)
{
_getvectorvalues (v, 2, position.x, position.y, position.z);
}
else if (argc == 4)
{
sq_getfloat (v, 2, &position.x);
sq_getfloat (v, 3, &position.y);
sq_getfloat (v, 4, &position.z);
}
body->setPosition(position );
}
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _rigidbody_setlinearvelocity(HSQUIRRELVM v)
{
RigidBody *body = 0;
sq_getinstanceup (v, 1, ( void ** ) &body, 0);
if (body )
{
Vector3 velocity;
int argc = sq_gettop (v );
if (argc == 2)
{
_getvectorvalues (v, 2, velocity.x, velocity.y, velocity.z);
}
else if (argc == 4)
{
sq_getfloat (v, 2, &velocity.x);
sq_getfloat (v, 3, &velocity.y);
sq_getfloat (v, 4, &velocity.z);
}
body->setLinearVelocity(velocity );
}
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _rigidbody_setrotation(HSQUIRRELVM v)
{
RigidBody *body = 0;
sq_getinstanceup (v, 1, ( void ** ) &body, 0);
if (body )
{
Quaternion q;
int argc = sq_gettop (v );
if (argc == 2)
{
_getquaternionvalues (v, 2, q.w, q.x, q.y, q.z);
}
else if (argc == 5)
{
sq_getfloat (v, 2, &q.w);
sq_getfloat (v, 3, &q.x);
sq_getfloat (v, 4, &q.y);
sq_getfloat (v, 5, &q.z);
}
body->setOrientation(q );
}
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _rigidbody_applylocalforce(HSQUIRRELVM v)
{
RigidBody *body = 0;
sq_getinstanceup (v, 1, ( void ** ) &body, 0);
if (body )
{
int argc = sq_gettop (v );
if (argc == 2)
{
Vector3 force;
_getvectorvalues (v, 2, force.x, force.y, force.z);
body->applyLocalForce(force );
}
else if (argc == 3)
{
Vector3 force, point;
_getvectorvalues (v, 2, force.x, force.y, force.z);
_getvectorvalues (v, 3, point.x, point.y, point.z);
body->applyLocalForce(force, point );
}
}
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _rigidbody_applyglobalforce(HSQUIRRELVM v)
{
RigidBody *body = 0;
sq_getinstanceup (v, 1, ( void ** ) &body, 0);
if (body )
{
int argc = sq_gettop (v );
if (argc == 2)
{
Vector3 force;
_getvectorvalues (v, 2, force.x, force.y, force.z);
body->applyGlobalForce(force );
}
else if (argc == 3)
{
Vector3 force, point;
_getvectorvalues (v, 2, force.x, force.y, force.z);
_getvectorvalues (v, 3, point.x, point.y, point.z);
body->applyGlobalForce(force, point );
}
}
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _rigidbody_addcollisionmesh(HSQUIRRELVM v)
{
SQInteger argc = sq_gettop (v );
if (argc < 3)
{
sq_pushinteger (v, 0);
return 1;
}
RigidBody *body = 0;
const SQChar *meshname = 0;
SQFloat density = 1.0;
sq_getinstanceup (v, 1, ( void ** ) &body, 0);
sq_getstring (v, 2, &meshname );
sq_getfloat (v, 3, &density );
if (body )
{
sq_pushinteger (v, body->addCollisionMesh(meshname, density ) );
}
else
sq_pushinteger (v, 0);
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _rigidbody_setcollisionmeshposition(HSQUIRRELVM v)
{
int argc = sq_gettop (v );
// need at least geom + vector
if (argc < 3)
return 0;
RigidBody *body = 0;
sq_getinstanceup (v, 1, ( void ** ) &body, 0);
if (body )
{
SQInteger geom = 0;
sq_getinteger (v, 2, &geom );
Vector3 position;
if (argc == 3)
{
_getvectorvalues (v, 3, position.x, position.y, position.z);
}
else if (argc == 5)
{
sq_getfloat (v, 3, &position.x);
sq_getfloat (v, 4, &position.y);
sq_getfloat (v, 5, &position.z);
}
body->setCollisionMeshPosition(geom, position );
}
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _rigidbody_disablecollisionmesh(HSQUIRRELVM v)
{
int argc = sq_gettop (v );
// need at least geom
if (argc < 2)
return 0;
RigidBody *body = 0;
sq_getinstanceup (v, 1, ( void ** ) &body, 0);
if (body )
{
SQInteger geom = 0;
sq_getinteger (v, 2, &geom );
body->disableCollisionMesh(geom );
}
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _rigidbody_enablecollisionmesh(HSQUIRRELVM v)
{
int argc = sq_gettop (v );
// need at least geom
if (argc < 2)
return 0;
RigidBody *body = 0;
sq_getinstanceup (v, 1, ( void ** ) &body, 0);
if (body )
{
SQInteger geom = 0;
sq_getinteger (v, 2, &geom );
body->enableCollisionMesh(geom );
}
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _rigidbody_setcollisionmeshrotation(HSQUIRRELVM v)
{
int argc = sq_gettop (v );
// need at least geom + quaternion
if (argc < 3)
return 0;
RigidBody *body = 0;
sq_getinstanceup (v, 1, ( void ** ) &body, 0);
if (body )
{
SQInteger geom = 0;
sq_getinteger (v, 2, &geom );
Quaternion rotation;
if (argc == 3)
{
_getquaternionvalues (v, 3, rotation.w, rotation.x, rotation.y,
rotation.z);
}
else if (argc == 4)
{
Vector3 axis;
SQFloat angle;
_getvectorvalues (v, 3, axis.x, axis.y, axis.z);
sq_getfloat (v, 5, &angle );
rotation = Quaternion (axis, angle );
}
else if (argc == 5)
{
SQFloat h, a, b;
sq_getfloat (v, 3, &h );
sq_getfloat (v, 4, &a );
sq_getfloat (v, 5, &b );
rotation = Quaternion (h, a, b );
}
body->setCollisionMeshRotation(geom, rotation );
}
return 0;
}
//------------------------------------------------------------------------------
static SQInteger _rigidbody_releasehook(SQUserPointer p, SQInteger size)
{
if (gRigidBodySimulation.valid())
{
RigidBody *self = ( RigidBody* ) p;
gRigidBodySimulation->deleteRigidBody(self );
}
return 1;
}
//------------------------------------------------------------------------------
static SQInteger _rigidbody_constructor(HSQUIRRELVM v)
{
RigidBody *body = gRigidBodySimulation->createRigidBody();
if (SQ_FAILED (sq_setinstanceup (v, 1, body ) ) )
{
gRigidBodySimulation->deleteRigidBody(body );
return 0;
}
HSQOBJECT obj;
sq_getstackobj (v, 2, &obj );
body->setCollisionHandler(obj );
sq_setreleasehook (v, 1, _rigidbody_releasehook );
return 0;
}
//------------------------------------------------------------------------------
void setupScriptSystem_RigidBody(ScriptSystem *scriptsystem,
RigidBodySimulation *simulation)
{
gRigidBodySimulation = simulation;
HSQUIRRELVM vm = scriptsystem->getVM();
sq_pushroottable(vm );
sq_pushstring (vm, "RigidBody", -1);
if (SQ_SUCCEEDED (sq_newclass (vm, SQFalse ) ) )
{
// register rigidbody functions
sq_pushstring (vm, "constructor", -1);
sq_newclosure (vm, _rigidbody_constructor, 0);
sq_newslot (vm, -3, false);
sq_pushstring (vm, "setPosition", -1);
sq_newclosure (vm, _rigidbody_setposition, 0);
//sq_setparamscheck( vm, 2, "xx" );
sq_newslot (vm, -3, false);
sq_pushstring (vm, "getPosition", -1);
sq_newclosure (vm, _rigidbody_getposition, 0);
sq_setparamscheck (vm, 1, "x");
sq_newslot (vm, -3, false);
sq_pushstring (vm, "setRotation", -1);
sq_newclosure (vm, _rigidbody_setrotation, 0);
//sq_setparamscheck( vm, 2, "xx" );
sq_newslot (vm, -3, false);
sq_pushstring (vm, "getRotation", -1);
sq_newclosure (vm, _rigidbody_getrotation, 0);
sq_setparamscheck (vm, 1, "x");
sq_newslot (vm, -3, false);
sq_pushstring (vm, "getLinearVelocity", -1);
sq_newclosure (vm, _rigidbody_getlinearvelocity, 0);
sq_setparamscheck (vm, 1, "x");
sq_newslot (vm, -3, false);
sq_pushstring (vm, "setLinearVelocity", -1);
sq_newclosure (vm, _rigidbody_setlinearvelocity, 0);
sq_newslot (vm, -3, false);
sq_pushstring (vm, "getAngularVelocity", -1);
sq_newclosure (vm, _rigidbody_getangularvelocity, 0);
sq_setparamscheck (vm, 1, "x");
sq_newslot (vm, -3, false);
sq_pushstring (vm, "applyLocalForce", -1);
sq_newclosure (vm, _rigidbody_applylocalforce, 0);
//sq_setparamscheck (vm, 3, "xxx");
sq_newslot (vm, -3, false);
sq_pushstring (vm, "applyGlobalForce", -1);
sq_newclosure (vm, _rigidbody_applyglobalforce, 0);
sq_setparamscheck (vm, 3, "xxx");
sq_newslot (vm, -3, false);
sq_pushstring (vm, "addCollisionMesh", -1);
sq_newclosure (vm, _rigidbody_addcollisionmesh, 0);
sq_setparamscheck (vm, 3, "xsn");
sq_newslot (vm, -3, false);
sq_pushstring (vm, "setCollisionMeshPosition", -1);
sq_newclosure (vm, _rigidbody_setcollisionmeshposition, 0);
sq_newslot (vm, -3, false);
sq_pushstring (vm, "setCollisionMeshRotation", -1);
sq_newclosure (vm, _rigidbody_setcollisionmeshrotation, 0);
sq_newslot (vm, -3, false);
sq_pushstring (vm, "getCollisionMeshPosition", -1);
sq_newclosure (vm, _rigidbody_setcollisionmeshposition, 0);
sq_newslot (vm, -3, false);
sq_pushstring (vm, "getCollisionMeshRotation", -1);
sq_newclosure (vm, _rigidbody_setcollisionmeshrotation, 0);
sq_newslot (vm, -3, false);
sq_pushstring (vm, "disableCollisionMesh", -1);
sq_newclosure (vm, _rigidbody_disablecollisionmesh, 0);
sq_newslot (vm, -3, false);
sq_pushstring (vm, "enableCollisionMesh", -1);
sq_newclosure (vm, _rigidbody_enablecollisionmesh, 0);
sq_newslot (vm, -3, false);
sq_newslot (vm, -3, false);
}
sq_poptop (vm );
}
} // namespace BlueCore

View File

@ -0,0 +1,12 @@
#ifndef BLUECORE_SCRIPTING_RIGID_BODY_H
#define BLUECORE_SCRIPTING_RIGID_BODY_H
#include "squirrel.h"
#include "RigidBodySimulation.h"
namespace BlueCore
{
void setupScriptSystem_RigidBody( ScriptSystem *scriptsystem, RigidBodySimulation *simulation);
}
#endif

332
engine/ShaderManager.cpp Normal file
View File

@ -0,0 +1,332 @@
#include "ShaderManager.h"
#include "Utilities/Log.h"
#include "Utilities/CfgParser.h"
// library includes
#include "physfs.h"
// system includes
#include <iostream>
#include <vector>
using namespace std;
namespace BlueCore
{
//------------------------------------------------------------------------------
ShaderManager::ShaderManager(RenderWindow* renderwindow) :
_usingShaders(true), _RenderWindow(renderwindow)
{
glewInit();
if (GLEW_ARB_fragment_shader == false)
_usingShaders = false;
_RenderWindow->WindowCloseSignal.connect(this,
&ShaderManager::WindowCloseSlot);
clog << ">>> ShaderManager constructed ..."<< endline;
if (_usingShaders)
clog << " using shaders"<< endline;
else
clog << " shaders not supported!"<< endlog;
}
//------------------------------------------------------------------------------
ShaderManager::~ShaderManager()
{
clog << ">>> ShaderManager destructed ..."<< endlog;
}
//------------------------------------------------------------------------------
void ShaderManager::shutdown()
{
clog << ">>> ShaderManager shutting down ..."<< endlog;
ShaderProgramMap::iterator prog_iter;
for (prog_iter = shader_programs.begin(); prog_iter!= shader_programs.end(); prog_iter++)
{
glDeleteObjectARB(prog_iter->second);
}
shader_programs.clear();
VertexShaderMap::iterator vert_iter;
for (vert_iter = vertex_shader.begin(); vert_iter != vertex_shader.end(); vert_iter++)
{
glDeleteObjectARB(vert_iter->second);
}
vertex_shader.clear();
FragmentShaderMap::iterator frag_iter;
for (frag_iter = fragment_shader.begin(); frag_iter!= fragment_shader.end(); frag_iter++)
{
glDeleteObjectARB(frag_iter->second);
}
fragment_shader.clear();
}
//------------------------------------------------------------------------------
void ShaderManager::WindowCloseSlot()
{
shutdown();
}
//------------------------------------------------------------------------------
bool ShaderManager::usingShaders()
{
return _usingShaders;
}
//------------------------------------------------------------------------------
void printInfoLog(GLhandleARB obj)
{
int infologLength = 0;
int charsWritten = 0;
char *infoLog;
glGetObjectParameterivARB(obj, GL_OBJECT_INFO_LOG_LENGTH_ARB,
&infologLength);
if (infologLength > 1)
{
infoLog = new char[infologLength+1];
glGetInfoLogARB(obj, infologLength, &charsWritten, infoLog);
clog << " "<< infoLog << endline;
delete [] infoLog;
}
}
//------------------------------------------------------------------------------
VertexShader ShaderManager::loadVertexShader(const string &name)
{
if ( !_usingShaders)
return 0;
// check if this mesh is already loaded
VertexShaderMap::const_iterator result;
result = vertex_shader.find(name);
if (result != vertex_shader.end() )
{
return result->second;
}
string filename = name + ".vert";
PHYSFS_file *file = PHYSFS_openRead(filename.c_str() );
if ( !file)
{
clog << "!!! VertexShader '"<< name << "' not found"<< endline;
return 0;
}
char *buffer = new char[ PHYSFS_fileLength ( file ) ];
PHYSFS_read(file, buffer, 1, PHYSFS_fileLength(file) );
buffer[ PHYSFS_fileLength ( file ) - 1] = 0;
PHYSFS_close(file);
VertexShader shader = glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB);
glShaderSourceARB(shader, 1, ( const GLcharARB** ) &buffer, NULL);
delete [] buffer;
glCompileShaderARB(shader);
vertex_shader[name] = shader;
clog << ">>> VertexShader '"<< name << "' loaded"<< endline;
return shader;
}
//------------------------------------------------------------------------------
FragmentShader ShaderManager::loadFragmentShader(const string &name)
{
if ( !_usingShaders)
return 0;
// check if this mesh is already loaded
FragmentShaderMap::const_iterator result;
result = fragment_shader.find(name);
if (result != fragment_shader.end() )
{
return result->second;
}
string filename = name + ".frag";
PHYSFS_file *file = PHYSFS_openRead(filename.c_str() );
if ( !file)
{
clog << "!!! FragmentShader '"<< name << "' not found"<< endline;
return 0;
}
char *buffer = new char[ PHYSFS_fileLength ( file ) ];
PHYSFS_read(file, buffer, 1, PHYSFS_fileLength(file) );
buffer[ PHYSFS_fileLength ( file ) - 1] = 0;
PHYSFS_close(file);
FragmentShader shader = glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);
glShaderSourceARB(shader, 1, ( const GLcharARB** ) &buffer, NULL);
delete [] buffer;
glCompileShaderARB(shader);
printInfoLog(shader);
fragment_shader[name] = shader;
clog << ">>> FragmentShader '"<< name << "' loaded"<< endline;
return shader;
}
//------------------------------------------------------------------------------
ShaderProgram ShaderManager::loadShaderProgram(const std::string &name)
{
if ( !_usingShaders)
return 0;
if (name.empty() )
return 0;
// check if this mesh is already loaded
ShaderProgramMap::const_iterator result;
result = shader_programs.find(name);
if (result != shader_programs.end() )
{
return result->second;
}
string filename = name + ".prog";
PHYSFS_file *file = PHYSFS_openRead(filename.c_str() );
if ( !file)
{
clog << "!!! ShaderProgramm '"<< name << "' not found"<< endline;
return 0;
}
unsigned int length = PHYSFS_fileLength(file);
char *buffer = new char[length];
PHYSFS_read(file, buffer, 1, length);
PHYSFS_close(file);
CfgParser cfg;
cfg.parse(buffer, length);
delete [] buffer;
ShaderProgram program = glCreateProgramObjectARB();
std::vector<std::string> vertex_shaders;
if (cfg.getStrings("vertex_shaders", vertex_shaders) )
{
for (unsigned int i = 0; i < vertex_shaders.size(); i++)
{
VertexShader shader = loadVertexShader(vertex_shaders[i]);
if (shader != 0)
glAttachObjectARB(program, shader);
}
}
std::vector<std::string> fragment_shaders;
if (cfg.getStrings("fragment_shaders", fragment_shaders) )
{
for (unsigned int i = 0; i < fragment_shaders.size(); i++)
{
FragmentShader shader = loadFragmentShader(fragment_shaders[i]);
if (shader != 0)
glAttachObjectARB(program, shader);
}
}
glLinkProgramARB(program);
printInfoLog(program);
shader_programs[name] = program;
clog << ">>> ShaderProgramm '"<< name << "' loaded"<< endline;
return program;
}
//------------------------------------------------------------------------------
void ShaderManager::useShaderProgram(ShaderProgram shader_program)
{
if ( !_usingShaders)
return;
glUseProgramObjectARB(shader_program);
}
//------------------------------------------------------------------------------
void ShaderManager::useTexture(ShaderProgram shader_program,
unsigned int texture, const std::string &name)
{
if ( !_usingShaders)
return;
GLint location = glGetUniformLocationARB(shader_program, name.c_str() );
//if( location > 0 )
glUniform1iARB(location, texture);
}
/*
//------------------------------------------------------------------------------
void ShaderManager::useTangentBuffer (
ShaderProgram shader_program,
TangentBuffer *tangent_buffer,
const std::string &name )
{
if ( !_usingShaders || !tangent_buffer )
return;
GLuint location = glGetAttribLocationARB ( shader_program, name.c_str() );
glEnableVertexAttribArrayARB ( location );
tangent_buffer->bind();
glVertexAttribPointerARB ( location, 3, GL_FLOAT, 0, 0, 0 );
}
//------------------------------------------------------------------------------
void ShaderManager::disableTangentBuffer (
ShaderProgram shader_program,
const std::string &name )
{
if ( !_usingShaders )
return;
GLuint location = glGetAttribLocationARB ( shader_program, name.c_str() );
glDisableVertexAttribArrayARB ( location );
}
*/
}

66
engine/ShaderManager.h Normal file
View File

@ -0,0 +1,66 @@
#ifndef BLUECORE_SHADER_MANAGER_H
#define BLUECORE_SHADER_MANAGER_H
#include <map>
#include <string>
#include "GL/glew.h"
#include "Utilities/Referenced.h"
#include "TextureManager.h"
#include "RenderWindow.h"
namespace BlueCore {
typedef GLhandleARB ShaderProgram;
typedef GLhandleARB VertexShader;
typedef GLhandleARB FragmentShader;
class ShaderManager : public Referenced, public sigslot::has_slots<>
{
typedef std::map<std::string, VertexShader> VertexShaderMap;
typedef std::map<std::string, FragmentShader> FragmentShaderMap;
typedef std::map<std::string, ShaderProgram> ShaderProgramMap;
VertexShaderMap vertex_shader;
FragmentShaderMap fragment_shader;
ShaderProgramMap shader_programs;
VertexShader loadVertexShader(const std::string &name);
FragmentShader loadFragmentShader(const std::string &name);
bool _usingShaders;
ref_ptr<RenderWindow> _RenderWindow;
void shutdown();
void WindowCloseSlot();
public:
ShaderManager (RenderWindow* renderwindow);
virtual ~ShaderManager();
bool usingShaders();
ShaderProgram loadShaderProgram(const std::string &name);
void useShaderProgram(ShaderProgram shader_program);
void useTexture(ShaderProgram shader_program, unsigned int texture,
const std::string &name);
/*
void useTangentBuffer(ShaderProgram shader_program,
TangentBuffer *tangent_buffer, const std::string &name);
void disableTangentBuffer(ShaderProgram shader_program,
const std::string &name);*/
};
} // namespace BlueCore
#endif

146
engine/TextureImage.cpp Normal file
View File

@ -0,0 +1,146 @@
#include "TextureImage.h"
#include "RenderDevice.h"
#include "Utilities/Log.h"
#include <cmath>
#if defined(max)
#define std::max max
#else
#define max(a,b) ( a > b ? a : b )
#endif
namespace BlueCore
{
//------------------------------------------------------------------------------
TextureImage::TextureImage(RenderDevice* device, Texture *texture, float ax,
float ay, float bx, float by) :
_Texture(texture), _Device(device)
{
unsigned int texture_width = _Texture->getWidth();
unsigned int texture_height = _Texture->getHeight();
// greater 0, and values < 1 are fractions of texture dimemsions
float e_ax= max( ax <= 1.0 ? texture_width * ax : ax, 0.0f );
float e_ay= max( ay <= 1.0 ? texture_height * ay : ay, 0.0f );
float e_bx= max( bx <= 1.0 ? texture_width * bx : bx, 0.0f );
float e_by= max( by <= 1.0 ? texture_height * by : by, 0.0f );
float width = e_bx - e_ax;
float height = e_by - e_ay;
// fractional values
float au= max( ax > 1.0 ? ax / texture_width : ax, 0.0f );
float av= max( ay > 1.0 ? ay / texture_height : ay, 0.0f );
float bu= max( bx > 1.0 ? bx / texture_width : bx, 0.0f );
float bv= max( by > 1.0 ? by / texture_height : by, 0.0f );
// bottom left
_Vertices[0] = 0.0;
_Vertices[1] = 0.0;
_TexCoords[0] = au;
_TexCoords[1] = 1.0-bv;
// top left
_Vertices[2] = 0.0;
_Vertices[3] = height-1;
_TexCoords[2] = au;
_TexCoords[3] = 1.0-av;
// top right
_Vertices[4] = width-1;
_Vertices[5] = height-1;
_TexCoords[4] = bu;
_TexCoords[5] = 1.0-av;
// bottom right
_Vertices[6] = width-1;
_Vertices[7] = 0.0;
_TexCoords[6] = bu;
_TexCoords[7] = 1.0-bv;
_Width = (unsigned int)width;
_Height = (unsigned int)height;
clog << ">>> TextureImage constructed..."<< endlog;
}
//------------------------------------------------------------------------------
TextureImage::~TextureImage()
{
clog << ">>> TextureImage destructed..."<< endlog;
}
//------------------------------------------------------------------------------
void TextureImage::draw(float x, float y, int halign, int valign, float r)
{
if (!_Device.valid())
return;
_Device->begin2D();
if (x < 0.0)
x += _Device->getViewportWidth();
else if (x < 1.0)
x *= _Device->getViewportWidth();
if (halign == -1)
x -= _Width;
else if (halign == 0)
x -= _Width / 2;
if (y < 0.0)
y += _Device->getViewportHeight();
else if (y < 1.0)
y *= _Device->getViewportHeight();
if (valign == -1)
y -= _Height;
else if (valign == 0)
y -= _Height / 2;
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, _Texture->getId() );
glPushMatrix();
glLoadIdentity();
glTranslatef(x, y, 0);
if (r != 0.)
glRotatef(r, 0.0, 0.0, 1.0);
glBegin(GL_QUADS);
glTexCoord2f(_TexCoords[2], _TexCoords[3]);
glVertex2f(_Vertices[2], _Vertices[3]);
glTexCoord2f(_TexCoords[0], _TexCoords[1]);
glVertex2f(_Vertices[0], _Vertices[1]);
glTexCoord2f(_TexCoords[6], _TexCoords[7]);
glVertex2f(_Vertices[6], _Vertices[7]);
glTexCoord2f(_TexCoords[4], _TexCoords[5]);
glVertex2f(_Vertices[4], _Vertices[5]);
glEnd();
glPopMatrix();
_Device->end2D();
}
//------------------------------------------------------------------------------
unsigned int TextureImage::getWidth()
{
return _Width;
}
//------------------------------------------------------------------------------
unsigned int TextureImage::getHeight()
{
return _Height;
}
} // namespace BlueCore

26
engine/TextureImage.h Normal file
View File

@ -0,0 +1,26 @@
#ifndef BLUECORE_TEXTURE_IMAGE_H
#define BLUECORE_TEXTURE_IMAGE_H
#include "TextureManager.h"
#include "RenderDevice.h"
namespace BlueCore
{
class TextureImage : public Referenced
{
ref_ptr<Texture> _Texture;
ref_ptr<RenderDevice> _Device;
float _Vertices[3 * 4];
float _TexCoords[2 * 4];
unsigned int _Width, _Height;
public:
TextureImage (RenderDevice* device, Texture *texture, float ax, float ay, float bx, float by );
~TextureImage();
void draw (float x, float y, int halign = 0, int valign = 0, float r = 0.0 );
unsigned int getWidth();
unsigned int getHeight();
};
}
#endif /*IMAGE_H_*/

444
engine/TextureManager.cpp Normal file
View File

@ -0,0 +1,444 @@
#include "TextureManager.h"
#include "Utilities/Log.h"
#include "Utilities/format.h"
// library includes
//#include "png.h"
#include "physfs.h"
#include "corona.h"
#include "GL/glew.h"
// system includes
#include <fstream>
#include <limits.h>
using namespace std;
namespace BlueCore
{
//----------------------------------------------------------------------------------
TextureManager::TextureManager()
{
_maxAnisotopy = 128.0;
_maxTextureSize = 1024 * 16;
_lodDrop = 0;
_textureCompression = true;
glewInit();
if (GLEW_ARB_texture_compression == false)
_textureCompression = false;
clog << ">>> TextureManager constructed ..."<< endline;
if (_textureCompression)
clog << " using texture compression"<< endline;
else
clog << " texture compression not supported!"<< endline;
}
//------------------------------------------------------------------------------
TextureManager::~TextureManager()
{
clog << ">>> TextureManager destructed ..."<< endline;
}
Texture::~Texture()
{
glDeleteTextures( 1, &_Id);
clog << ">>> Texture destructed ..."<< endline;
}
/*
//------------------------------------------------------------------------------
void TextureManager::initializeSingleton()
{
XmlConfig config("config.xml");
_lodDrop = 0;
config.getBool("TextureManager", "TextureCompression", _textureCompression,
true);
if (GLEW_ARB_texture_compression == false)
_textureCompression = false;
if (_textureCompression )
clog << " using texture compression"<< endline;
else
clog << " texture compression not supported!"<< endline;
config.getUInt("TextureManager", "MaxTextureSize", _maxTextureSize, 8192);
GLint maxTextureSize;
glGetIntegerv (GL_MAX_TEXTURE_SIZE, &maxTextureSize );
if (_maxTextureSize > (unsigned int)maxTextureSize )
_maxTextureSize = maxTextureSize;
clog << " maximum texture size: "<< _maxTextureSize << endline;
config.getFloat("TextureManager", "MaxAnisotopy", _maxAnisotopy, 128.0);
float maxAnisotopy = 0.0;
if (GLEW_EXT_texture_filter_anisotropic )
glGetFloatv (GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &maxAnisotopy );
if (_maxAnisotopy > maxAnisotopy )
_maxAnisotopy = maxAnisotopy;
if (_maxAnisotopy > 1.0)
clog << " using anisotopic texture filtering, level: "<< _maxAnisotopy
<< endlog;
else
clog << " not using anisotopic texture filtering."<< endlog;
}
//------------------------------------------------------------------------------
void TextureManager::shutdownSingleton()
{
clog << ">>> shutdown TextureManager..."<< endline;
clearTextures();
}
*/
//------------------------------------------------------------------------------
bool TextureManager::saveToCache(const std::string &filename, int levels)
{
unsigned char *data = 0;
GLint internalformat, compressed_size = 0, width = 0, height = 0, level = 0;
PHYSFS_file *file = PHYSFS_openWrite(filename.c_str() );
if ( !file)
{
return false;
}
level = 0;
while ( !PHYSFS_eof(file) )
{
glGetTexLevelParameteriv(GL_TEXTURE_2D, level,
GL_TEXTURE_INTERNAL_FORMAT, &internalformat);
glGetTexLevelParameteriv(GL_TEXTURE_2D, level,
GL_TEXTURE_COMPRESSED_IMAGE_SIZE_ARB, &compressed_size);
if (compressed_size == 0)
break;
glGetTexLevelParameteriv(GL_TEXTURE_2D, level, GL_TEXTURE_WIDTH, &width);
if (width == 0)
break;
glGetTexLevelParameteriv(GL_TEXTURE_2D, level, GL_TEXTURE_HEIGHT,
&height);
if (height == 0)
break;
glGetTexLevelParameteriv(GL_TEXTURE_2D, level,
GL_TEXTURE_COMPRESSED_IMAGE_SIZE_ARB, &compressed_size);
data = new unsigned char[ compressed_size ];
glGetCompressedTexImageARB(GL_TEXTURE_2D, level, data);
PHYSFS_write(file, &internalformat, sizeof (internalformat ), 1);
PHYSFS_write(file, &level, sizeof (level ), 1);
PHYSFS_write(file, &width, sizeof (width ), 1);
PHYSFS_write(file, &height, sizeof (height ), 1);
PHYSFS_write(file, &compressed_size, sizeof (compressed_size ), 1);
PHYSFS_write(file, data, compressed_size, 1);
delete [] data;
level += 1;
if ( (width == 1 ) && (height == 1 ))
break;
if (level >= levels)
break;
}
PHYSFS_close(file);
return true;
}
//------------------------------------------------------------------------------
bool TextureManager::loadFromCache(const std::string &filename,
unsigned int &max_width, unsigned int &max_height)
{
unsigned char *data = 0;
GLuint internalformat, compressed_size, width, height, level;
max_width = 0;
max_height = 0;
PHYSFS_file *file = PHYSFS_openRead(filename.c_str() );
if ( !file)
{
return false;
}
while ( !PHYSFS_eof(file) )
{
PHYSFS_read(file, &internalformat, sizeof (internalformat ), 1);
PHYSFS_read(file, &level, sizeof (level ), 1);
PHYSFS_read(file, &width, sizeof (width ), 1);
PHYSFS_read(file, &height, sizeof (height ), 1);
PHYSFS_read(file, &compressed_size, sizeof (compressed_size ), 1);
if ( !data)
data = new unsigned char[ compressed_size ];
PHYSFS_read(file, data, compressed_size, 1);
glCompressedTexImage2DARB(GL_TEXTURE_2D, level, internalformat, width,
height, 0, compressed_size, data);
max_width = max(width, max_width);
max_height = max(height, max_height);
if (width == 1 && height == 1)
break;
}
delete [] data;
PHYSFS_close(file);
return true;
}
//------------------------------------------------------------------------------
Texture *TextureManager::loadTexture(const std::string &filename,
int mipmapLevel, int compressionLevel)
{
if (filename.empty() )
return 0;
std::string cachename = filename;
cachename += "_";
cachename += format("%d", mipmapLevel);
cachename += "_";
cachename += format("%d", compressionLevel);
cachename += ".cache";
TextureMap::const_iterator result;
result = textures.find(filename);
if (result != textures.end() )
{
return result->second;
}
GLint UnpackAlignment;
// Set unpack alignment to one byte
glGetIntegerv(GL_UNPACK_ALIGNMENT, &UnpackAlignment);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
unsigned int id = 0;
glGenTextures( 1, &id);
glBindTexture(GL_TEXTURE_2D, id);
if (mipmapLevel == 0)
{
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
else
{
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_NEAREST);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
if (_maxAnisotopy > 0.0)
{
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT,
( float ) _maxAnisotopy );
}
Texture *t = 0;
unsigned int width = 0, height = 0;
// check for cached texture
if (_textureCompression && (compressionLevel > 0))
{
PHYSFS_sint64 mod_file = PHYSFS_getLastModTime(filename.c_str() );
PHYSFS_sint64 mod_config = PHYSFS_getLastModTime("config.xml");
PHYSFS_sint64 mod_cache = PHYSFS_getLastModTime(cachename.c_str() );
if ( (mod_cache > mod_file) && (mod_cache > mod_config))
{
if (loadFromCache(cachename, width, height) )
{
glPixelStorei(GL_UNPACK_ALIGNMENT, UnpackAlignment);
clog << ">>> Texture '" << filename << "' loaded from cache ("
<< width << ", " << height << ")." << endline;
t = new Texture( id, width, height );
textures[filename] = t;
return t;
}
}
}
//clog << ">>> Texture '" << filename << "': loading from file..." << endline;
corona::Image *image = corona::OpenImage(filename.c_str(),
corona::PF_R8G8B8A8);
if (image)
{
int level = 0;
unsigned int width_scaled = image->getWidth();
unsigned int height_scaled = image->getHeight();
corona::FlipImage(image, corona::CA_X);
// create mipmaps
while ( 1)
{
if ( (width_scaled <= _maxTextureSize ) && (height_scaled
<= _maxTextureSize ))
{
width = max(width_scaled, width);
height = max(height_scaled, height);
if (_textureCompression && (compressionLevel > 0))
{
glHint(GL_TEXTURE_COMPRESSION_HINT_ARB, GL_NICEST);
GLuint compression = GL_COMPRESSED_RGBA_ARB;
if (GLEW_EXT_texture_compression_s3tc)
{
if (compressionLevel == 1)
compression = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
else if (compressionLevel == 2)
compression = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
else
compression = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
}
glTexImage2D(GL_TEXTURE_2D, level, compression,
width_scaled, height_scaled, 0, GL_RGBA,
GL_UNSIGNED_BYTE, ( void* ) image->getPixels() );
}
else
{
glTexImage2D(GL_TEXTURE_2D, level, GL_RGBA, width_scaled,
height_scaled, 0, GL_RGBA, GL_UNSIGNED_BYTE,
( void* ) image->getPixels() );
}
level += 1;
}
if ( (width_scaled == 1 ) && (height_scaled == 1 ))
break;
if ( (mipmapLevel >= 0 ) && (level >= mipmapLevel ))
break;
// rescale image
int halfwidth = width_scaled > 1 ? width_scaled / 2 : 1;
int halfheight = height_scaled > 1 ? height_scaled / 2 : 1;
int idx1 = width_scaled * 4;
int idx2 = (width_scaled + 1 ) * 4;
unsigned char *dst = (unsigned char *)image->getPixels();
unsigned char *src = (unsigned char *)image->getPixels();
for (int y = 0; y < halfheight; y++)
{
for (int x = 0; x < halfwidth; x++)
{
for (int k = 0; k < 4; k ++)
{
*dst ++ = ( GLubyte ) ( ( ( int ) *src + ( int ) src[4]
+ ( int ) src[idx1] + ( int ) src[idx2] + 2 )
>> 2 );
src ++;
}
src += 4;
}
src += 4 * width_scaled;
}
width_scaled = halfheight;
height_scaled = halfwidth;
}
delete image;
if (_textureCompression && (compressionLevel > 0))
saveToCache(cachename, level);
t = new Texture( id, width, height );
clog << ">>> Texture '" << filename << "': loaded from file" << endline;
}
else
{
glDeleteTextures( 1, &id);
t = new Texture( 0, 0, 0 );
clog << "!!! Texture '" << filename << "' not found!" << endline;
}
glPixelStorei(GL_UNPACK_ALIGNMENT, UnpackAlignment);
textures[filename] = t;
return t;
}
/*
//------------------------------------------------------------------------------
void TextureManager::releaseTexture ( const Texture *texture )
{
Texture *t = (Texture *)texture;
if( t->_RefCount > 1 )
t->_RefCount--;
else if( t->_RefCount == 1 )
{
glDeleteTextures ( 1, &t->_Id );
delete t;
TextureMap::iterator i;
for( i = textures.begin(); i != textures.end(); i++ )
{
if( (*i).second == t )
{
textures.erase( i );
break;
}
}
}
}
*/
//------------------------------------------------------------------------------
void TextureManager::TextureDestroySlot(Referenced *referenced)
{
TextureMap::iterator i;
for (i = textures.begin(); i != textures.end(); i++)
{
Texture *t = (*i).second;
if (t == (Texture*)referenced)
{
textures.erase(i);
break;
}
}
}
}

92
engine/TextureManager.h Normal file
View File

@ -0,0 +1,92 @@
//------------------------------------------------------------------------------
// Author: Gero Mueller <gero.mueller@cloo.de>
// Copyright: (c) 2006 Gero Mueller
// License: MIT License
//------------------------------------------------------------------------------
#ifndef BLUECORE_TEXTURE_MANAGER_H
#define BLUECORE_TEXTURE_MANAGER_H
// system includes
#include <map>
#include <string>
// project includes
#include "Utilities/Referenced.h"
namespace BlueCore
{
// forward declaration
class TextureManager;
class Texture : public Referenced
{
unsigned int _Id;
unsigned int _Width, _Height;
~Texture();
public:
Texture( unsigned int id, unsigned int width, unsigned int height ) :
_Id( id ),
_Width( width ),
_Height( height )
{
}
unsigned int getWidth() const
{
return _Width;
}
unsigned int getHeight() const
{
return _Height;
}
unsigned int getId() const
{
return _Id;
}
};
class TextureManager : public Referenced
{
private:
typedef std::map<std::string, Texture *> TextureMap;
TextureMap textures;
float _maxAnisotopy;
unsigned int _maxTextureSize;
unsigned int _lodDrop;
bool _textureCompression;
void clearTextures();
bool saveToCache ( const std::string &name, int levels );
bool loadFromCache (
const std::string &filename,
unsigned int &max_width,
unsigned int &max_height );
~TextureManager();
void TextureDestroySlot(Referenced *referenced);
public:
TextureManager();
Texture *loadTexture (
const std::string &filename,
int mipmapLevel = -1,
int compressionLevel = 1 );
};
}
#endif

View File

@ -0,0 +1,87 @@
#ifndef BLUECORE_ACTIVATED_H
#define BLUECORE_ACTIVATED_H
namespace BlueCore
{
class Activated
{
private:
bool _Active;
public:
/**
* Default constructor.
* inital state is active
*/
inline Activated()
{
_Active = true;
}
/**
* Constructor.
* @param set inital state
*/
inline Activated(bool state) :
_Active(state )
{
}
/**
* Destructor.
*/
virtual inline ~Activated()
{
}
/**
* Activate the object.
*/
inline void activate()
{
_Active = true;
onActivation();
}
virtual void onActivation()
{
}
/**
* Deactivate the object.
*/
inline void deactivate()
{
_Active = false;
onDeactivation();
}
virtual void onDeactivation()
{
}
/**
* toggles the object's state
*/
inline void toggleActive()
{
if (_Active )
deactivate();
else
activate();
}
/**
* returns the object's state
*/
inline bool isActive()
{
return _Active;
}
};
} // namespace BlueCore
#endif // BLUECORE_ACTIVATED_H

151
engine/Utilities/Buffer.h Normal file
View File

@ -0,0 +1,151 @@
#ifndef BLUECORE_BUFFER_H
#define BLUECORE_BUFFER_H
#include <stdexcept>
namespace BlueCore
{
template<class T>
class Buffer
{
public:
typedef T type;
private:
type *_buffer;
unsigned int _count;
public:
/**
* default constructor
*/
Buffer() :
_buffer( 0 ),
_count( 0 )
{
}
/**
* constructor with initial size
*/
Buffer( unsigned int count ) :
_buffer( 0 ),
_count( 0 )
{
create( count );
}
/**
* destructor
*/
virtual ~Buffer()
{
destroy();
}
/**
* create the buffer
*/
bool create( unsigned int count )
{
destroy();
_buffer = new type[count];
if( _buffer )
{
_count = count;
return true;
}
else
{
return false;
}
}
/**
* destroy the buffer
*/
void destroy()
{
delete [] _buffer;
_buffer = 0;
_count = 0;
}
void resize( unsigned int new_count )
{
type *new_buffer = new type[new_count];
for( unsigned int i = 0; i<_count; i++ )
new_buffer[i] = _buffer[i];
destroy();
_buffer = new_buffer;
_count = new_count;
}
/**
* returns the item count
*/
unsigned int count() const
{
return _count;
}
/**
* returns the buffer size in bytes
*/
unsigned int size() const
{
return _count * sizeof(type);
}
/**
* return a pointer to the data
*/
type *data()
{
return _buffer;
}
/**
* return a pointer to the(const) data
*/
const type *const_data() const
{
return _buffer;
}
/**
* array operator
*/
type &operator[](const unsigned int index)
{
if( index >= _count )
throw std::range_error("Buffer::[] index_out_of_bound!");
return _buffer[index];
}
type &item(const unsigned int index)
{
if( index >= _count )
throw std::range_error("Buffer::[] index_out_of_bound!");
return _buffer[index];
}
const type &const_item(const unsigned int index) const
{
if( index >= _count )
throw std::range_error("Buffer::[] index_out_of_bound!");
return _buffer[index];
}
};
}
#endif

View File

@ -0,0 +1,198 @@
#include "CfgParser.h"
#include "StringUtilities.h"
#include <fstream>
using namespace std;
namespace BlueCore {
void CfgParser::parseFile (const std::string& filename)
{
ifstream file (filename.c_str(), ios::in);
std::string line;
while (file.good())
{
getline (file, line);
parseLine (line);
}
}
void CfgParser::parseLine (const std::string& line)
{
std::string::size_type i (line.find_first_of ('='));
if (i == std::string::npos)
return;
std::string key = trim (string (line, 0, i-1));
std::string value = trim (string (line, i+1));
_Pairs[key] = value;
}
void CfgParser::parse (const char* buffer, unsigned int length)
{
const char* ptr = buffer;
const char* end = buffer + length;
unsigned int l = 0;
while (ptr < end)
{
// find end of line
while (ptr[l] != '\n')
{
l++;
if (ptr + l >= end)
break;
}
parseLine (string(ptr, l));
ptr += l+1;
l = 0;
}
}
double CfgParser::get (const std::string& key, double defaultValue)
{
double value;
if (getDouble (key, value) == false)
return defaultValue;
else
return value;
}
bool CfgParser::getDouble (const std::string& key, double& value)
{
std::map<std::string, std::string>::const_iterator result;
result = _Pairs.find (key);
if (result != _Pairs.end())
{
value = atof (result->second.c_str());
return true;
}
else
return false;
}
int CfgParser::get (const std::string& key, int defaultValue)
{
int value;
if (getInteger (key, value) == false)
return defaultValue;
else
return value;
}
bool CfgParser::getInteger (const std::string& key, int& value)
{
std::map<std::string, std::string>::const_iterator result;
result = _Pairs.find (key);
if (result != _Pairs.end())
{
value = atoi (result->second.c_str());
return true;
}
else
return false;
}
bool CfgParser::get (const std::string& key, bool defaultValue)
{
bool value;
if (getBoolean (key, value) == false)
return defaultValue;
else
return value;
}
bool CfgParser::getBoolean (const std::string& key, bool& value)
{
std::map<std::string, std::string>::const_iterator result;
result = _Pairs.find (key);
if (result != _Pairs.end())
{
value = false;
if (result->second == "true")
value = true;
else if (result->second == "1")
value = true;
else if (result->second == "yes")
value = true;
return true;
}
else
return false;
}
std::string CfgParser::get (const std::string& key, std::string defaultValue)
{
std::string value;
if (getString (key, value) == false)
return defaultValue;
else
return value;
}
bool CfgParser::getString (const std::string& key, std::string& value)
{
std::map<std::string, std::string>::const_iterator result;
result = _Pairs.find (key);
if (result != _Pairs.end())
{
value = result->second;
return true;
}
else
return false;
}
bool CfgParser::getStrings (const std::string& key, std::vector<string>& strings)
{
std::map<std::string, std::string>::const_iterator result;
result = _Pairs.find (key);
if (result != _Pairs.end())
{
explode (result->second, strings, true, ",");
return true;
}
else
return false;
}
} // namespace BlueCore

View File

@ -0,0 +1,39 @@
#ifndef BLUECORE_UTILITIES_CFGPARSER
#define BLUECORE_UTILITIES_CFGPARSER
#include <string>
#include <map>
#include <vector>
namespace BlueCore {
class CfgParser
{
public:
void parseFile (const std::string& filename);
void parseLine (const std::string& line);
void parse (const char* buffer, unsigned int length);
double get (const std::string& key, double value = 0.0);
bool getDouble (const std::string& key, double& defaultValue);
int get (const std::string& key, int value = 0);
bool getInteger (const std::string& key, int& defaultValue);
bool get (const std::string& key, bool value = false);
bool getBoolean (const std::string& key, bool& defaultValue);
std::string get (const std::string& key, std::string value = "");
bool getString (const std::string& key, std::string& defaultValue);
bool getStrings (const std::string& key, std::vector<std::string>& strings);
private:
std::map<std::string, std::string> _Pairs;
};
} // namespace BlueCore
#endif

View File

@ -0,0 +1,11 @@
#include <string>
#include <map>
class IniParser
{
std::map<std::string, std::string> _Pairs;
void parse (const std::string &text)
{
}
}

View File

@ -0,0 +1,82 @@
#include "Kernel.h"
namespace BlueCore
{
Kernel::Kernel() :
_Changed(true), _Clear(false)
{
}
void Kernel::addTask(KernelTask* task, int priority)
{
_AddedTasks.push_back(KernelTaskContainer (task, priority));
_Changed = true;
}
void Kernel::removeTask(KernelTask* task)
{
_RemovedTasks.push_back(task );
_Changed = true;
}
void Kernel::removeAllTasks()
{
_Clear = true;
}
void Kernel::setTaskPriority(KernelTask* task, int priority)
{
std::list<KernelTaskContainer>::iterator i;
for (i = _Tasks.begin(); i != _Tasks.end(); i++)
{
if ((*i)._Task.get() == task)
{
(*i)._Priority = priority;
_Changed = true;
return;
}
}
}
bool Kernel::tick()
{
if (_Changed)
{
std::list<KernelTaskContainer>::iterator i;
for (i = _AddedTasks.begin(); i != _AddedTasks.end(); i++)
{
_Tasks.push_back( *i );
}
_AddedTasks.clear();
_RemovedTasks.clear();
_Tasks.sort();
_Changed = false;
}
std::list<KernelTaskContainer>::iterator i = _Tasks.begin();
std::list<KernelTaskContainer>::iterator end = _Tasks.end();
if (i == end)
return false;
while (i != end)
{
if ((*i)._Task.valid())
(*i)._Task->tick();
i++;
}
if (_Clear)
{
_Tasks.clear();
_Clear = false;
}
return true;
}
} // namespace BlueCore

83
engine/Utilities/Kernel.h Normal file
View File

@ -0,0 +1,83 @@
#ifndef KERNEL_H_
#define KERNEL_H_
#include "Referenced.h"
#include <vector>
#include <iostream>
#include <exception>
#include <list>
namespace BlueCore
{
class Kernel;
//-----------------------------------------------------------------------------
class KernelTask : public Referenced
{
protected:
~KernelTask()
{
}
public:
KernelTask()
{
}
virtual void tick()
{
}
};
//-----------------------------------------------------------------------------
class Kernel : public Referenced
{
private:
struct KernelTaskContainer
{
ref_ptr<KernelTask> _Task;
int _Priority;
KernelTaskContainer(KernelTask* task, int priority) :
_Task(task), _Priority(priority)
{
}
bool operator <(const KernelTaskContainer& other) const
{
return (_Priority > other._Priority);
}
};
std::list<KernelTaskContainer> _Tasks;
std::list<KernelTaskContainer> _AddedTasks;
std::list<KernelTask*> _RemovedTasks;
bool _Changed;
bool _Clear;
protected:
~Kernel()
{
}
public:
Kernel();
void addTask(KernelTask* task, int priority);
void removeTask(KernelTask* task);
void removeAllTasks();
void setTaskPriority(KernelTask* task, int priority);
bool tick();
};
} // namespace BlueCore
#endif /*KERNEL_H_*/

75
engine/Utilities/Log.cpp Normal file
View File

@ -0,0 +1,75 @@
#include "Log.h"
#include <ctime>
namespace BlueCore
{
//--------------------------------------------------------------------------
Log::Log() :
_LogFilename( "log.txt" )
{
reset();
}
//--------------------------------------------------------------------------
void Log::reset()
{
std::ifstream testfile( _LogFilename.c_str() );
if( testfile.is_open() )
{
testfile.close();
_LogFile.open( _LogFilename.c_str(), std::ios::trunc );
_LogFile.close();
}
}
//--------------------------------------------------------------------------
void Log::setFilename( const std::string &name )
{
_LogFilename = name;
reset();
}
//--------------------------------------------------------------------------
Log &Log::operator << (const EndLine &e)
{
_LogFile << '\n';
std::cout << '\n';
return *this;
}
//--------------------------------------------------------------------------
Log &Log::operator << (const EndLog &e)
{
_LogFile << '\n';
_LogFile.close();
std::cout << '\n';
std::cout.flush();
return *this;
}
//--------------------------------------------------------------------------
Log &Log::operator << (const Time &t)
{
std::time_t rawtime;
std::time ( &rawtime );
char *tc = std::ctime( &rawtime );
_LogFile << tc;
std::cout << tc;
return *this;
}
//--------------------------------------------------------------------------
Log &Log::operator << (const Flush &f)
{
_LogFile.close();
std::cout.flush();
return *this;
}
//--------------------------------------------------------------------------
Log::EndLine endline;
Log::EndLog endlog;
Log::Time time;
Log::Flush flush;
Log clog;
}

60
engine/Utilities/Log.h Normal file
View File

@ -0,0 +1,60 @@
#ifndef BLUECORE_LOG_H
#define BLUECORE_LOG_H
#include <iostream>
#include <fstream>
namespace BlueCore
{
class Log
{
std::string _LogFilename;
std::ofstream _LogFile;
public:
class EndLine
{
};
class EndLog
{
};
class Time
{
};
class Flush
{
};
Log();
void setFilename( const std::string &name );
void reset();
template<class T>
Log &operator << (const T &v)
{
if( !_LogFile.is_open() )
_LogFile.open(_LogFilename.c_str(), std::ios::app);
_LogFile << v;
std::cout << v;
return *this;
}
Log &operator << (const EndLine &e);
Log &operator << (const EndLog &e);
Log &operator << (const Time &t);
Log &operator << (const Flush &f);
};
extern Log::EndLine endline;
extern Log::EndLog endlog;
extern Log::Time time;
extern Log::Flush flush;
extern Log clog;
} // namespace bc
#endif // BLUECORE_LOG_H

View File

@ -0,0 +1,423 @@
// MersenneTwister.h
// Mersenne Twister random number generator -- a C++ class MTRand
// Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
// Richard J. Wagner v1.0 15 May 2003 rjwagner@writeme.com
// The Mersenne Twister is an algorithm for generating random numbers. It
// was designed with consideration of the flaws in various other generators.
// The period, 2^19937-1, and the order of equidistribution, 623 dimensions,
// are far greater. The generator is also fast; it avoids multiplication and
// division, and it benefits from caches and pipelines. For more information
// see the inventors' web page at http://www.math.keio.ac.jp/~matumoto/emt.html
// Reference
// M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally
// Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on
// Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
// Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
// Copyright (C) 2000 - 2003, Richard J. Wagner
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. The names of its contributors may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original code included the following notice:
//
// When you use this, send an email to: matumoto@math.keio.ac.jp
// with an appropriate reference to your work.
//
// It would be nice to CC: rjwagner@writeme.com and Cokus@math.washington.edu
// when you write.
#ifndef MERSENNETWISTER_H
#define MERSENNETWISTER_H
// Not thread safe (unless auto-initialization is avoided and each thread has
// its own MTRand object)
#include <iostream>
#include <limits.h>
#include <stdio.h>
#include <time.h>
#include <math.h>
class MTRand {
// Data
public:
typedef unsigned long uint32; // unsigned integer type, at least 32 bits
enum { N = 624 }; // length of state vector
enum { SAVE = N + 1 }; // length of array for save()
protected:
enum { M = 397 }; // period parameter
uint32 state[N]; // internal state
uint32 *pNext; // next value to get from state
int left; // number of values left before reload needed
//Methods
public:
MTRand( const uint32& oneSeed ); // initialize with a simple uint32
MTRand( uint32 *const bigSeed, uint32 const seedLength = N ); // or an array
MTRand(); // auto-initialize with /dev/urandom or time() and clock()
// Do NOT use for CRYPTOGRAPHY without securely hashing several returned
// values together, otherwise the generator state can be learned after
// reading 624 consecutive values.
// Access to 32-bit random numbers
double rand(); // real number in [0,1]
double rand( const double& n ); // real number in [0,n]
double randExc(); // real number in [0,1)
double randExc( const double& n ); // real number in [0,n)
double randDblExc(); // real number in (0,1)
double randDblExc( const double& n ); // real number in (0,n)
uint32 randInt(); // integer in [0,2^32-1]
uint32 randInt( const uint32& n ); // integer in [0,n] for n < 2^32
double operator()() { return rand(); } // same as rand()
// Access to 53-bit random numbers (capacity of IEEE double precision)
double rand53(); // real number in [0,1)
// Access to nonuniform random number distributions
double randNorm( const double& mean = 0.0, const double& variance = 0.0 );
// Re-seeding functions with same behavior as initializers
void seed( const uint32 oneSeed );
void seed( uint32 *const bigSeed, const uint32 seedLength = N );
void seed();
// Saving and loading generator state
void save( uint32* saveArray ) const; // to array of size SAVE
void load( uint32 *const loadArray ); // from such array
friend std::ostream& operator<<( std::ostream& os, const MTRand& mtrand );
friend std::istream& operator>>( std::istream& is, MTRand& mtrand );
protected:
void initialize( const uint32 oneSeed );
void reload();
uint32 hiBit( const uint32& u ) const { return u & 0x80000000UL; }
uint32 loBit( const uint32& u ) const { return u & 0x00000001UL; }
uint32 loBits( const uint32& u ) const { return u & 0x7fffffffUL; }
uint32 mixBits( const uint32& u, const uint32& v ) const
{ return hiBit(u) | loBits(v); }
uint32 twist( const uint32& m, const uint32& s0, const uint32& s1 ) const
{ return m ^ (mixBits(s0,s1)>>1) ^ (-loBit(s1) & 0x9908b0dfUL); }
static uint32 hash( time_t t, clock_t c );
};
inline MTRand::MTRand( const uint32& oneSeed )
{ seed(oneSeed); }
inline MTRand::MTRand( uint32 *const bigSeed, const uint32 seedLength )
{ seed(bigSeed,seedLength); }
inline MTRand::MTRand()
{ seed(); }
inline double MTRand::rand()
{ return double(randInt()) * (1.0/4294967295.0); }
inline double MTRand::rand( const double& n )
{ return rand() * n; }
inline double MTRand::randExc()
{ return double(randInt()) * (1.0/4294967296.0); }
inline double MTRand::randExc( const double& n )
{ return randExc() * n; }
inline double MTRand::randDblExc()
{ return ( double(randInt()) + 0.5 ) * (1.0/4294967296.0); }
inline double MTRand::randDblExc( const double& n )
{ return randDblExc() * n; }
inline double MTRand::rand53()
{
uint32 a = randInt() >> 5, b = randInt() >> 6;
return ( a * 67108864.0 + b ) * (1.0/9007199254740992.0); // by Isaku Wada
}
inline double MTRand::randNorm( const double& mean, const double& variance )
{
// Return a real number from a normal (Gaussian) distribution with given
// mean and variance by Box-Muller method
double r = sqrt( -2.0 * log( 1.0-randDblExc()) ) * variance;
double phi = 2.0 * 3.14159265358979323846264338328 * randExc();
return mean + r * cos(phi);
}
inline MTRand::uint32 MTRand::randInt()
{
// Pull a 32-bit integer from the generator state
// Every other access function simply transforms the numbers extracted here
if( left == 0 ) reload();
--left;
register uint32 s1;
s1 = *pNext++;
s1 ^= (s1 >> 11);
s1 ^= (s1 << 7) & 0x9d2c5680UL;
s1 ^= (s1 << 15) & 0xefc60000UL;
return ( s1 ^ (s1 >> 18) );
}
inline MTRand::uint32 MTRand::randInt( const uint32& n )
{
// Find which bits are used in n
// Optimized by Magnus Jonsson (magnus@smartelectronix.com)
uint32 used = n;
used |= used >> 1;
used |= used >> 2;
used |= used >> 4;
used |= used >> 8;
used |= used >> 16;
// Draw numbers until one is found in [0,n]
uint32 i;
do
i = randInt() & used; // toss unused bits to shorten search
while( i > n );
return i;
}
inline void MTRand::seed( const uint32 oneSeed )
{
// Seed the generator with a simple uint32
initialize(oneSeed);
reload();
}
inline void MTRand::seed( uint32 *const bigSeed, const uint32 seedLength )
{
// Seed the generator with an array of uint32's
// There are 2^19937-1 possible initial states. This function allows
// all of those to be accessed by providing at least 19937 bits (with a
// default seed length of N = 624 uint32's). Any bits above the lower 32
// in each element are discarded.
// Just call seed() if you want to get array from /dev/urandom
initialize(19650218UL);
register int i = 1;
register uint32 j = 0;
register int k = ( N > seedLength ? N : seedLength );
for( ; k; --k )
{
state[i] =
state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1664525UL );
state[i] += ( bigSeed[j] & 0xffffffffUL ) + j;
state[i] &= 0xffffffffUL;
++i; ++j;
if( i >= N ) { state[0] = state[N-1]; i = 1; }
if( j >= seedLength ) j = 0;
}
for( k = N - 1; k; --k )
{
state[i] =
state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1566083941UL );
state[i] -= i;
state[i] &= 0xffffffffUL;
++i;
if( i >= N ) { state[0] = state[N-1]; i = 1; }
}
state[0] = 0x80000000UL; // MSB is 1, assuring non-zero initial array
reload();
}
inline void MTRand::seed()
{
// Seed the generator with an array from /dev/urandom if available
// Otherwise use a hash of time() and clock() values
// First try getting an array from /dev/urandom
FILE* urandom = fopen( "/dev/urandom", "rb" );
if( urandom )
{
uint32 bigSeed[N];
register uint32 *s = bigSeed;
register int i = N;
register bool success = true;
while( success && i-- )
success = fread( s++, sizeof(uint32), 1, urandom );
fclose(urandom);
if( success ) { seed( bigSeed, N ); return; }
}
// Was not successful, so use time() and clock() instead
seed( hash( time(NULL), clock() ) );
}
inline void MTRand::initialize( const uint32 seed )
{
// Initialize generator state with seed
// See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
// In previous versions, most significant bits (MSBs) of the seed affect
// only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto.
register uint32 *s = state;
register uint32 *r = state;
register int i = 1;
*s++ = seed & 0xffffffffUL;
for( ; i < N; ++i )
{
*s++ = ( 1812433253UL * ( *r ^ (*r >> 30) ) + i ) & 0xffffffffUL;
r++;
}
}
inline void MTRand::reload()
{
// Generate N new values in state
// Made clearer and faster by Matthew Bellew (matthew.bellew@home.com)
register uint32 *p = state;
register int i;
for( i = N - M; i--; ++p )
*p = twist( p[M], p[0], p[1] );
for( i = M; --i; ++p )
*p = twist( p[M-N], p[0], p[1] );
*p = twist( p[M-N], p[0], state[0] );
left = N, pNext = state;
}
inline MTRand::uint32 MTRand::hash( time_t t, clock_t c )
{
// Get a uint32 from t and c
// Better than uint32(x) in case x is floating point in [0,1]
// Based on code by Lawrence Kirby (fred@genesis.demon.co.uk)
static uint32 differ = 0; // guarantee time-based seeds will change
uint32 h1 = 0;
unsigned char *p = (unsigned char *) &t;
for( size_t i = 0; i < sizeof(t); ++i )
{
h1 *= UCHAR_MAX + 2U;
h1 += p[i];
}
uint32 h2 = 0;
p = (unsigned char *) &c;
for( size_t j = 0; j < sizeof(c); ++j )
{
h2 *= UCHAR_MAX + 2U;
h2 += p[j];
}
return ( h1 + differ++ ) ^ h2;
}
inline void MTRand::save( uint32* saveArray ) const
{
register uint32 *sa = saveArray;
register const uint32 *s = state;
register int i = N;
for( ; i--; *sa++ = *s++ ) {}
*sa = left;
}
inline void MTRand::load( uint32 *const loadArray )
{
register uint32 *s = state;
register uint32 *la = loadArray;
register int i = N;
for( ; i--; *s++ = *la++ ) {}
left = *la;
pNext = &state[N-left];
}
inline std::ostream& operator<<( std::ostream& os, const MTRand& mtrand )
{
register const MTRand::uint32 *s = mtrand.state;
register int i = mtrand.N;
for( ; i--; os << *s++ << "\t" ) {}
return os << mtrand.left;
}
inline std::istream& operator>>( std::istream& is, MTRand& mtrand )
{
register MTRand::uint32 *s = mtrand.state;
register int i = mtrand.N;
for( ; i--; is >> *s++ ) {}
is >> mtrand.left;
mtrand.pNext = &mtrand.state[mtrand.N-mtrand.left];
return is;
}
#endif // MERSENNETWISTER_H
// Change log:
//
// v0.1 - First release on 15 May 2000
// - Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
// - Translated from C to C++
// - Made completely ANSI compliant
// - Designed convenient interface for initialization, seeding, and
// obtaining numbers in default or user-defined ranges
// - Added automatic seeding from /dev/urandom or time() and clock()
// - Provided functions for saving and loading generator state
//
// v0.2 - Fixed bug which reloaded generator one step too late
//
// v0.3 - Switched to clearer, faster reload() code from Matthew Bellew
//
// v0.4 - Removed trailing newline in saved generator format to be consistent
// with output format of built-in types
//
// v0.5 - Improved portability by replacing static const int's with enum's and
// clarifying return values in seed(); suggested by Eric Heimburg
// - Removed MAXINT constant; use 0xffffffffUL instead
//
// v0.6 - Eliminated seed overflow when uint32 is larger than 32 bits
// - Changed integer [0,n] generator to give better uniformity
//
// v0.7 - Fixed operator precedence ambiguity in reload()
// - Added access for real numbers in (0,1) and (0,n)
//
// v0.8 - Included time.h header to properly support time_t and clock_t
//
// v1.0 - Revised seeding to match 26 Jan 2002 update of Nishimura and Matsumoto
// - Allowed for seeding with arrays of any length
// - Added access for real numbers in [0,1) with 53-bit resolution
// - Added access for real numbers from normal (Gaussian) distributions
// - Increased overall speed by optimizing twist()
// - Doubled speed of integer [0,n] generation
// - Fixed out-of-range number generation on 64-bit machines
// - Improved portability by substituting literal constants for long enum's
// - Changed license from GNU LGPL to BSD

64
engine/Utilities/Named.h Normal file
View File

@ -0,0 +1,64 @@
#ifndef BLUECORE_NAMED_H
#define BLUECORE_NAMED_H
#include <string>
namespace BlueCore
{
class Named
{
private:
std::string _Name;
public:
/**
* Default constructor.
*/
inline Named() :
_Name( "" )
{
}
/**
* Constructor.
* @param strName set initial name
*/
inline Named( const std::string &name ) :
_Name( name )
{
}
/**
* Destructor.
*/
virtual inline ~Named()
{
}
/**
* Get the name.
* @return returns the name
*/
inline const std::string &getName() const
{
return _Name;
}
/**
* Set the name.
*/
inline void setName( const std::string &name )
{
_Name = name;
}
};
}
#endif

View File

@ -0,0 +1,236 @@
#ifndef BLUECORE_REFERENCED_COUNTER_H
#define BLUECORE_REFERENCED_COUNTER_H
#include <list>
namespace BlueCore
{
class Referenced
{
public:
class DestructionListener
{
public:
virtual void onDestruction(Referenced *referenced) = 0;
};
private:
std::list<DestructionListener*> _DestructionListeners;
unsigned int _ReferenceCount;
virtual void destroyReferenced()
{
while (_DestructionListeners.begin() != _DestructionListeners.end())
{
if (_DestructionListeners.front() != 0)
_DestructionListeners.front()->onDestruction(this);
_DestructionListeners.pop_front();
}
delete this;
}
public:
inline Referenced() :
_ReferenceCount(0)
{
}
virtual inline ~Referenced()
{
}
inline void addReference()
{
_ReferenceCount += 1;
}
inline void removeReference()
{
if (_ReferenceCount > 0)
{
_ReferenceCount -= 1;
if ( 0 == _ReferenceCount)
{
destroyReferenced();
}
}
}
inline unsigned int getReferenceCount()
{
return _ReferenceCount;
}
inline void addDestructionListener(DestructionListener *listener)
{
if (listener != 0)
_DestructionListeners.push_back(listener);
}
inline void removeDestructionListener(DestructionListener *listener)
{
_DestructionListeners.remove(listener);
}
};
template<class T> class ref_ptr
{
public:
ref_ptr() :
_Referenced(0)
{
}
ref_ptr(T* referenced) :
_Referenced(referenced)
{
if (_Referenced)
_Referenced->addReference();
}
ref_ptr(const ref_ptr& op) :
_Referenced(op._Referenced)
{
if (_Referenced)
_Referenced->addReference();
}
~ref_ptr()
{
if (_Referenced)
_Referenced->removeReference();
}
T* operator ->() const
{
return _Referenced;
}
ref_ptr& operator =(T* op)
{
if (op != _Referenced)
{
if (_Referenced != 0)
_Referenced->removeReference();
_Referenced = op;
if (_Referenced)
_Referenced->addReference();
}
return *this;
}
bool operator ==(const ref_ptr& ref)
{
if (_Referenced == ref._Referenced)
return true;
else
return false;
}
bool valid() const
{
return (_Referenced != 0);
}
operator T*() const
{
return _Referenced;
}
T* get() const
{
return _Referenced;
}
private:
T* _Referenced;
};
template<class T> class weak_ptr : public Referenced::DestructionListener
{
public:
weak_ptr() :
_Referenced(0)
{
}
weak_ptr(T* referenced) :
_Referenced(referenced)
{
if (_Referenced)
_Referenced->addDestructionListener(this);
}
weak_ptr(const weak_ptr& op) :
_Referenced(op._Referenced)
{
if (_Referenced)
_Referenced->addDestructionListener(this);
}
virtual ~weak_ptr()
{
if (_Referenced)
_Referenced->removeDestructionListener(this);
}
T* operator ->() const
{
return _Referenced;
}
weak_ptr& operator =(T* op)
{
if (op != _Referenced && _Referenced != 0)
_Referenced->removeDestructionListener(this);
_Referenced = op;
_Referenced->addDestructionListener(this);
return *this;
}
bool operator ==(const weak_ptr& ref)
{
if (_Referenced == ref._Referenced)
return true;
else
return false;
}
bool valid() const
{
return (_Referenced != 0);
}
T* get() const
{
return _Referenced;
}
void onDestruction(Referenced *referenced)
{
_Referenced = 0;
}
private:
T* _Referenced;
};
} // namespace BlueCore
#endif

View File

@ -0,0 +1,119 @@
#ifndef BLUECORE_STRING_UTILITIES_H
#define BLUECORE_STRING_UTILITIES_H
#include <iostream>
#include <string>
#include <vector>
namespace BlueCore {
#define SPACES " \t\r\n"
/**
* Function to remove whitespaces from the end of the string.
* @param s String to be trimmed.
* @param t String containing whitespaces. Default: space, tab, carriage return and newline.
*/
inline std::string trim_right(
const std::string &s,
const std::string &t = SPACES )
{
std::string::size_type i (s.find_last_not_of (t));
if (i == std::string::npos)
return "";
else
return std::string( s, 0, i );
}
/**
* Function to remove whitespaces from the beginning of the string.
* @param s String to be trimmed.
* @param t String containing whitespaces. Default: space, tab, carriage return and newline.
*/
inline std::string trim_left(
const std::string &s,
const std::string &t = SPACES )
{
return std::string( s, s.find_first_not_of(t) );
}
/**
* Function to remove whitespaces from the beginning and the end of the string.
* @param s String to be trimmed.
* @param t String containing whitespaces. Default: space, tab, carriage return and newline.
*/
inline std::string trim(
const std::string &s,
const std::string &t = SPACES )
{
std::string::size_type a = s.find_first_not_of(t), b = s.find_last_not_of(t);
if ( a == std::string::npos || b == std::string::npos )
return "";
return std::string( s, a, b-a+1 );
}
/**
* Splits a string into pieces, and returns them in an array.
* @param s String to be exploded.
* @param v Vector which receives the pieces.
* @param t String containing whitespaces. Default: space, tab, carriage return and newline.
* @param trim_spaces Flag to decide if pieces should be trimmed. Default: false.
*/
inline void explode(
const std::string &s,
std::vector<std::string> &v,
const bool trim_spaces = false,
const std::string &t = SPACES )
{
std::string::size_type a, b;
a = s.find_first_not_of(t), b = s.find_first_of(t, a);
while( a != std::string::npos )
{
if( trim_spaces )
v.push_back( trim( s.substr(a, b-a) ) );
else
v.push_back( s.substr(a, b-a) );
a = s.find_first_not_of(t, b), b = s.find_first_of(t, a);
}
}
/**
* Function to assemble strings from a vector into one strng.
* @param v Vector which conatins the string pieces.
* @param t String which is places between peaces. Default: one space " ".
* @return Assembled string.
*/
inline std::string implode(
const std::vector<std::string> &v,
const std::string &t = " " )
{
unsigned int i;
std::string s;
for( i = 0; i < (v.size() - 1); i++)
{
s.append( v[i] );
s.append( t );
}
return s+v[i];
}
} // namespace BlueCore
#endif

142
engine/Utilities/format.cpp Normal file
View File

@ -0,0 +1,142 @@
#include "format.h"
#ifndef NFORMAT
void Format::CFormat::reset()
{
valid = false;
adjust = RIGHT;
special = false;
precision = 6;
precision_explicit = false;
zero = false;
sign = false;
width = 0;
internal = false;
setupper = false;
grouping = false;
conversion = false;
base = DEC;
floating = FIXED;
showbase = false;
strlength = 0;
}
int Format::skip_atoi( std::string s, ST start, ST& pos )
{
pos = start;
ST len = s.size();
while( (pos < len) && isdigit( s[pos] ) )
pos++;
return atoi( s.substr( start, start-pos ).c_str() );
}
void Format::CFormat::set( std::ostream& out )
{
if( !valid )
{
return;
}
/*
printf( "valid: %d\n", valid );
printf( "adjust: %d\n", adjust );
printf( "special: %d\n", special );
printf( "precision: %d\n", precision );
printf( "precision_explicit: %d\n", precision_explicit );
printf( "zero: %d\n", zero );
printf( "sign: %d\n", sign );
printf( "width: %d\n", width );
printf( "internal: %d\n", internal );
printf( "setupper: %d\n", setupper );
printf( "grouping: %d\n", grouping );
printf( "conversion: %d\n", conversion );
printf( "base: %d\n", base );
printf( "floating: %d\n", floating );
printf( "showbase: %d\n", showbase );
printf( "strlength: %d\n", strlength );
*/
if( base == HEX && special && showbase && zero )
{
// without this correction:
// printf( "[%#08x]", 0x42 ) => [0x000042]
// fromat( "[%#08x]", 0x42 ) => [00000x42]
showbase = false;
out << '0' << ( setupper ? 'X' : 'x' );
width -= 2;
}
if( base == HEX && special && showbase && strlength )
{
/*
sprintf( buffer, "[%#8.3x]", 0x42 ) => [ 0x042]
*/
showbase = false;
if( width )
{
for( int i = 0; i + strlength + 2 + 1 < width; ++i )
out << ' ';
width = 0;
}
out << '0' << ( setupper ? 'X' : 'x' );
for( int i = 0; i + strlength < precision; ++i )
out << '0';
}
if( adjust == LEFT && zero )
{
/*
sprintf( buffer, "[%-#08x]", 0x42 ); => [0x42 ]
not => [0x420000]
*/
zero = false;
}
switch( adjust )
{
case LEFT: out.setf( std::ios::left, std::ios::adjustfield ); break;
case RIGHT: out.setf( std::ios::right, std::ios::adjustfield ); break;
}
if( zero ) out << std::setfill('0');
else out << std::setfill( ' ' );
if( sign ) out.setf( std::ios::showpos );
else out.unsetf( std::ios::showpos );
if( internal )
out.setf( std::ios::internal, std::ios::adjustfield );
switch( base )
{
case OCT: out.setf( std::ios::oct, std::ios::basefield ); break;
case DEC: out.setf( std::ios::dec, std::ios::basefield ); break;
case HEX: out.setf( std::ios::hex, std::ios::basefield ); break;
}
if( setupper ) out.setf( std::ios::uppercase );
else out.unsetf( std::ios::uppercase );
switch( floating )
{
case FIXED: out.setf( std::ios::fixed, std::ios::floatfield ); break;
case SCIENTIFIC: out.setf( std::ios::scientific, std::ios::floatfield ); break;
}
if( showbase )
out.setf( std::ios::showbase );
else
out.unsetf( std::ios::showbase );
out << std::setw( width );
out << std::setprecision( precision );
}
#endif

919
engine/Utilities/format.h Normal file
View File

@ -0,0 +1,919 @@
/*
Format a C++ library for typesafe string formating in printf style
(C) 2001 - 2003 by Martin Oberzalek <kingleo@gmx.at>
Examples:
std::cout << format( "Hello %s, I have $05d$ in my pocket", "world", 5 ) << std::endl;
std::cout << format( "Do not try this with printf: %s", 10101 ) << std::endl;
*/
#ifndef format_h
#define format_h
#include <string>
#include <iomanip>
#include <iostream>
/**
Can we use stringstreams or do we have to use the deprecated strstreams instead?
If we have to use strstreams, simple comment the next #define
**/
#define HAVE_STL_SSTREAM
#define NFORMAT
#if __GNUC__ == 2
#undef HAVE_STL_SSTREAM
#endif
#ifdef HAVE_STL_SSTREAM
# include <sstream>
# include <cctype>
# define IS_DIGIT( x ) std::isdigit( x )
#else
extern "C" {
# include <ctype.h>
}
# include <strstream>
# define IS_DIGIT( x ) isdigit( x )
#endif
#ifndef NFORMAT
namespace Format
{
typedef std::string::size_type ST;
class CFormat
{
public:
typedef enum Adjust
{
LEFT,
RIGHT
};
typedef enum Base
{
OCT,
DEC,
HEX
};
typedef enum Floating
{
FIXED,
SCIENTIFIC
};
bool valid;
Adjust adjust;
bool special;
bool sign;
bool grouping; // SUSv2 extension
bool conversion; // glibc 2.2 extension
bool zero;
bool precision_explicit;
bool internal;
Base base;
bool setupper;
Floating floating;
bool showbase;
int width;
int precision;
int strlength;
std::string format;
public:
CFormat() { reset(); }
void set( std::ostream& out );
private:
void reset();
};
/****************************************/
// all the errors that are thrown
// are a cause of a mistake with %* or %*m$
class Error
{
public:
std::string err;
Error( std::string s ) : err( s ) {}
};
/****************************************/
template <class A, class B, class C, class D, class E, class F>
class Format
{
private:
struct Arg
{
bool is_int;
bool is_string;
};
Arg args[6];
std::string format;
A a;
B b;
C c;
D d;
E e;
F f;
unsigned int num_of_args;
std::string s;
public:
Format( const std::string &format, A a, B b, C c, D d, E e, F f, unsigned int num_of_args );
std::string get_string() const { return s; }
private:
void parse();
template <class N> bool is_int( N &n ) { return false; }
bool is_int( int &n ) { return true; }
bool is_int( unsigned int &n ) { return true; }
bool is_int( short &n ) { return true; }
bool is_int( unsigned short ) { return true; }
template <class S> bool is_string( S &s ) { return false; }
bool is_string( std::string& s ) { return true; }
bool is_string( const std::string& s ) { return true; }
bool is_string( char* ) { return true; }
bool is_string( const char* ) { return true; }
int get_int_arg( unsigned int num );
void gen_arg_list();
std::string use_arg( unsigned int i, const CFormat &cf );
template <class S> std::string x2s( S ss, const CFormat &cf )
{
#ifdef HAVE_STL_SSTREAM
std::stringstream str;
str << cf << ss;
std::string st = str.str();
return st;
#else
std::strstream str;
str << cf << ss << std::ends;
std::string st = str.str();
str.freeze(0);
return st;
#endif
}
};
int skip_atoi( std::string s, ST start, ST& pos );
} // namespace Format
inline std::ostream& operator<<( std::ostream& out, Format::CFormat cf )
{
cf.set( out );
return out;
}
template <class A, class B, class C, class D, class E, class F>
Format::Format<A,B,C,D,E,F>::Format( std::string const &format, A a, B b, C c, D d, E e, F f, unsigned int num_of_args )
: format( format ), a(a), b(b), c(c), d(d), e(e), f(f), num_of_args( num_of_args )
{
if( num_of_args > 6 )
throw Error( "Number of args out of range" );
gen_arg_list();
parse();
}
template <class A, class B, class C, class D, class E, class F>
int Format::Format<A,B,C,D,E,F>::get_int_arg( unsigned int num )
{
if( static_cast<unsigned int>(num) > num_of_args - 1 )
throw Error( "The arg you wan't to use is out of range" );
if( num < 0 )
throw Error( "negativ number for arg number not allowed" );
if( args[num].is_int )
{
switch( num )
{
case 0: return *((int*) &a); // I have to cast here cause the compiler
case 1: return *((int*) &b); // will make troubles if any of these
case 2: return *((int*) &c); // values is not an unsigned int.
case 3: return *((int*) &d); // Even if we are sure that
case 4: return *((int*) &e); // an unsigned int value will be returned
case 5: return *((int*) &f);
}
}
else
throw Error( "expecting int arg" );
return 0; // should never be reached
}
template <class A, class B, class C, class D, class E, class F>
void Format::Format<A,B,C,D,E,F>::gen_arg_list()
{
for( unsigned int i = 0; i < num_of_args; i++ )
{
switch( i )
{
case 0:
args[i].is_int = is_int( a );
args[i].is_string = is_string( a );
break;
case 1:
args[i].is_int = is_int( b );
args[i].is_string = is_string( b );
break;
case 2:
args[i].is_int = is_int( c );
args[i].is_string = is_string( c );
break;
case 3:
args[i].is_int = is_int( d );
args[i].is_string = is_string( d );
break;
case 4:
args[i].is_int = is_int( e );
args[i].is_string = is_string( e );
break;
case 5:
args[i].is_int = is_int( f );
args[i].is_string = is_string( f );
break;
}
}
}
template <class A, class B, class C, class D, class E, class F>
std::string Format::Format<A,B,C,D,E,F>::use_arg( unsigned int i, const CFormat &cf )
{
if( i > num_of_args || i < 0 )
throw Error( "out of arg range" );
switch( i )
{
case 0: return x2s( a, cf );
case 1: return x2s( b, cf );
case 2: return x2s( c, cf );
case 3: return x2s( d, cf );
case 4: return x2s( e, cf );
case 5: return x2s( f, cf );
}
return "";
}
template <class A, class B, class C, class D, class E, class F>
void Format::Format<A,B,C,D,E,F>::parse()
{
if( format.empty() )
return;
unsigned int par = 0;
unsigned int use_par = 0;
ST pos = 0;
ST len = format.size();
s = "";
bool had_precision = false;
while( par < num_of_args && pos < len )
{ // while
use_par = par;
if( pos >= len )
break;
if( format[pos] != '%' )
{
s += format[pos];
pos++;
continue;
}
// % digit found
pos++;
if( !(pos < len ) || (format[pos] == '%') )
{
// %% -> %
s += format[pos];
pos++;
continue;
}
// format string found
ST start = pos - 1;
CFormat f;
// process flags
while( (pos < len) )
{
bool finished = false;
switch( format[pos] )
{
case '-' : f.adjust = CFormat::LEFT; break;
case '+' : f.sign = true; break;
case ' ' : f.zero = false; break;
case '#' : f.special = true; break;
case '\'': f.grouping = true; break;
case 'I' : f.conversion = true; break;
case '0' : f.zero = true; break;
default: finished = true; break;
}
if( finished )
break;
pos++;
} // while( (pos < len) )
// get argument number
if( pos < len )
{
// search for the $ digit
unsigned int dp = pos;
while( dp < len && IS_DIGIT( format[dp] ) )
dp++;
if( dp < len && format[dp] == '$' )
{
use_par = skip_atoi( format, pos, pos ) - 1;
pos = dp + 1;
}
}
// get field with
if( pos < len )
{
if( IS_DIGIT( format[pos] ) )
f.width = skip_atoi( format, pos, pos );
else if( format[pos] == '*' )
{
pos++;
// search for the $ digit
unsigned int dp = pos;
while( dp < len && IS_DIGIT( format[dp] ) )
dp++;
if( dp < len && format[dp] == '$' )
{
f.width = get_int_arg( skip_atoi( format, pos, pos ) - 1 );
// skip $ sign
pos++;
}
else
{
f.width = get_int_arg( par );
if( use_par == par )
use_par++;
par++;
}
if( f.width < 0 )
{
f.width *= -1;
f.adjust = CFormat::LEFT;
}
}
}
// precision
if( pos < len )
{
if( format[pos] == '.' )
{
pos++;
if( !(pos < len) )
return;
had_precision = true;
if( IS_DIGIT( format[pos] ) )
f.precision = skip_atoi( format, pos, pos );
else if( format[pos] == '*' )
{
pos++;
// search for the $ digit
unsigned int dp = pos;
while( dp < len && IS_DIGIT( format[dp] ) )
dp++;
if( dp < len && format[dp] == '$' )
{
f.precision = get_int_arg( skip_atoi( format, pos, pos ) - 1 );
// skip $ sign
pos++;
}
else
{
f.precision = get_int_arg( par );
if( use_par == par )
use_par++;
par++;
}
if( f.precision == 0)
f.precision_explicit = true;
if( f.precision < 0 )
f.precision = 0;
}
else
f.precision = 0;
}
}
// lenght modifier
/*
they will be ignored
cause we know the types of the parameter
*/
if( (pos < len) )
{
bool hh = false;
bool ll = false;
bool found = false;
switch( format[pos] )
{
case 'h': hh = true; found = true; break;
case 'l': ll = true; found = true; break;
case 'L':
case 'q':
case 'j':
case 'z':
case 't': found = true; break;
default: break;
}
if(found )
{
pos++;
if( pos < len )
if( hh == true )
{
if( format[pos] == 'h' )
pos++;
}
else if( ll = true )
if( format[pos] == 'l' )
pos++;
}
}
// conversion specifier
if( pos < len )
{
bool invalid = false;
switch( format[pos] )
{
case 'd':
case 'i':
f.base = CFormat::DEC;
if( f.zero && (f.adjust != CFormat::LEFT) )
f.internal = true;
break;
case 'X': f.setupper = true;
case 'x':
f.base = CFormat::HEX;
if( f.special )
f.showbase = true;
break;
case 'o':
f.base = CFormat::OCT;
if( f.special )
f.showbase = true;
break;
case 'E':
f.setupper = true;
case 'e':
if( f.special )
f.sign = true;
f.floating = CFormat::SCIENTIFIC;
break;
case 'F': // not supported
case 'f':
if( f.special )
f.sign = true;
f.floating = CFormat::FIXED;
break;
case 's':
if( f.zero )
f.zero = false;
break;
// unsupported modifiers
case 'G':
case 'g':
case 'A':
case 'a':
case 'c':
case 'C':
case 'S':
case 'P':
case 'n': break;
default: invalid = true;
}
if( !invalid )
f.valid = true;
}
if( f.valid )
{
std::string str;
int upar = par;
if( use_par != par )
upar = use_par;
if( f.base == CFormat::HEX && had_precision && f.special )
{
CFormat f2;
f2.base = f.base;
std::string s = use_arg( upar, f2 );
f.strlength = s.size();
// printf( "str: %s\n", s.c_str() );
}
str = use_arg( upar, f );
// cut string
if( had_precision && args[upar].is_string )
str = str.substr( 0, f.precision );
s += str;
if( use_par == par )
par++;
}
else
{
// copy the invalid format string
for( ST i = start; i<= pos; i++ )
if( i < len )
s += format[i];
}
pos++;
} // while
if( pos < len )
{
while( pos < len )
{
s += format[pos];
pos++;
}
}
}
#else // ifndef NFORMAT
/// converts anything to a string
template<class T>std::string x2s( T what )
{
#ifdef HAVE_STL_SSTREAM
std::stringstream str;
str << what;
std::string s( str.str() );
return s;
#else
std::strstream str;
str << what << std::ends;
std::string s( str.str() );
str.freeze(0);
return s;
#endif
}
#include <cstdio>
namespace Format
{
template <class T> const char* convert( T t ) { return x2s( t ).c_str(); }
#define DEF( TYPE ) \
inline TYPE convert( TYPE t ) { return t; }
DEF( unsigned )
DEF( int )
DEF( char )
DEF( char* )
DEF( const char* )
DEF( short )
DEF( double )
DEF( float )
DEF( long )
#undef DEF
template<class A, class B, class C, class D, class E, class F>
class Format
{
std::string s;
public:
Format( const std::string &format, A a, B b, C c, D d, E e, F f, unsigned int num_of_args )
{
#define D( T ) convert( T )
unsigned buffer_size = 256;
bool cont = false;
do {
cont = false;
char *buffer = new char[buffer_size];
int n = 0;
switch( num_of_args )
{
case 1: n = std::sprintf( buffer, format.c_str(),
D( a ) ); break;
case 2: n = std::sprintf( buffer, format.c_str(),
D( a ), D( b ) ); break;
case 3: n = std::sprintf( buffer, format.c_str(),
D( a ), D( b ), D( c ) ); break;
case 4: n = std::sprintf( buffer, format.c_str(),
D( a ), D( b ), D( c ), D( d ) ); break;
case 5: n = std::sprintf( buffer, format.c_str(),
D( a ), D( b ), D( c ), D( d ), D( e ) ); break;
case 6: n = std::sprintf( buffer, format.c_str(),
D( a ), D( b ), D( c ), D( d ), D( e ), D( f ) ); break;
}
if( (unsigned) n >= buffer_size - 2 )
{
buffer_size *= 2;
cont = true;
n = 0;
}
for( int i = 0; i < n; i++ )
s += buffer[i];
delete[] buffer;
} while( cont );
#undef D
}
std::string get_string() const { return s; }
};
}
#endif
template <class A, class B, class C, class D, class E, class F>
inline std::string format( std::string fs, A a, B b, C c, D d, E e, F f )
{
return Format::Format<A,B,C,D,E,F>( fs, a, b, c, d, e, f, 6).get_string();
}
template <class A, class B, class C, class D, class E>
inline std::string format( std::string fs, A a, B b, C c, D d, E e )
{
return Format::Format<A,B,C,D,E,char>( fs, a, b, c, d, e, 0, 5).get_string();
}
template <class A, class B, class C, class D>
inline std::string format( std::string fs, A a, B b, C c, D d)
{
return Format::Format<A,B,C,D,char,char>( fs, a, b, c, d, 0, 0, 4).get_string();
}
template <class A, class B, class C>
inline std::string format( std::string fs, A a, B b, C c )
{
return Format::Format<A,B,C,char,char,char>( fs, a, b, c, 0, 0, 0, 3).get_string();
}
template <class A, class B>
inline std::string format( std::string fs, A a, B b )
{
return Format::Format<A,B,char,char,char,char>( fs, a, b, 0, 0, 0, 0, 2).get_string();
}
template <class A>
inline std::string format( std::string fs, A a)
{
return Format::Format<A,char,char,char,char,char>( fs, a, 0, 0, 0, 0, 0, 1).get_string();
}
namespace Format
{
template<typename ostream> class PrintF
{
private:
int level;
int dlevel;
int dmodule;
int module;
public:
ostream &out;
public:
PrintF( ostream &out = std::cout, int module = -1, int debug_level = -1 )
: level( debug_level ), dlevel( debug_level ),
dmodule( module), module( module), out( out )
{}
void set_debug_level( int dlevel_ ) { dlevel = dlevel_; }
void set_module( int module_ ) { dmodule = module_; }
PrintF operator()( int module_ )
{
PrintF printf( *this );
printf.module = module_;
return printf;
}
PrintF operator[]( int level_ )
{
PrintF printf( *this );
printf.level = level_;
return printf;
}
template<typename T> PrintF& operator<<( const T &t )
{
if( check() )
out << t;
return *this;
}
// io manipulator overloading
PrintF& operator<<(ostream& (*f)(ostream&))
{
if( check() )
out << f;
return *this;
}
PrintF& operator()( std::string fs )
{
if( check() )
out << fs;
return *this;
}
template<typename A> PrintF& operator()( std::string fs, const A &a )
{
if( check() )
out << format( fs, a );
return *this;
}
template<typename A, typename B>
PrintF& operator()( std::string fs, const A &a, const B &b )
{
if( check() )
out << format( fs, a, b );
return *this;
}
template<typename A, typename B, typename C>
PrintF& operator()( std::string fs, const A &a, const B &b, const C &c )
{
if( check() )
out << format( fs, a, b, c );
return *this;
}
template<typename A, typename B, typename C, typename D>
PrintF& operator()( std::string fs, const A &a, const B &b, const C &c, const D &d )
{
if( check() )
out << format( fs, a, b, c, d );
return *this;
}
template<typename A, typename B, typename C, typename D, typename E>
PrintF& operator()( std::string fs, const A &a, const B &b, const C &c, const D &d, const E &e )
{
if( check() )
out << format( fs, a, b, c, d, e );
return *this;
}
template<typename A, typename B, typename C, typename D, typename E, typename F>
PrintF& operator()( std::string fs, const A &a, const B &b, const C &c, const D &d, const E &e, const F &f )
{
if( check() )
out << format( fs, a, b, c, d, e, f );
return *this;
}
bool check( int module, int level ) const
{
if( module == dmodule || dmodule == -1 )
{
if( dlevel == -1 )
return true;
if( level <= dlevel )
return true;
}
return false;
}
private:
bool check() const { return check( module, level ); }
};
}
#undef IS_DIGIT
#endif

2567
engine/Utilities/sigslot.h Normal file

File diff suppressed because it is too large Load Diff

BIN
engine/data/DejaVuSans.ttf Normal file

Binary file not shown.

View File

@ -0,0 +1,10 @@
uniform sampler2D color_emissive_texture;
varying vec4 vertex_ambient;
void main()
{
vec4 texel = texture2D( color_emissive_texture, gl_TexCoord[0].xy );
gl_FragColor = (texel * vertex_ambient) + (texel * texel.a);
gl_FragColor.a = 1.0;
}

View File

@ -0,0 +1,2 @@
vertex_shaders = ambient_color_emissive
fragment_shaders = ambient_color_emissive

View File

@ -0,0 +1,10 @@
varying vec4 vertex_ambient;
void main()
{
/* Compute the diffuse, ambient and globalAmbient terms */
vertex_ambient = gl_LightModel.ambient * gl_FrontMaterial.ambient;
gl_Position = ftransform();
gl_TexCoord[0] = gl_MultiTexCoord0;
}

BIN
engine/data/combat.zip Normal file

Binary file not shown.

BIN
engine/data/image.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

114
engine/data/main.nut Normal file
View File

@ -0,0 +1,114 @@
EntityList <- [];
class Entity
{
function tick (time)
{
}
function step (time)
{
}
}
function onFrame (time)
{
for(local i = 0; i < EntityList.len();)
{
if( EntityList[i].tick( time ) == 1 )
{
EntityList.remove(i);
continue;
}
++i;
}
}
function onStep (time)
{
for(local i = 0; i < EntityList.len(); ++i )
{
EntityList[i].step( time )
}
}
class Asteroid extends Entity
{
rigidbody = null;
trafonode = null;
modelnode = null;
constructor()
{
rigidbody = RigidBody (this);
rigidbody.addCollisionMesh ("asteroid.collision", 1000.0);
model = Model ("asteroid");
node = Node();
node.setPositionProvider (rigidbody);
node.setRenderProvider (model);
sprite = Sprite ("name");
spritenode = Node (node);
spritenode.setRenderProvider (sprite);
spritenode.setRelativePosition (Vector(10.0, 0.0, 0.0));
//pg = ParticleGenerator ("comettail");
}
function setPosition( position )
{
rigidbody.setPosition( position );
}
}
font <- null;
logo <- null;
lastFPS <- 0;
frameCount <- 0;
FPS <- 1;
body <- null;
function Initialize()
{
::font = Font ("DejaVuSans.ttf", 24, 1 );
::logo = Image ("image.png", 0.0, 0.0, 1.0, 1.0);
::body = RigidBody();
}
function OnFrame( delta )
{
::frameCount += 1
::lastFPS += delta;
if (::lastFPS > 0.1)
{
::FPS = ::frameCount * 10;
::frameCount = 0;
::lastFPS -= 0.1;
}
if (::FPS > 0)
{
local fps = "FPS: " + FPS + " / " + (1.0/::FPS)*1000.0 + " ms";
::font.print( 10, 10, fps, 1, 1 );
}
// ::logo.draw (0.5, 0.5);
v <- ::body.getPosition();
::font.print(10, 40, "Position: " + v.x + ", " + v.y + ", " + v.z, 1, 1 );
}
function OnStep( delte )
{
::body.applyLocalForce( Vector(0.0, 0.0, 1.0) );
}
function Shutdown()
{
}

168
engine/main.cpp Normal file
View File

@ -0,0 +1,168 @@
#include "GL/glew.h"
#include "RenderWindow.h"
#include "RenderDevice.h"
#include "FontManager.h"
#include "MeshManager.h"
#include "TextureManager.h"
#include "ShaderManager.h"
#include "ModelManager.h"
#include "TextureImage.h"
#include "ScriptSystem.h"
#include "ScriptSystem_Font.h"
#include "ScriptSystem_Image.h"
#include "ScriptSystem_Math.h"
#include "ScriptSystem_RigidBody.h"
#include "RigidBodySimulation.h"
#include "Camera.h"
#include "SceneNode.h"
#include "Utilities/CfgParser.h"
#include "Utilities/Log.h"
#include "Utilities/Kernel.h"
#include "physfs.h"
using namespace BlueCore;
void initializePhysfs(char* program)
{
// setup physfs
PHYSFS_init(program);
std::string appdir = PHYSFS_getUserDir();
appdir += ".bluecore";
if ( !PHYSFS_setWriteDir(appdir.c_str()) )
{
if ( (PHYSFS_setWriteDir(PHYSFS_getUserDir()))
&& (PHYSFS_mkdir(".bluecore")))
PHYSFS_setWriteDir(appdir.c_str() );
}
PHYSFS_addToSearchPath(appdir.c_str(), 0);
PHYSFS_addToSearchPath("data", 1);
char **rc = PHYSFS_enumerateFiles("");
for (char **i = rc; *i != 0; i++)
{
std::string filename( *i);
if (filename.substr(filename.size() - 4, 4) == ".zip")
{
PHYSFS_addToSearchPath(( "data/" + filename ).c_str(), 1);
clog << ">>> Using addon: "<< filename << endlog;
}
}
PHYSFS_freeList(rc);
}
void shutdownPhysfs()
{
PHYSFS_deinit();
}
int main(int argc, char **argv)
{
initializePhysfs(argv[0]);
CfgParser cfg;
cfg.parseFile("options.cfg");
int width = cfg.get("width", 640);
int height = cfg.get("height", 480);
bool fullscreen = cfg.get("fullscreen", false);
ref_ptr<RenderWindow> window = new RenderWindow();
window->create(width, height, 0, 0, 0, fullscreen);
ref_ptr<RenderDevice> device = new RenderDevice(window);
ref_ptr<FontManager> fontmanager = new FontManager(device);
ref_ptr<MeshManager> meshmanager = new MeshManager(device);
ref_ptr<TextureManager> texturemanager = new TextureManager();
ref_ptr<ScriptSystem> scriptsystem = new ScriptSystem();
ref_ptr<ShaderManager> shadermanager = new ShaderManager(window);
ref_ptr<RigidBodySimulation> simulation = new RigidBodySimulation(scriptsystem);
ref_ptr<ModelManager> modelmanager = new ModelManager (texturemanager, shadermanager, meshmanager);
ref_ptr<Camera> camera = new Camera();
/*
ShaderProgram prog =
shadermanager->loadShaderProgram("ambient_color_emissive");
*/
setupScriptSystem_Font(scriptsystem, fontmanager);
setupScriptSystem_Image(scriptsystem, texturemanager, device);
setupScriptSystem_Math(scriptsystem);
setupScriptSystem_RigidBody(scriptsystem, simulation);
GLfloat mat_specular[] =
{ 1.0, 1.0, 1.0, 1.0 };
GLfloat mat_shininess[] =
{ 2.0 };
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_specular);
glMaterialfv(GL_FRONT, GL_AMBIENT, mat_specular);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
if (window.valid() && device.valid())
{
scriptsystem->loadScript("main");
camera->setFoV(90.0);
camera->setAspectRatio((double)width/(double)height);
camera->setNearPlane(1.0);
camera->setFarPlane(100.0);
camera->setPosition(Vector3(0.0, 0.0, 20.0));
device->setAmbientLight(1.0, 1.0, 1.0);
//ref_ptr<SceneNode> rootnode(new SceneNode("root node"));
double _DeltaTime = 0;
double _LastTime = glfwGetTime();
ref_ptr<Model> model = modelmanager->loadModel("combat");
scriptsystem->callFunction("Initialize");
clog << "--- starting main loop..."<< endlog;
while (window->isOpen())
{
device->clear();
double time = glfwGetTime();
_DeltaTime = time - _LastTime;
_LastTime = time;
// device->setViewMatrix();
// device->setProjectionMatrix();
camera->setupProjectionMatrix();
camera->setupViewMatrix();
// device->useShader (program);
// device->setTexture (stage, name, texture)
// device->clearTextures (stage+1);
//glEnable (GL_TEXTURE_2D);
//glEnable (GL_LIGHTING);
//glBindTexture (GL_TEXTURE_2D, texture->getId() );
// device->
model->render();
simulation->saveStates();
simulation->updateSteps(_DeltaTime);
while (simulation->step())
;
scriptsystem->callFunction("OnFrame", _DeltaTime);
window->swap();
}
scriptsystem->callFunction("Shutdown");
clog << "--- main loop finished..."<< endlog;
}
shutdownPhysfs();
}

5
engine/options.cfg Normal file
View File

@ -0,0 +1,5 @@
width = 800
height = 600
fullscreen = no
vertex_shader = bumbmapping sdsd sd sd

13
engine/todo.txt Normal file
View File

@ -0,0 +1,13 @@
Addons
------
* load addons in sorted order
Scripting
---------
* make event based input available
* make ShaderProgram a class
* create RenderSet AND/OR RenderQueue