initial commit

This commit is contained in:
cirdan
2008-01-16 11:45:17 +00:00
commit 8f17a3a819
1068 changed files with 384278 additions and 0 deletions

View File

@ -0,0 +1,57 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btBoxShape.h"
btVector3 btBoxShape::getHalfExtents() const
{
return m_implicitShapeDimensions * m_localScaling;
}
//{
void btBoxShape::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
{
btVector3 halfExtents = getHalfExtents();
btMatrix3x3 abs_b = t.getBasis().absolute();
btPoint3 center = t.getOrigin();
btVector3 extent = btVector3(abs_b[0].dot(halfExtents),
abs_b[1].dot(halfExtents),
abs_b[2].dot(halfExtents));
extent += btVector3(getMargin(),getMargin(),getMargin());
aabbMin = center - extent;
aabbMax = center + extent;
}
void btBoxShape::calculateLocalInertia(btScalar mass,btVector3& inertia)
{
//btScalar margin = btScalar(0.);
btVector3 halfExtents = getHalfExtents();
btScalar lx=btScalar(2.)*(halfExtents.x());
btScalar ly=btScalar(2.)*(halfExtents.y());
btScalar lz=btScalar(2.)*(halfExtents.z());
inertia.setValue(mass/(btScalar(12.0)) * (ly*ly + lz*lz),
mass/(btScalar(12.0)) * (lx*lx + lz*lz),
mass/(btScalar(12.0)) * (lx*lx + ly*ly));
}

View File

@ -0,0 +1,290 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef OBB_BOX_MINKOWSKI_H
#define OBB_BOX_MINKOWSKI_H
#include "btPolyhedralConvexShape.h"
#include "btCollisionMargin.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "LinearMath/btPoint3.h"
#include "LinearMath/btSimdMinMax.h"
///btBoxShape implements both a feature based (vertex/edge/plane) and implicit (getSupportingVertex) Box
class btBoxShape: public btPolyhedralConvexShape
{
//btVector3 m_boxHalfExtents1; //use m_implicitShapeDimensions instead
public:
btVector3 getHalfExtents() const;
virtual int getShapeType() const { return BOX_SHAPE_PROXYTYPE;}
virtual btVector3 localGetSupportingVertex(const btVector3& vec) const
{
btVector3 halfExtents = getHalfExtents();
return btVector3(btFsels(vec.x(), halfExtents.x(), -halfExtents.x()),
btFsels(vec.y(), halfExtents.y(), -halfExtents.y()),
btFsels(vec.z(), halfExtents.z(), -halfExtents.z()));
}
virtual inline btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const
{
btVector3 halfExtents = getHalfExtents();
btVector3 margin(getMargin(),getMargin(),getMargin());
halfExtents -= margin;
return btVector3(btFsels(vec.x(), halfExtents.x(), -halfExtents.x()),
btFsels(vec.y(), halfExtents.y(), -halfExtents.y()),
btFsels(vec.z(), halfExtents.z(), -halfExtents.z()));
}
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
btVector3 halfExtents = getHalfExtents();
btVector3 margin(getMargin(),getMargin(),getMargin());
halfExtents -= margin;
for (int i=0;i<numVectors;i++)
{
const btVector3& vec = vectors[i];
supportVerticesOut[i].setValue(btFsels(vec.x(), halfExtents.x(), -halfExtents.x()),
btFsels(vec.y(), halfExtents.y(), -halfExtents.y()),
btFsels(vec.z(), halfExtents.z(), -halfExtents.z()));
}
}
btBoxShape( const btVector3& boxHalfExtents)
{
m_implicitShapeDimensions = boxHalfExtents;
};
virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia);
virtual void getPlane(btVector3& planeNormal,btPoint3& planeSupport,int i ) const
{
//this plane might not be aligned...
btVector4 plane ;
getPlaneEquation(plane,i);
planeNormal = btVector3(plane.getX(),plane.getY(),plane.getZ());
planeSupport = localGetSupportingVertex(-planeNormal);
}
virtual int getNumPlanes() const
{
return 6;
}
virtual int getNumVertices() const
{
return 8;
}
virtual int getNumEdges() const
{
return 12;
}
virtual void getVertex(int i,btVector3& vtx) const
{
btVector3 halfExtents = getHalfExtents();
vtx = btVector3(
halfExtents.x() * (1-(i&1)) - halfExtents.x() * (i&1),
halfExtents.y() * (1-((i&2)>>1)) - halfExtents.y() * ((i&2)>>1),
halfExtents.z() * (1-((i&4)>>2)) - halfExtents.z() * ((i&4)>>2));
}
virtual void getPlaneEquation(btVector4& plane,int i) const
{
btVector3 halfExtents = getHalfExtents();
switch (i)
{
case 0:
plane.setValue(btScalar(1.),btScalar(0.),btScalar(0.));
plane[3] = -halfExtents.x();
break;
case 1:
plane.setValue(btScalar(-1.),btScalar(0.),btScalar(0.));
plane[3] = -halfExtents.x();
break;
case 2:
plane.setValue(btScalar(0.),btScalar(1.),btScalar(0.));
plane[3] = -halfExtents.y();
break;
case 3:
plane.setValue(btScalar(0.),btScalar(-1.),btScalar(0.));
plane[3] = -halfExtents.y();
break;
case 4:
plane.setValue(btScalar(0.),btScalar(0.),btScalar(1.));
plane[3] = -halfExtents.z();
break;
case 5:
plane.setValue(btScalar(0.),btScalar(0.),btScalar(-1.));
plane[3] = -halfExtents.z();
break;
default:
assert(0);
}
}
virtual void getEdge(int i,btPoint3& pa,btPoint3& pb) const
//virtual void getEdge(int i,Edge& edge) const
{
int edgeVert0 = 0;
int edgeVert1 = 0;
switch (i)
{
case 0:
edgeVert0 = 0;
edgeVert1 = 1;
break;
case 1:
edgeVert0 = 0;
edgeVert1 = 2;
break;
case 2:
edgeVert0 = 1;
edgeVert1 = 3;
break;
case 3:
edgeVert0 = 2;
edgeVert1 = 3;
break;
case 4:
edgeVert0 = 0;
edgeVert1 = 4;
break;
case 5:
edgeVert0 = 1;
edgeVert1 = 5;
break;
case 6:
edgeVert0 = 2;
edgeVert1 = 6;
break;
case 7:
edgeVert0 = 3;
edgeVert1 = 7;
break;
case 8:
edgeVert0 = 4;
edgeVert1 = 5;
break;
case 9:
edgeVert0 = 4;
edgeVert1 = 6;
break;
case 10:
edgeVert0 = 5;
edgeVert1 = 7;
break;
case 11:
edgeVert0 = 6;
edgeVert1 = 7;
break;
default:
btAssert(0);
}
getVertex(edgeVert0,pa );
getVertex(edgeVert1,pb );
}
virtual bool isInside(const btPoint3& pt,btScalar tolerance) const
{
btVector3 halfExtents = getHalfExtents();
//btScalar minDist = 2*tolerance;
bool result = (pt.x() <= (halfExtents.x()+tolerance)) &&
(pt.x() >= (-halfExtents.x()-tolerance)) &&
(pt.y() <= (halfExtents.y()+tolerance)) &&
(pt.y() >= (-halfExtents.y()-tolerance)) &&
(pt.z() <= (halfExtents.z()+tolerance)) &&
(pt.z() >= (-halfExtents.z()-tolerance));
return result;
}
//debugging
virtual const char* getName()const
{
return "Box";
}
virtual int getNumPreferredPenetrationDirections() const
{
return 6;
}
virtual void getPreferredPenetrationDirection(int index, btVector3& penetrationVector) const
{
switch (index)
{
case 0:
penetrationVector.setValue(btScalar(1.),btScalar(0.),btScalar(0.));
break;
case 1:
penetrationVector.setValue(btScalar(-1.),btScalar(0.),btScalar(0.));
break;
case 2:
penetrationVector.setValue(btScalar(0.),btScalar(1.),btScalar(0.));
break;
case 3:
penetrationVector.setValue(btScalar(0.),btScalar(-1.),btScalar(0.));
break;
case 4:
penetrationVector.setValue(btScalar(0.),btScalar(0.),btScalar(1.));
break;
case 5:
penetrationVector.setValue(btScalar(0.),btScalar(0.),btScalar(-1.));
break;
default:
assert(0);
}
}
};
#endif //OBB_BOX_MINKOWSKI_H

View File

@ -0,0 +1,173 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
//#define DISABLE_BVH
#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h"
#include "BulletCollision/CollisionShapes/btOptimizedBvh.h"
///Bvh Concave triangle mesh is a static-triangle mesh shape with Bounding Volume Hierarchy optimization.
///Uses an interface to access the triangles to allow for sharing graphics/physics triangles.
btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression)
:btTriangleMeshShape(meshInterface),m_useQuantizedAabbCompression(useQuantizedAabbCompression)
{
//construct bvh from meshInterface
#ifndef DISABLE_BVH
m_bvh = new btOptimizedBvh();
btVector3 bvhAabbMin,bvhAabbMax;
meshInterface->calculateAabbBruteForce(bvhAabbMin,bvhAabbMax);
m_bvh->build(meshInterface,m_useQuantizedAabbCompression,bvhAabbMin,bvhAabbMax);
#endif //DISABLE_BVH
}
btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression,const btVector3& bvhAabbMin,const btVector3& bvhAabbMax)
:btTriangleMeshShape(meshInterface),m_useQuantizedAabbCompression(useQuantizedAabbCompression)
{
//construct bvh from meshInterface
#ifndef DISABLE_BVH
m_bvh = new btOptimizedBvh();
m_bvh->build(meshInterface,m_useQuantizedAabbCompression,bvhAabbMin,bvhAabbMax);
#endif //DISABLE_BVH
}
void btBvhTriangleMeshShape::partialRefitTree(const btVector3& aabbMin,const btVector3& aabbMax)
{
m_bvh->refitPartial( m_meshInterface,aabbMin,aabbMax );
m_localAabbMin.setMin(aabbMin);
m_localAabbMax.setMax(aabbMax);
}
void btBvhTriangleMeshShape::refitTree()
{
m_bvh->refit( m_meshInterface );
recalcLocalAabb();
}
btBvhTriangleMeshShape::~btBvhTriangleMeshShape()
{
delete m_bvh;
}
//perform bvh tree traversal and report overlapping triangles to 'callback'
void btBvhTriangleMeshShape::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
#ifdef DISABLE_BVH
//brute force traverse all triangles
btTriangleMeshShape::processAllTriangles(callback,aabbMin,aabbMax);
#else
//first get all the nodes
struct MyNodeOverlapCallback : public btNodeOverlapCallback
{
btStridingMeshInterface* m_meshInterface;
btTriangleCallback* m_callback;
btVector3 m_triangle[3];
MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface)
:m_meshInterface(meshInterface),
m_callback(callback)
{
}
virtual void processNode(int nodeSubPart, int nodeTriangleIndex)
{
const unsigned char *vertexbase;
int numverts;
PHY_ScalarType type;
int stride;
const unsigned char *indexbase;
int indexstride;
int numfaces;
PHY_ScalarType indicestype;
m_meshInterface->getLockedReadOnlyVertexIndexBase(
&vertexbase,
numverts,
type,
stride,
&indexbase,
indexstride,
numfaces,
indicestype,
nodeSubPart);
int* gfxbase = (int*)(indexbase+nodeTriangleIndex*indexstride);
const btVector3& meshScaling = m_meshInterface->getScaling();
for (int j=2;j>=0;j--)
{
int graphicsindex = gfxbase[j];
#ifdef DEBUG_TRIANGLE_MESH
printf("%d ,",graphicsindex);
#endif //DEBUG_TRIANGLE_MESH
btScalar* graphicsbase = (btScalar*)(vertexbase+graphicsindex*stride);
m_triangle[j] = btVector3(
graphicsbase[0]*meshScaling.getX(),
graphicsbase[1]*meshScaling.getY(),
graphicsbase[2]*meshScaling.getZ());
#ifdef DEBUG_TRIANGLE_MESH
printf("triangle vertices:%f,%f,%f\n",triangle[j].x(),triangle[j].y(),triangle[j].z());
#endif //DEBUG_TRIANGLE_MESH
}
m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex);
m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart);
}
};
MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface);
m_bvh->reportAabbOverlappingNodex(&myNodeCallback,aabbMin,aabbMax);
#endif//DISABLE_BVH
}
void btBvhTriangleMeshShape::setLocalScaling(const btVector3& scaling)
{
if ((getLocalScaling() -scaling).length2() > SIMD_EPSILON)
{
btTriangleMeshShape::setLocalScaling(scaling);
delete m_bvh;
///m_localAabbMin/m_localAabbMax is already re-calculated in btTriangleMeshShape. We could just scale aabb, but this needs some more work
m_bvh = new btOptimizedBvh();
//rebuild the bvh...
m_bvh->build(m_meshInterface,m_useQuantizedAabbCompression,m_localAabbMin,m_localAabbMax);
}
}

View File

@ -0,0 +1,75 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BVH_TRIANGLE_MESH_SHAPE_H
#define BVH_TRIANGLE_MESH_SHAPE_H
#include "btTriangleMeshShape.h"
#include "btOptimizedBvh.h"
///Bvh Concave triangle mesh is a static-triangle mesh shape with Bounding Volume Hierarchy optimization.
///Uses an interface to access the triangles to allow for sharing graphics/physics triangles.
ATTRIBUTE_ALIGNED16(class) btBvhTriangleMeshShape : public btTriangleMeshShape
{
btOptimizedBvh* m_bvh;
bool m_useQuantizedAabbCompression;
bool m_pad[12];////need padding due to alignment
public:
btBvhTriangleMeshShape() :btTriangleMeshShape(0) {};
btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression);
///optionally pass in a larger bvh aabb, used for quantization. This allows for deformations within this aabb
btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression,const btVector3& bvhAabbMin,const btVector3& bvhAabbMax);
virtual ~btBvhTriangleMeshShape();
/*
virtual int getShapeType() const
{
return TRIANGLE_MESH_SHAPE_PROXYTYPE;
}
*/
virtual void processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const;
void refitTree();
///for a fast incremental refit of parts of the tree. Note: the entire AABB of the tree will become more conservative, it never shrinks
void partialRefitTree(const btVector3& aabbMin,const btVector3& aabbMax);
//debugging
virtual const char* getName()const {return "BVHTRIANGLEMESH";}
virtual void setLocalScaling(const btVector3& scaling);
btOptimizedBvh* getOptimizedBvh()
{
return m_bvh;
}
bool usesQuantizedAabbCompression() const
{
return m_useQuantizedAabbCompression;
}
}
;
#endif //BVH_TRIANGLE_MESH_SHAPE_H

View File

@ -0,0 +1,146 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btCapsuleShape.h"
#include "BulletCollision/CollisionShapes/btCollisionMargin.h"
#include "LinearMath/btQuaternion.h"
btCapsuleShape::btCapsuleShape(btScalar radius, btScalar height)
{
m_implicitShapeDimensions.setValue(radius,0.5f*height,radius);
}
btVector3 btCapsuleShape::localGetSupportingVertexWithoutMargin(const btVector3& vec0)const
{
btVector3 supVec(0,0,0);
btScalar maxDot(btScalar(-1e30));
btVector3 vec = vec0;
btScalar lenSqr = vec.length2();
if (lenSqr < btScalar(0.0001))
{
vec.setValue(1,0,0);
} else
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
vec *= rlen;
}
btVector3 vtx;
btScalar newDot;
btScalar radius = getRadius();
{
btVector3 pos(0,getHalfHeight(),0);
vtx = pos +vec*m_localScaling*(radius) - vec * getMargin();
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = vtx;
}
}
{
btVector3 pos(0,-getHalfHeight(),0);
vtx = pos +vec*m_localScaling*(radius) - vec * getMargin();
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = vtx;
}
}
return supVec;
}
void btCapsuleShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
btScalar radius = getRadius();
for (int j=0;j<numVectors;j++)
{
btScalar maxDot(btScalar(-1e30));
const btVector3& vec = vectors[j];
btVector3 vtx;
btScalar newDot;
{
btVector3 pos(0,getHalfHeight(),0);
vtx = pos +vec*m_localScaling*(radius) - vec * getMargin();
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supportVerticesOut[j] = vtx;
}
}
{
btVector3 pos(0,-getHalfHeight(),0);
vtx = pos +vec*m_localScaling*(radius) - vec * getMargin();
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supportVerticesOut[j] = vtx;
}
}
}
}
void btCapsuleShape::calculateLocalInertia(btScalar mass,btVector3& inertia)
{
//as an approximation, take the inertia of the box that bounds the spheres
btTransform ident;
ident.setIdentity();
btScalar radius = getRadius();
btVector3 halfExtents(radius,radius+getHalfHeight(),radius);
btScalar margin = CONVEX_DISTANCE_MARGIN;
btScalar lx=btScalar(2.)*(halfExtents[0]+margin);
btScalar ly=btScalar(2.)*(halfExtents[1]+margin);
btScalar lz=btScalar(2.)*(halfExtents[2]+margin);
const btScalar x2 = lx*lx;
const btScalar y2 = ly*ly;
const btScalar z2 = lz*lz;
const btScalar scaledmass = mass * btScalar(.08333333);
inertia[0] = scaledmass * (y2+z2);
inertia[1] = scaledmass * (x2+z2);
inertia[2] = scaledmass * (x2+y2);
}

View File

@ -0,0 +1,60 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_CAPSULE_SHAPE_H
#define BT_CAPSULE_SHAPE_H
#include "btConvexInternalShape.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" // for the types
///btCapsuleShape represents a capsule around the Y axis
///A more general solution that can represent capsules is the btMultiSphereShape
class btCapsuleShape : public btConvexInternalShape
{
public:
btCapsuleShape(btScalar radius,btScalar height);
///CollisionShape Interface
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia);
/// btConvexShape Interface
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
virtual int getShapeType() const { return CAPSULE_SHAPE_PROXYTYPE; }
virtual const char* getName()const
{
return "CapsuleShape";
}
btScalar getRadius() const
{
return m_implicitShapeDimensions.getX();
}
btScalar getHalfHeight() const
{
return m_implicitShapeDimensions.getY();
}
};
#endif //BT_CAPSULE_SHAPE_H

View File

@ -0,0 +1,26 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef COLLISION_MARGIN_H
#define COLLISION_MARGIN_H
//used by Gjk and some other algorithms
#define CONVEX_DISTANCE_MARGIN btScalar(0.04)// btScalar(0.1)//;//btScalar(0.01)
#endif //COLLISION_MARGIN_H

View File

@ -0,0 +1,85 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "BulletCollision/CollisionShapes/btCollisionShape.h"
/*
Make sure this dummy function never changes so that it
can be used by probes that are checking whether the
library is actually installed.
*/
extern "C" void btBulletCollisionProbe () {}
void btCollisionShape::getBoundingSphere(btVector3& center,btScalar& radius) const
{
btTransform tr;
tr.setIdentity();
btVector3 aabbMin,aabbMax;
getAabb(tr,aabbMin,aabbMax);
radius = (aabbMax-aabbMin).length()*btScalar(0.5);
center = (aabbMin+aabbMax)*btScalar(0.5);
}
btScalar btCollisionShape::getAngularMotionDisc() const
{
btVector3 center;
btScalar disc;
getBoundingSphere(center,disc);
disc += (center).length();
return disc;
}
void btCollisionShape::calculateTemporalAabb(const btTransform& curTrans,const btVector3& linvel,const btVector3& angvel,btScalar timeStep, btVector3& temporalAabbMin,btVector3& temporalAabbMax)
{
//start with static aabb
getAabb(curTrans,temporalAabbMin,temporalAabbMax);
btScalar temporalAabbMaxx = temporalAabbMax.getX();
btScalar temporalAabbMaxy = temporalAabbMax.getY();
btScalar temporalAabbMaxz = temporalAabbMax.getZ();
btScalar temporalAabbMinx = temporalAabbMin.getX();
btScalar temporalAabbMiny = temporalAabbMin.getY();
btScalar temporalAabbMinz = temporalAabbMin.getZ();
// add linear motion
btVector3 linMotion = linvel*timeStep;
//todo: simd would have a vector max/min operation, instead of per-element access
if (linMotion.x() > btScalar(0.))
temporalAabbMaxx += linMotion.x();
else
temporalAabbMinx += linMotion.x();
if (linMotion.y() > btScalar(0.))
temporalAabbMaxy += linMotion.y();
else
temporalAabbMiny += linMotion.y();
if (linMotion.z() > btScalar(0.))
temporalAabbMaxz += linMotion.z();
else
temporalAabbMinz += linMotion.z();
//add conservative angular motion
btScalar angularMotion = angvel.length() * getAngularMotionDisc() * timeStep;
btVector3 angularMotion3d(angularMotion,angularMotion,angularMotion);
temporalAabbMin = btVector3(temporalAabbMinx,temporalAabbMiny,temporalAabbMinz);
temporalAabbMax = btVector3(temporalAabbMaxx,temporalAabbMaxy,temporalAabbMaxz);
temporalAabbMin -= angularMotion3d;
temporalAabbMax += angularMotion3d;
}

View File

@ -0,0 +1,94 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef COLLISION_SHAPE_H
#define COLLISION_SHAPE_H
#include "LinearMath/btTransform.h"
#include "LinearMath/btVector3.h"
#include "LinearMath/btMatrix3x3.h"
#include "LinearMath/btPoint3.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" //for the shape types
///btCollisionShape provides interface for collision shapes that can be shared among btCollisionObjects.
class btCollisionShape
{
public:
btCollisionShape()
{
}
virtual ~btCollisionShape()
{
}
///getAabb returns the axis aligned bounding box in the coordinate frame of the given transform t.
virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const =0;
virtual void getBoundingSphere(btVector3& center,btScalar& radius) const;
///getAngularMotionDisc returns the maximus radius needed for Conservative Advancement to handle time-of-impact with rotations.
virtual btScalar getAngularMotionDisc() const;
///calculateTemporalAabb calculates the enclosing aabb for the moving object over interval [0..timeStep)
///result is conservative
void calculateTemporalAabb(const btTransform& curTrans,const btVector3& linvel,const btVector3& angvel,btScalar timeStep, btVector3& temporalAabbMin,btVector3& temporalAabbMax);
#ifndef __SPU__
inline bool isPolyhedral() const
{
return btBroadphaseProxy::isPolyhedral(getShapeType());
}
inline bool isConvex() const
{
return btBroadphaseProxy::isConvex(getShapeType());
}
inline bool isConcave() const
{
return btBroadphaseProxy::isConcave(getShapeType());
}
inline bool isCompound() const
{
return btBroadphaseProxy::isCompound(getShapeType());
}
///isInfinite is used to catch simulation error (aabb check)
inline bool isInfinite() const
{
return btBroadphaseProxy::isInfinite(getShapeType());
}
virtual int getShapeType() const=0;
virtual void setLocalScaling(const btVector3& scaling) =0;
virtual const btVector3& getLocalScaling() const =0;
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia) = 0;
//debugging support
virtual const char* getName()const =0 ;
#endif //__SPU__
virtual void setMargin(btScalar margin) = 0;
virtual btScalar getMargin() const = 0;
};
#endif //COLLISION_SHAPE_H

View File

@ -0,0 +1,107 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btCompoundShape.h"
#include "btCollisionShape.h"
btCompoundShape::btCompoundShape()
:m_localAabbMin(btScalar(1e30),btScalar(1e30),btScalar(1e30)),
m_localAabbMax(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)),
m_aabbTree(0),
m_collisionMargin(btScalar(0.)),
m_localScaling(btScalar(1.),btScalar(1.),btScalar(1.))
{
}
btCompoundShape::~btCompoundShape()
{
}
void btCompoundShape::addChildShape(const btTransform& localTransform,btCollisionShape* shape)
{
//m_childTransforms.push_back(localTransform);
//m_childShapes.push_back(shape);
btCompoundShapeChild child;
child.m_transform = localTransform;
child.m_childShape = shape;
child.m_childShapeType = shape->getShapeType();
child.m_childMargin = shape->getMargin();
m_children.push_back(child);
//extend the local aabbMin/aabbMax
btVector3 localAabbMin,localAabbMax;
shape->getAabb(localTransform,localAabbMin,localAabbMax);
for (int i=0;i<3;i++)
{
if (m_localAabbMin[i] > localAabbMin[i])
{
m_localAabbMin[i] = localAabbMin[i];
}
if (m_localAabbMax[i] < localAabbMax[i])
{
m_localAabbMax[i] = localAabbMax[i];
}
}
}
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
void btCompoundShape::getAabb(const btTransform& trans,btVector3& aabbMin,btVector3& aabbMax) const
{
btVector3 localHalfExtents = btScalar(0.5)*(m_localAabbMax-m_localAabbMin);
btVector3 localCenter = btScalar(0.5)*(m_localAabbMax+m_localAabbMin);
btMatrix3x3 abs_b = trans.getBasis().absolute();
btPoint3 center = trans(localCenter);
btVector3 extent = btVector3(abs_b[0].dot(localHalfExtents),
abs_b[1].dot(localHalfExtents),
abs_b[2].dot(localHalfExtents));
extent += btVector3(getMargin(),getMargin(),getMargin());
aabbMin = center - extent;
aabbMax = center + extent;
}
void btCompoundShape::calculateLocalInertia(btScalar mass,btVector3& inertia)
{
//approximation: take the inertia from the aabb for now
btTransform ident;
ident.setIdentity();
btVector3 aabbMin,aabbMax;
getAabb(ident,aabbMin,aabbMax);
btVector3 halfExtents = (aabbMax-aabbMin)*btScalar(0.5);
btScalar lx=btScalar(2.)*(halfExtents.x());
btScalar ly=btScalar(2.)*(halfExtents.y());
btScalar lz=btScalar(2.)*(halfExtents.z());
inertia[0] = mass/(btScalar(12.0)) * (ly*ly + lz*lz);
inertia[1] = mass/(btScalar(12.0)) * (lx*lx + lz*lz);
inertia[2] = mass/(btScalar(12.0)) * (lx*lx + ly*ly);
}

View File

@ -0,0 +1,132 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef COMPOUND_SHAPE_H
#define COMPOUND_SHAPE_H
#include "btCollisionShape.h"
#include "LinearMath/btVector3.h"
#include "LinearMath/btTransform.h"
#include "LinearMath/btMatrix3x3.h"
#include "btCollisionMargin.h"
#include "LinearMath/btAlignedObjectArray.h"
class btOptimizedBvh;
ATTRIBUTE_ALIGNED16(struct) btCompoundShapeChild
{
btTransform m_transform;
btCollisionShape* m_childShape;
int m_childShapeType;
btScalar m_childMargin;
};
/// btCompoundShape allows to store multiple other btCollisionShapes
/// This allows for concave collision objects. This is more general then the Static Concave btTriangleMeshShape.
ATTRIBUTE_ALIGNED16(class) btCompoundShape : public btCollisionShape
{
//btAlignedObjectArray<btTransform> m_childTransforms;
//btAlignedObjectArray<btCollisionShape*> m_childShapes;
btAlignedObjectArray<btCompoundShapeChild> m_children;
btVector3 m_localAabbMin;
btVector3 m_localAabbMax;
btOptimizedBvh* m_aabbTree;
public:
btCompoundShape();
virtual ~btCompoundShape();
void addChildShape(const btTransform& localTransform,btCollisionShape* shape);
int getNumChildShapes() const
{
return int (m_children.size());
}
btCollisionShape* getChildShape(int index)
{
return m_children[index].m_childShape;
}
const btCollisionShape* getChildShape(int index) const
{
return m_children[index].m_childShape;
}
btTransform getChildTransform(int index)
{
return m_children[index].m_transform;
}
const btTransform getChildTransform(int index) const
{
return m_children[index].m_transform;
}
btCompoundShapeChild* getChildList()
{
return &m_children[0];
}
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
virtual void setLocalScaling(const btVector3& scaling)
{
m_localScaling = scaling;
}
virtual const btVector3& getLocalScaling() const
{
return m_localScaling;
}
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia);
virtual int getShapeType() const { return COMPOUND_SHAPE_PROXYTYPE;}
virtual void setMargin(btScalar margin)
{
m_collisionMargin = margin;
}
virtual btScalar getMargin() const
{
return m_collisionMargin;
}
virtual const char* getName()const
{
return "Compound";
}
//this is optional, but should make collision queries faster, by culling non-overlapping nodes
void createAabbTreeFromChildren();
const btOptimizedBvh* getAabbTree() const
{
return m_aabbTree;
}
private:
btScalar m_collisionMargin;
protected:
btVector3 m_localScaling;
};
#endif //COMPOUND_SHAPE_H

View File

@ -0,0 +1,28 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btConcaveShape.h"
btConcaveShape::btConcaveShape() : m_collisionMargin(btScalar(0.))
{
}
btConcaveShape::~btConcaveShape()
{
}

View File

@ -0,0 +1,50 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef CONCAVE_SHAPE_H
#define CONCAVE_SHAPE_H
#include "btCollisionShape.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" // for the types
#include "btTriangleCallback.h"
///Concave shape proves an interface concave shapes that can produce triangles that overlapping a given AABB.
///Static triangle mesh, infinite plane, height field/landscapes are example that implement this interface.
class btConcaveShape : public btCollisionShape
{
protected:
btScalar m_collisionMargin;
public:
btConcaveShape();
virtual ~btConcaveShape();
virtual void processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const = 0;
virtual btScalar getMargin() const {
return m_collisionMargin;
}
virtual void setMargin(btScalar collisionMargin)
{
m_collisionMargin = collisionMargin;
}
};
#endif //CONCAVE_SHAPE_H

View File

@ -0,0 +1,133 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btConeShape.h"
#include "LinearMath/btPoint3.h"
btConeShape::btConeShape (btScalar radius,btScalar height):
m_radius (radius),
m_height(height)
{
setConeUpIndex(1);
btVector3 halfExtents;
m_sinAngle = (m_radius / btSqrt(m_radius * m_radius + m_height * m_height));
}
btConeShapeZ::btConeShapeZ (btScalar radius,btScalar height):
btConeShape(radius,height)
{
setConeUpIndex(2);
}
btConeShapeX::btConeShapeX (btScalar radius,btScalar height):
btConeShape(radius,height)
{
setConeUpIndex(0);
}
///choose upAxis index
void btConeShape::setConeUpIndex(int upIndex)
{
switch (upIndex)
{
case 0:
m_coneIndices[0] = 1;
m_coneIndices[1] = 0;
m_coneIndices[2] = 2;
break;
case 1:
m_coneIndices[0] = 0;
m_coneIndices[1] = 1;
m_coneIndices[2] = 2;
break;
case 2:
m_coneIndices[0] = 0;
m_coneIndices[1] = 2;
m_coneIndices[2] = 1;
break;
default:
assert(0);
};
}
btVector3 btConeShape::coneLocalSupport(const btVector3& v) const
{
btScalar halfHeight = m_height * btScalar(0.5);
if (v[m_coneIndices[1]] > v.length() * m_sinAngle)
{
btVector3 tmp;
tmp[m_coneIndices[0]] = btScalar(0.);
tmp[m_coneIndices[1]] = halfHeight;
tmp[m_coneIndices[2]] = btScalar(0.);
return tmp;
}
else {
btScalar s = btSqrt(v[m_coneIndices[0]] * v[m_coneIndices[0]] + v[m_coneIndices[2]] * v[m_coneIndices[2]]);
if (s > SIMD_EPSILON) {
btScalar d = m_radius / s;
btVector3 tmp;
tmp[m_coneIndices[0]] = v[m_coneIndices[0]] * d;
tmp[m_coneIndices[1]] = -halfHeight;
tmp[m_coneIndices[2]] = v[m_coneIndices[2]] * d;
return tmp;
}
else {
btVector3 tmp;
tmp[m_coneIndices[0]] = btScalar(0.);
tmp[m_coneIndices[1]] = -halfHeight;
tmp[m_coneIndices[2]] = btScalar(0.);
return tmp;
}
}
}
btVector3 btConeShape::localGetSupportingVertexWithoutMargin(const btVector3& vec) const
{
return coneLocalSupport(vec);
}
void btConeShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
for (int i=0;i<numVectors;i++)
{
const btVector3& vec = vectors[i];
supportVerticesOut[i] = coneLocalSupport(vec);
}
}
btVector3 btConeShape::localGetSupportingVertex(const btVector3& vec) const
{
btVector3 supVertex = coneLocalSupport(vec);
if ( getMargin()!=btScalar(0.) )
{
btVector3 vecnorm = vec;
if (vecnorm .length2() < (SIMD_EPSILON*SIMD_EPSILON))
{
vecnorm.setValue(btScalar(-1.),btScalar(-1.),btScalar(-1.));
}
vecnorm.normalize();
supVertex+= getMargin() * vecnorm;
}
return supVertex;
}

View File

@ -0,0 +1,103 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef CONE_MINKOWSKI_H
#define CONE_MINKOWSKI_H
#include "btConvexInternalShape.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" // for the types
///btConeShape implements a Cone shape, around the Y axis
class btConeShape : public btConvexInternalShape
{
btScalar m_sinAngle;
btScalar m_radius;
btScalar m_height;
int m_coneIndices[3];
btVector3 coneLocalSupport(const btVector3& v) const;
public:
btConeShape (btScalar radius,btScalar height);
virtual btVector3 localGetSupportingVertex(const btVector3& vec) const;
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec) const;
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
btScalar getRadius() const { return m_radius;}
btScalar getHeight() const { return m_height;}
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia)
{
btTransform identity;
identity.setIdentity();
btVector3 aabbMin,aabbMax;
getAabb(identity,aabbMin,aabbMax);
btVector3 halfExtents = (aabbMax-aabbMin)*btScalar(0.5);
btScalar margin = getMargin();
btScalar lx=btScalar(2.)*(halfExtents.x()+margin);
btScalar ly=btScalar(2.)*(halfExtents.y()+margin);
btScalar lz=btScalar(2.)*(halfExtents.z()+margin);
const btScalar x2 = lx*lx;
const btScalar y2 = ly*ly;
const btScalar z2 = lz*lz;
const btScalar scaledmass = mass * btScalar(0.08333333);
inertia = scaledmass * (btVector3(y2+z2,x2+z2,x2+y2));
// inertia.x() = scaledmass * (y2+z2);
// inertia.y() = scaledmass * (x2+z2);
// inertia.z() = scaledmass * (x2+y2);
}
virtual int getShapeType() const { return CONE_SHAPE_PROXYTYPE; }
virtual const char* getName()const
{
return "Cone";
}
///choose upAxis index
void setConeUpIndex(int upIndex);
int getConeUpIndex() const
{
return m_coneIndices[1];
}
};
///btConeShape implements a Cone shape, around the X axis
class btConeShapeX : public btConeShape
{
public:
btConeShapeX(btScalar radius,btScalar height);
};
///btConeShapeZ implements a Cone shape, around the Z axis
class btConeShapeZ : public btConeShape
{
public:
btConeShapeZ(btScalar radius,btScalar height);
};
#endif //CONE_MINKOWSKI_H

View File

@ -0,0 +1,179 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btConvexHullShape.h"
#include "BulletCollision/CollisionShapes/btCollisionMargin.h"
#include "LinearMath/btQuaternion.h"
btConvexHullShape ::btConvexHullShape (const btScalar* points,int numPoints,int stride)
{
m_points.resize(numPoints);
unsigned char* pointsBaseAddress = (unsigned char*)points;
for (int i=0;i<numPoints;i++)
{
btPoint3* point = (btPoint3*)(pointsBaseAddress + i*stride);
m_points[i] = point[0];
}
recalcLocalAabb();
}
void btConvexHullShape::addPoint(const btPoint3& point)
{
m_points.push_back(point);
recalcLocalAabb();
}
btVector3 btConvexHullShape::localGetSupportingVertexWithoutMargin(const btVector3& vec0)const
{
btVector3 supVec(btScalar(0.),btScalar(0.),btScalar(0.));
btScalar newDot,maxDot = btScalar(-1e30);
btVector3 vec = vec0;
btScalar lenSqr = vec.length2();
if (lenSqr < btScalar(0.0001))
{
vec.setValue(1,0,0);
} else
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
vec *= rlen;
}
for (int i=0;i<m_points.size();i++)
{
btPoint3 vtx = m_points[i] * m_localScaling;
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = vtx;
}
}
return supVec;
}
void btConvexHullShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
btScalar newDot;
//use 'w' component of supportVerticesOut?
{
for (int i=0;i<numVectors;i++)
{
supportVerticesOut[i][3] = btScalar(-1e30);
}
}
for (int i=0;i<m_points.size();i++)
{
btPoint3 vtx = m_points[i] * m_localScaling;
for (int j=0;j<numVectors;j++)
{
const btVector3& vec = vectors[j];
newDot = vec.dot(vtx);
if (newDot > supportVerticesOut[j][3])
{
//WARNING: don't swap next lines, the w component would get overwritten!
supportVerticesOut[j] = vtx;
supportVerticesOut[j][3] = newDot;
}
}
}
}
btVector3 btConvexHullShape::localGetSupportingVertex(const btVector3& vec)const
{
btVector3 supVertex = localGetSupportingVertexWithoutMargin(vec);
if ( getMargin()!=btScalar(0.) )
{
btVector3 vecnorm = vec;
if (vecnorm .length2() < (SIMD_EPSILON*SIMD_EPSILON))
{
vecnorm.setValue(btScalar(-1.),btScalar(-1.),btScalar(-1.));
}
vecnorm.normalize();
supVertex+= getMargin() * vecnorm;
}
return supVertex;
}
//currently just for debugging (drawing), perhaps future support for algebraic continuous collision detection
//Please note that you can debug-draw btConvexHullShape with the Raytracer Demo
int btConvexHullShape::getNumVertices() const
{
return m_points.size();
}
int btConvexHullShape::getNumEdges() const
{
return m_points.size();
}
void btConvexHullShape::getEdge(int i,btPoint3& pa,btPoint3& pb) const
{
int index0 = i%m_points.size();
int index1 = (i+1)%m_points.size();
pa = m_points[index0]*m_localScaling;
pb = m_points[index1]*m_localScaling;
}
void btConvexHullShape::getVertex(int i,btPoint3& vtx) const
{
vtx = m_points[i]*m_localScaling;
}
int btConvexHullShape::getNumPlanes() const
{
return 0;
}
void btConvexHullShape::getPlane(btVector3& ,btPoint3& ,int ) const
{
btAssert(0);
}
//not yet
bool btConvexHullShape::isInside(const btPoint3& ,btScalar ) const
{
assert(0);
return false;
}

View File

@ -0,0 +1,76 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef CONVEX_HULL_SHAPE_H
#define CONVEX_HULL_SHAPE_H
#include "btPolyhedralConvexShape.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" // for the types
#include "LinearMath/btAlignedObjectArray.h"
///ConvexHullShape implements an implicit (getSupportingVertex) Convex Hull of a Point Cloud (vertices)
///No connectivity is needed. localGetSupportingVertex iterates linearly though all vertices.
///on modern hardware, due to cache coherency this isn't that bad. Complex algorithms tend to trash the cash.
///(memory is much slower then the cpu)
ATTRIBUTE_ALIGNED16(class) btConvexHullShape : public btPolyhedralConvexShape
{
btAlignedObjectArray<btPoint3> m_points;
public:
///this constructor optionally takes in a pointer to points. Each point is assumed to be 3 consecutive btScalar (x,y,z), the striding defines the number of bytes between each point, in memory.
///It is easier to not pass any points in the constructor, and just add one point at a time, using addPoint.
///btConvexHullShape make an internal copy of the points.
btConvexHullShape(const btScalar* points=0,int numPoints=0, int stride=sizeof(btPoint3));
void addPoint(const btPoint3& point);
btPoint3* getPoints()
{
return &m_points[0];
}
int getNumPoints()
{
return m_points.size();
}
virtual btVector3 localGetSupportingVertex(const btVector3& vec)const;
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
virtual int getShapeType()const { return CONVEX_HULL_SHAPE_PROXYTYPE; }
//debugging
virtual const char* getName()const {return "Convex";}
virtual int getNumVertices() const;
virtual int getNumEdges() const;
virtual void getEdge(int i,btPoint3& pa,btPoint3& pb) const;
virtual void getVertex(int i,btPoint3& vtx) const;
virtual int getNumPlanes() const;
virtual void getPlane(btVector3& planeNormal,btPoint3& planeSupport,int i ) const;
virtual bool isInside(const btPoint3& pt,btScalar tolerance) const;
};
#endif //CONVEX_HULL_SHAPE_H

View File

@ -0,0 +1,77 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btConvexInternalShape.h"
btConvexInternalShape::btConvexInternalShape()
: m_localScaling(btScalar(1.),btScalar(1.),btScalar(1.)),
m_collisionMargin(CONVEX_DISTANCE_MARGIN)
{
}
void btConvexInternalShape::setLocalScaling(const btVector3& scaling)
{
m_localScaling = scaling;
}
void btConvexInternalShape::getAabbSlow(const btTransform& trans,btVector3&minAabb,btVector3&maxAabb) const
{
btScalar margin = getMargin();
for (int i=0;i<3;i++)
{
btVector3 vec(btScalar(0.),btScalar(0.),btScalar(0.));
vec[i] = btScalar(1.);
btVector3 sv = localGetSupportingVertex(vec*trans.getBasis());
btVector3 tmp = trans(sv);
maxAabb[i] = tmp[i]+margin;
vec[i] = btScalar(-1.);
tmp = trans(localGetSupportingVertex(vec*trans.getBasis()));
minAabb[i] = tmp[i]-margin;
}
};
btVector3 btConvexInternalShape::localGetSupportingVertex(const btVector3& vec)const
{
#ifndef __SPU__
btVector3 supVertex = localGetSupportingVertexWithoutMargin(vec);
if ( getMargin()!=btScalar(0.) )
{
btVector3 vecnorm = vec;
if (vecnorm .length2() < (SIMD_EPSILON*SIMD_EPSILON))
{
vecnorm.setValue(btScalar(-1.),btScalar(-1.),btScalar(-1.));
}
vecnorm.normalize();
supVertex+= getMargin() * vecnorm;
}
return supVertex;
#else
return btVector3(0,0,0);
#endif //__SPU__
}

View File

@ -0,0 +1,99 @@
#ifndef BT_CONVEX_INTERNAL_SHAPE_H
#define BT_CONVEX_INTERNAL_SHAPE_H
#include "btConvexShape.h"
///btConvexInternalShape carries some additional data, shared by most implementations
class btConvexInternalShape : public btConvexShape
{
protected:
//local scaling. collisionMargin is not scaled !
btVector3 m_localScaling;
btVector3 m_implicitShapeDimensions;
btScalar m_collisionMargin;
btScalar m_padding[2];
public:
btConvexInternalShape();
virtual ~btConvexInternalShape()
{
}
virtual btVector3 localGetSupportingVertex(const btVector3& vec)const;
#ifndef __SPU__
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec) const= 0;
//notice that the vectors should be unit length
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const= 0;
#endif //#ifndef __SPU__
const btVector3& getImplicitShapeDimensions() const
{
return m_implicitShapeDimensions;
}
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
{
getAabbSlow(t,aabbMin,aabbMax);
}
virtual void getAabbSlow(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
virtual void setLocalScaling(const btVector3& scaling);
virtual const btVector3& getLocalScaling() const
{
return m_localScaling;
}
const btVector3& getLocalScalingNV() const
{
return m_localScaling;
}
virtual void setMargin(btScalar margin)
{
m_collisionMargin = margin;
}
virtual btScalar getMargin() const
{
return m_collisionMargin;
}
btScalar getMarginNV() const
{
return m_collisionMargin;
}
virtual int getNumPreferredPenetrationDirections() const
{
return 0;
}
virtual void getPreferredPenetrationDirection(int index, btVector3& penetrationVector) const
{
(void)penetrationVector;
(void)index;
btAssert(0);
}
};
#endif //BT_CONVEX_INTERNAL_SHAPE_H

View File

@ -0,0 +1,18 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btConvexShape.h"

View File

@ -0,0 +1,74 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef CONVEX_SHAPE_INTERFACE1
#define CONVEX_SHAPE_INTERFACE1
#include "btCollisionShape.h"
#include "LinearMath/btVector3.h"
#include "LinearMath/btTransform.h"
#include "LinearMath/btMatrix3x3.h"
#include "btCollisionMargin.h"
//todo: get rid of this btConvexCastResult thing!
struct btConvexCastResult;
#define MAX_PREFERRED_PENETRATION_DIRECTIONS 10
/// btConvexShape is an abstract shape interface.
/// It describes general convex shapes using the localGetSupportingVertex interface
/// used in combination with GJK or btConvexCast
ATTRIBUTE_ALIGNED16(class) btConvexShape : public btCollisionShape
{
public:
virtual ~btConvexShape()
{
}
virtual btVector3 localGetSupportingVertex(const btVector3& vec)const =0;
#ifndef __SPU__
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec) const= 0;
//notice that the vectors should be unit length
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const= 0;
#endif //#ifndef __SPU__
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const =0;
virtual void getAabbSlow(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const =0;
virtual void setLocalScaling(const btVector3& scaling) =0;
virtual const btVector3& getLocalScaling() const =0;
virtual void setMargin(btScalar margin)=0;
virtual btScalar getMargin() const=0;
virtual int getNumPreferredPenetrationDirections() const=0;
virtual void getPreferredPenetrationDirection(int index, btVector3& penetrationVector) const=0;
};
#endif //CONVEX_SHAPE_INTERFACE1

View File

@ -0,0 +1,206 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btConvexTriangleMeshShape.h"
#include "BulletCollision/CollisionShapes/btCollisionMargin.h"
#include "LinearMath/btQuaternion.h"
#include "BulletCollision/CollisionShapes/btStridingMeshInterface.h"
btConvexTriangleMeshShape ::btConvexTriangleMeshShape (btStridingMeshInterface* meshInterface)
:m_stridingMesh(meshInterface)
{
recalcLocalAabb();
}
///It's not nice to have all this virtual function overhead, so perhaps we can also gather the points once
///but then we are duplicating
class LocalSupportVertexCallback: public btInternalTriangleIndexCallback
{
btVector3 m_supportVertexLocal;
public:
btScalar m_maxDot;
btVector3 m_supportVecLocal;
LocalSupportVertexCallback(const btVector3& supportVecLocal)
: m_supportVertexLocal(btScalar(0.),btScalar(0.),btScalar(0.)),
m_maxDot(btScalar(-1e30)),
m_supportVecLocal(supportVecLocal)
{
}
virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex)
{
(void)triangleIndex;
(void)partId;
for (int i=0;i<3;i++)
{
btScalar dot = m_supportVecLocal.dot(triangle[i]);
if (dot > m_maxDot)
{
m_maxDot = dot;
m_supportVertexLocal = triangle[i];
}
}
}
btVector3 GetSupportVertexLocal()
{
return m_supportVertexLocal;
}
};
btVector3 btConvexTriangleMeshShape::localGetSupportingVertexWithoutMargin(const btVector3& vec0)const
{
btVector3 supVec(btScalar(0.),btScalar(0.),btScalar(0.));
btVector3 vec = vec0;
btScalar lenSqr = vec.length2();
if (lenSqr < btScalar(0.0001))
{
vec.setValue(1,0,0);
} else
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
vec *= rlen;
}
LocalSupportVertexCallback supportCallback(vec);
btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30));
m_stridingMesh->InternalProcessAllTriangles(&supportCallback,-aabbMax,aabbMax);
supVec = supportCallback.GetSupportVertexLocal();
return supVec;
}
void btConvexTriangleMeshShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
//use 'w' component of supportVerticesOut?
{
for (int i=0;i<numVectors;i++)
{
supportVerticesOut[i][3] = btScalar(-1e30);
}
}
//todo: could do the batch inside the callback!
for (int j=0;j<numVectors;j++)
{
const btVector3& vec = vectors[j];
LocalSupportVertexCallback supportCallback(vec);
btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30));
m_stridingMesh->InternalProcessAllTriangles(&supportCallback,-aabbMax,aabbMax);
supportVerticesOut[j] = supportCallback.GetSupportVertexLocal();
}
}
btVector3 btConvexTriangleMeshShape::localGetSupportingVertex(const btVector3& vec)const
{
btVector3 supVertex = localGetSupportingVertexWithoutMargin(vec);
if ( getMargin()!=btScalar(0.) )
{
btVector3 vecnorm = vec;
if (vecnorm .length2() < (SIMD_EPSILON*SIMD_EPSILON))
{
vecnorm.setValue(btScalar(-1.),btScalar(-1.),btScalar(-1.));
}
vecnorm.normalize();
supVertex+= getMargin() * vecnorm;
}
return supVertex;
}
//currently just for debugging (drawing), perhaps future support for algebraic continuous collision detection
//Please note that you can debug-draw btConvexTriangleMeshShape with the Raytracer Demo
int btConvexTriangleMeshShape::getNumVertices() const
{
//cache this?
return 0;
}
int btConvexTriangleMeshShape::getNumEdges() const
{
return 0;
}
void btConvexTriangleMeshShape::getEdge(int ,btPoint3& ,btPoint3& ) const
{
btAssert(0);
}
void btConvexTriangleMeshShape::getVertex(int ,btPoint3& ) const
{
btAssert(0);
}
int btConvexTriangleMeshShape::getNumPlanes() const
{
return 0;
}
void btConvexTriangleMeshShape::getPlane(btVector3& ,btPoint3& ,int ) const
{
btAssert(0);
}
//not yet
bool btConvexTriangleMeshShape::isInside(const btPoint3& ,btScalar ) const
{
btAssert(0);
return false;
}
void btConvexTriangleMeshShape::setLocalScaling(const btVector3& scaling)
{
m_stridingMesh->setScaling(scaling);
recalcLocalAabb();
}
const btVector3& btConvexTriangleMeshShape::getLocalScaling() const
{
return m_stridingMesh->getScaling();
}

View File

@ -0,0 +1,51 @@
#ifndef CONVEX_TRIANGLEMESH_SHAPE_H
#define CONVEX_TRIANGLEMESH_SHAPE_H
#include "btPolyhedralConvexShape.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" // for the types
/// btConvexTriangleMeshShape is a convex hull of a triangle mesh. If you just have a point cloud, you can use btConvexHullShape instead.
/// It uses the btStridingMeshInterface instead of a point cloud. This can avoid the duplication of the triangle mesh data.
class btConvexTriangleMeshShape : public btPolyhedralConvexShape
{
class btStridingMeshInterface* m_stridingMesh;
public:
btConvexTriangleMeshShape(btStridingMeshInterface* meshInterface);
class btStridingMeshInterface* getStridingMesh()
{
return m_stridingMesh;
}
virtual btVector3 localGetSupportingVertex(const btVector3& vec)const;
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
virtual int getShapeType()const { return CONVEX_TRIANGLEMESH_SHAPE_PROXYTYPE; }
//debugging
virtual const char* getName()const {return "ConvexTrimesh";}
virtual int getNumVertices() const;
virtual int getNumEdges() const;
virtual void getEdge(int i,btPoint3& pa,btPoint3& pb) const;
virtual void getVertex(int i,btPoint3& vtx) const;
virtual int getNumPlanes() const;
virtual void getPlane(btVector3& planeNormal,btPoint3& planeSupport,int i ) const;
virtual bool isInside(const btPoint3& pt,btScalar tolerance) const;
virtual void setLocalScaling(const btVector3& scaling);
virtual const btVector3& getLocalScaling() const;
};
#endif //CONVEX_TRIANGLEMESH_SHAPE_H

View File

@ -0,0 +1,206 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btCylinderShape.h"
#include "LinearMath/btPoint3.h"
btCylinderShape::btCylinderShape (const btVector3& halfExtents)
:btBoxShape(halfExtents),
m_upAxis(1)
{
recalcLocalAabb();
}
btCylinderShapeX::btCylinderShapeX (const btVector3& halfExtents)
:btCylinderShape(halfExtents)
{
m_upAxis = 0;
recalcLocalAabb();
}
btCylinderShapeZ::btCylinderShapeZ (const btVector3& halfExtents)
:btCylinderShape(halfExtents)
{
m_upAxis = 2;
recalcLocalAabb();
}
void btCylinderShape::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
{
//skip the box 'getAabb'
btPolyhedralConvexShape::getAabb(t,aabbMin,aabbMax);
}
inline btVector3 CylinderLocalSupportX(const btVector3& halfExtents,const btVector3& v)
{
const int cylinderUpAxis = 0;
const int XX = 1;
const int YY = 0;
const int ZZ = 2;
//mapping depends on how cylinder local orientation is
// extents of the cylinder is: X,Y is for radius, and Z for height
btScalar radius = halfExtents[XX];
btScalar halfHeight = halfExtents[cylinderUpAxis];
btVector3 tmp;
btScalar d ;
btScalar s = btSqrt(v[XX] * v[XX] + v[ZZ] * v[ZZ]);
if (s != btScalar(0.0))
{
d = radius / s;
tmp[XX] = v[XX] * d;
tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
tmp[ZZ] = v[ZZ] * d;
return tmp;
}
else
{
tmp[XX] = radius;
tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
tmp[ZZ] = btScalar(0.0);
return tmp;
}
}
inline btVector3 CylinderLocalSupportY(const btVector3& halfExtents,const btVector3& v)
{
const int cylinderUpAxis = 1;
const int XX = 0;
const int YY = 1;
const int ZZ = 2;
btScalar radius = halfExtents[XX];
btScalar halfHeight = halfExtents[cylinderUpAxis];
btVector3 tmp;
btScalar d ;
btScalar s = btSqrt(v[XX] * v[XX] + v[ZZ] * v[ZZ]);
if (s != btScalar(0.0))
{
d = radius / s;
tmp[XX] = v[XX] * d;
tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
tmp[ZZ] = v[ZZ] * d;
return tmp;
}
else
{
tmp[XX] = radius;
tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
tmp[ZZ] = btScalar(0.0);
return tmp;
}
}
inline btVector3 CylinderLocalSupportZ(const btVector3& halfExtents,const btVector3& v)
{
const int cylinderUpAxis = 2;
const int XX = 0;
const int YY = 2;
const int ZZ = 1;
//mapping depends on how cylinder local orientation is
// extents of the cylinder is: X,Y is for radius, and Z for height
btScalar radius = halfExtents[XX];
btScalar halfHeight = halfExtents[cylinderUpAxis];
btVector3 tmp;
btScalar d ;
btScalar s = btSqrt(v[XX] * v[XX] + v[ZZ] * v[ZZ]);
if (s != btScalar(0.0))
{
d = radius / s;
tmp[XX] = v[XX] * d;
tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
tmp[ZZ] = v[ZZ] * d;
return tmp;
}
else
{
tmp[XX] = radius;
tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
tmp[ZZ] = btScalar(0.0);
return tmp;
}
}
btVector3 btCylinderShapeX::localGetSupportingVertexWithoutMargin(const btVector3& vec)const
{
return CylinderLocalSupportX(getHalfExtents(),vec);
}
btVector3 btCylinderShapeZ::localGetSupportingVertexWithoutMargin(const btVector3& vec)const
{
return CylinderLocalSupportZ(getHalfExtents(),vec);
}
btVector3 btCylinderShape::localGetSupportingVertexWithoutMargin(const btVector3& vec)const
{
return CylinderLocalSupportY(getHalfExtents(),vec);
}
void btCylinderShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
for (int i=0;i<numVectors;i++)
{
supportVerticesOut[i] = CylinderLocalSupportY(getHalfExtents(),vectors[i]);
}
}
void btCylinderShapeZ::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
for (int i=0;i<numVectors;i++)
{
supportVerticesOut[i] = CylinderLocalSupportZ(getHalfExtents(),vectors[i]);
}
}
void btCylinderShapeX::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
for (int i=0;i<numVectors;i++)
{
supportVerticesOut[i] = CylinderLocalSupportX(getHalfExtents(),vectors[i]);
}
}

View File

@ -0,0 +1,138 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef CYLINDER_MINKOWSKI_H
#define CYLINDER_MINKOWSKI_H
#include "btBoxShape.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" // for the types
#include "LinearMath/btVector3.h"
/// implements cylinder shape interface
class btCylinderShape : public btBoxShape
{
protected:
int m_upAxis;
public:
btCylinderShape (const btVector3& halfExtents);
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
virtual btVector3 localGetSupportingVertex(const btVector3& vec) const
{
btVector3 supVertex;
supVertex = localGetSupportingVertexWithoutMargin(vec);
if ( getMargin()!=btScalar(0.) )
{
btVector3 vecnorm = vec;
if (vecnorm .length2() < (SIMD_EPSILON*SIMD_EPSILON))
{
vecnorm.setValue(btScalar(-1.),btScalar(-1.),btScalar(-1.));
}
vecnorm.normalize();
supVertex+= getMargin() * vecnorm;
}
return supVertex;
}
//use box inertia
// virtual void calculateLocalInertia(btScalar mass,btVector3& inertia);
virtual int getShapeType() const
{
return CYLINDER_SHAPE_PROXYTYPE;
}
int getUpAxis() const
{
return m_upAxis;
}
virtual btScalar getRadius() const
{
return getHalfExtents().getX();
}
//debugging
virtual const char* getName()const
{
return "CylinderY";
}
};
class btCylinderShapeX : public btCylinderShape
{
public:
btCylinderShapeX (const btVector3& halfExtents);
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
//debugging
virtual const char* getName()const
{
return "CylinderX";
}
virtual btScalar getRadius() const
{
return getHalfExtents().getY();
}
};
class btCylinderShapeZ : public btCylinderShape
{
public:
btCylinderShapeZ (const btVector3& halfExtents);
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
virtual int getUpAxis() const
{
return 2;
}
//debugging
virtual const char* getName()const
{
return "CylinderZ";
}
virtual btScalar getRadius() const
{
return getHalfExtents().getX();
}
};
#endif //CYLINDER_MINKOWSKI_H

View File

@ -0,0 +1,49 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btEmptyShape.h"
#include "btCollisionShape.h"
btEmptyShape::btEmptyShape()
{
}
btEmptyShape::~btEmptyShape()
{
}
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
void btEmptyShape::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
{
btVector3 margin(getMargin(),getMargin(),getMargin());
aabbMin = t.getOrigin() - margin;
aabbMax = t.getOrigin() + margin;
}
void btEmptyShape::calculateLocalInertia(btScalar ,btVector3& )
{
btAssert(0);
}

View File

@ -0,0 +1,70 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef EMPTY_SHAPE_H
#define EMPTY_SHAPE_H
#include "btConcaveShape.h"
#include "LinearMath/btVector3.h"
#include "LinearMath/btTransform.h"
#include "LinearMath/btMatrix3x3.h"
#include "btCollisionMargin.h"
/// btEmptyShape is a collision shape without actual collision detection.
///It can be replaced by another shape during runtime
class btEmptyShape : public btConcaveShape
{
public:
btEmptyShape();
virtual ~btEmptyShape();
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
virtual void setLocalScaling(const btVector3& scaling)
{
m_localScaling = scaling;
}
virtual const btVector3& getLocalScaling() const
{
return m_localScaling;
}
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia);
virtual int getShapeType() const { return EMPTY_SHAPE_PROXYTYPE;}
virtual const char* getName()const
{
return "Empty";
}
protected:
btVector3 m_localScaling;
};
#endif //EMPTY_SHAPE_H

View File

@ -0,0 +1,339 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btHeightfieldTerrainShape.h"
#include "LinearMath/btTransformUtil.h"
btHeightfieldTerrainShape::btHeightfieldTerrainShape(int width,int length,void* heightfieldData,btScalar maxHeight,int upAxis,bool useFloatData,bool flipQuadEdges)
:m_localScaling(btScalar(1.),btScalar(1.),btScalar(1.)),
m_width(width),
m_length(length),
m_heightfieldDataUnknown(heightfieldData),
m_maxHeight(maxHeight),
m_upAxis(upAxis),
m_useFloatData(useFloatData),
m_flipQuadEdges(flipQuadEdges),
m_useDiamondSubdivision(false)
{
btScalar quantizationMargin = 1.f;
//enlarge the AABB to avoid division by zero when initializing the quantization values
btVector3 clampValue(quantizationMargin,quantizationMargin,quantizationMargin);
btVector3 halfExtents(0,0,0);
switch (m_upAxis)
{
case 0:
{
halfExtents.setValue(
m_maxHeight,
m_width,
m_length);
break;
}
case 1:
{
halfExtents.setValue(
m_width,
m_maxHeight,
m_length);
break;
};
case 2:
{
halfExtents.setValue(
m_width,
m_length,
m_maxHeight
);
break;
}
default:
{
//need to get valid m_upAxis
btAssert(0);
}
}
halfExtents*= btScalar(0.5);
m_localAabbMin = -halfExtents - clampValue;
m_localAabbMax = halfExtents + clampValue;
btVector3 aabbSize = m_localAabbMax - m_localAabbMin;
}
btHeightfieldTerrainShape::~btHeightfieldTerrainShape()
{
}
void btHeightfieldTerrainShape::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
{
/*
aabbMin.setValue(-1e30f,-1e30f,-1e30f);
aabbMax.setValue(1e30f,1e30f,1e30f);
*/
btVector3 halfExtents = (m_localAabbMax-m_localAabbMin)* m_localScaling * btScalar(0.5);
btMatrix3x3 abs_b = t.getBasis().absolute();
btPoint3 center = t.getOrigin();
btVector3 extent = btVector3(abs_b[0].dot(halfExtents),
abs_b[1].dot(halfExtents),
abs_b[2].dot(halfExtents));
extent += btVector3(getMargin(),getMargin(),getMargin());
aabbMin = center - extent;
aabbMax = center + extent;
}
btScalar btHeightfieldTerrainShape::getHeightFieldValue(int x,int y) const
{
btScalar val = 0.f;
if (m_useFloatData)
{
val = m_heightfieldDataFloat[(y*m_width)+x];
} else
{
//assume unsigned short int
unsigned char heightFieldValue = m_heightfieldDataUnsignedChar[(y*m_width)+x];
val = heightFieldValue* (m_maxHeight/btScalar(65535));
}
return val;
}
void btHeightfieldTerrainShape::getVertex(int x,int y,btVector3& vertex) const
{
btAssert(x>=0);
btAssert(y>=0);
btAssert(x<m_width);
btAssert(y<m_length);
btScalar height = getHeightFieldValue(x,y);
switch (m_upAxis)
{
case 0:
{
vertex.setValue(
height,
(-m_width/2 ) + x,
(-m_length/2 ) + y
);
break;
}
case 1:
{
vertex.setValue(
(-m_width/2 ) + x,
height,
(-m_length/2 ) + y
);
break;
};
case 2:
{
vertex.setValue(
(-m_width/2 ) + x,
(-m_length/2 ) + y,
height
);
break;
}
default:
{
//need to get valid m_upAxis
btAssert(0);
}
}
vertex*=m_localScaling;
}
void btHeightfieldTerrainShape::quantizeWithClamp(int* out, const btVector3& point) const
{
btVector3 clampedPoint(point);
clampedPoint.setMax(m_localAabbMin);
clampedPoint.setMin(m_localAabbMax);
btVector3 v = (clampedPoint );// * m_quantization;
out[0] = (int)(v.getX());
out[1] = (int)(v.getY());
out[2] = (int)(v.getZ());
//correct for
}
void btHeightfieldTerrainShape::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
(void)callback;
(void)aabbMax;
(void)aabbMin;
//quantize the aabbMin and aabbMax, and adjust the start/end ranges
int quantizedAabbMin[3];
int quantizedAabbMax[3];
btVector3 localAabbMin = aabbMin*btVector3(1.f/m_localScaling[0],1.f/m_localScaling[1],1.f/m_localScaling[2]);
btVector3 localAabbMax = aabbMax*btVector3(1.f/m_localScaling[0],1.f/m_localScaling[1],1.f/m_localScaling[2]);
quantizeWithClamp(quantizedAabbMin, localAabbMin);
quantizeWithClamp(quantizedAabbMax, localAabbMax);
int startX=0;
int endX=m_width-1;
int startJ=0;
int endJ=m_length-1;
switch (m_upAxis)
{
case 0:
{
quantizedAabbMin[1]+=m_width/2-1;
quantizedAabbMax[1]+=m_width/2+1;
quantizedAabbMin[2]+=m_length/2-1;
quantizedAabbMax[2]+=m_length/2+1;
if (quantizedAabbMin[1]>startX)
startX = quantizedAabbMin[1];
if (quantizedAabbMax[1]<endX)
endX = quantizedAabbMax[1];
if (quantizedAabbMin[2]>startJ)
startJ = quantizedAabbMin[2];
if (quantizedAabbMax[2]<endJ)
endJ = quantizedAabbMax[2];
break;
}
case 1:
{
quantizedAabbMin[0]+=m_width/2-1;
quantizedAabbMax[0]+=m_width/2+1;
quantizedAabbMin[2]+=m_length/2-1;
quantizedAabbMax[2]+=m_length/2+1;
if (quantizedAabbMin[0]>startX)
startX = quantizedAabbMin[0];
if (quantizedAabbMax[0]<endX)
endX = quantizedAabbMax[0];
if (quantizedAabbMin[2]>startJ)
startJ = quantizedAabbMin[2];
if (quantizedAabbMax[2]<endJ)
endJ = quantizedAabbMax[2];
break;
};
case 2:
{
quantizedAabbMin[0]+=m_width/2-1;
quantizedAabbMax[0]+=m_width/2+1;
quantizedAabbMin[1]+=m_length/2-1;
quantizedAabbMax[1]+=m_length/2+1;
if (quantizedAabbMin[0]>startX)
startX = quantizedAabbMin[0];
if (quantizedAabbMax[0]<endX)
endX = quantizedAabbMax[0];
if (quantizedAabbMin[1]>startJ)
startJ = quantizedAabbMin[1];
if (quantizedAabbMax[1]<endJ)
endJ = quantizedAabbMax[1];
break;
}
default:
{
//need to get valid m_upAxis
btAssert(0);
}
}
for(int j=startJ; j<endJ; j++)
{
for(int x=startX; x<endX; x++)
{
btVector3 vertices[3];
if (m_flipQuadEdges || (m_useDiamondSubdivision && ((j+x) & 1)))
{
//first triangle
getVertex(x,j,vertices[0]);
getVertex(x+1,j,vertices[1]);
getVertex(x+1,j+1,vertices[2]);
callback->processTriangle(vertices,x,j);
//second triangle
getVertex(x,j,vertices[0]);
getVertex(x+1,j+1,vertices[1]);
getVertex(x,j+1,vertices[2]);
callback->processTriangle(vertices,x,j);
} else
{
//first triangle
getVertex(x,j,vertices[0]);
getVertex(x,j+1,vertices[1]);
getVertex(x+1,j,vertices[2]);
callback->processTriangle(vertices,x,j);
//second triangle
getVertex(x+1,j,vertices[0]);
getVertex(x,j+1,vertices[1]);
getVertex(x+1,j+1,vertices[2]);
callback->processTriangle(vertices,x,j);
}
}
}
}
void btHeightfieldTerrainShape::calculateLocalInertia(btScalar ,btVector3& inertia)
{
//moving concave objects not supported
inertia.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
}
void btHeightfieldTerrainShape::setLocalScaling(const btVector3& scaling)
{
m_localScaling = scaling;
}
const btVector3& btHeightfieldTerrainShape::getLocalScaling() const
{
return m_localScaling;
}

View File

@ -0,0 +1,88 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef HEIGHTFIELD_TERRAIN_SHAPE_H
#define HEIGHTFIELD_TERRAIN_SHAPE_H
#include "btConcaveShape.h"
///btHeightfieldTerrainShape simulates a 2D heightfield terrain
class btHeightfieldTerrainShape : public btConcaveShape
{
protected:
btVector3 m_localAabbMin;
btVector3 m_localAabbMax;
///terrain data
int m_width;
int m_length;
btScalar m_maxHeight;
union
{
unsigned char* m_heightfieldDataUnsignedChar;
btScalar* m_heightfieldDataFloat;
void* m_heightfieldDataUnknown;
};
bool m_useFloatData;
bool m_flipQuadEdges;
bool m_useDiamondSubdivision;
int m_upAxis;
btVector3 m_localScaling;
virtual btScalar getHeightFieldValue(int x,int y) const;
void quantizeWithClamp(int* out, const btVector3& point) const;
void getVertex(int x,int y,btVector3& vertex) const;
inline bool testQuantizedAabbAgainstQuantizedAabb(int* aabbMin1, int* aabbMax1,const int* aabbMin2,const int* aabbMax2) const
{
bool overlap = true;
overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? false : overlap;
overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? false : overlap;
overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? false : overlap;
return overlap;
}
public:
btHeightfieldTerrainShape(int width,int height,void* heightfieldData, btScalar maxHeight,int upAxis,bool useFloatData,bool flipQuadEdges);
virtual ~btHeightfieldTerrainShape();
void setUseDiamondSubdivision(bool useDiamondSubdivision=true) { m_useDiamondSubdivision = useDiamondSubdivision;}
virtual int getShapeType() const
{
return TERRAIN_SHAPE_PROXYTYPE;
}
virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
virtual void processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const;
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia);
virtual void setLocalScaling(const btVector3& scaling);
virtual const btVector3& getLocalScaling() const;
//debugging
virtual const char* getName()const {return "HEIGHTFIELD";}
};
#endif //HEIGHTFIELD_TERRAIN_SHAPE_H

View File

@ -0,0 +1,57 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btMinkowskiSumShape.h"
btMinkowskiSumShape::btMinkowskiSumShape(const btConvexShape* shapeA,const btConvexShape* shapeB)
:m_shapeA(shapeA),
m_shapeB(shapeB)
{
m_transA.setIdentity();
m_transB.setIdentity();
}
btVector3 btMinkowskiSumShape::localGetSupportingVertexWithoutMargin(const btVector3& vec)const
{
btVector3 supVertexA = m_transA(m_shapeA->localGetSupportingVertexWithoutMargin(vec*m_transA.getBasis()));
btVector3 supVertexB = m_transB(m_shapeB->localGetSupportingVertexWithoutMargin(vec*m_transB.getBasis()));
return supVertexA + supVertexB;
}
void btMinkowskiSumShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
//todo: could make recursive use of batching. probably this shape is not used frequently.
for (int i=0;i<numVectors;i++)
{
supportVerticesOut[i] = localGetSupportingVertexWithoutMargin(vectors[i]);
}
}
btScalar btMinkowskiSumShape::getMargin() const
{
return m_shapeA->getMargin() + m_shapeB->getMargin();
}
void btMinkowskiSumShape::calculateLocalInertia(btScalar mass,btVector3& inertia)
{
(void)mass;
btAssert(0);
inertia.setValue(0,0,0);
}

View File

@ -0,0 +1,62 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef MINKOWSKI_SUM_SHAPE_H
#define MINKOWSKI_SUM_SHAPE_H
#include "btConvexInternalShape.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" // for the types
/// btMinkowskiSumShape represents implicit (getSupportingVertex) based minkowski sum of two convex implicit shapes.
class btMinkowskiSumShape : public btConvexInternalShape
{
btTransform m_transA;
btTransform m_transB;
const btConvexShape* m_shapeA;
const btConvexShape* m_shapeB;
public:
btMinkowskiSumShape(const btConvexShape* shapeA,const btConvexShape* shapeB);
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia);
void setTransformA(const btTransform& transA) { m_transA = transA;}
void setTransformB(const btTransform& transB) { m_transB = transB;}
const btTransform& getTransformA()const { return m_transA;}
const btTransform& GetTransformB()const { return m_transB;}
virtual int getShapeType() const { return MINKOWSKI_SUM_SHAPE_PROXYTYPE; }
virtual btScalar getMargin() const;
const btConvexShape* getShapeA() const { return m_shapeA;}
const btConvexShape* getShapeB() const { return m_shapeB;}
virtual const char* getName()const
{
return "MinkowskiSum";
}
};
#endif //MINKOWSKI_SUM_SHAPE_H

View File

@ -0,0 +1,148 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btMultiSphereShape.h"
#include "BulletCollision/CollisionShapes/btCollisionMargin.h"
#include "LinearMath/btQuaternion.h"
btMultiSphereShape::btMultiSphereShape (const btVector3& inertiaHalfExtents,const btVector3* positions,const btScalar* radi,int numSpheres)
:m_inertiaHalfExtents(inertiaHalfExtents)
{
btScalar startMargin = btScalar(1e30);
m_numSpheres = numSpheres;
for (int i=0;i<m_numSpheres;i++)
{
m_localPositions[i] = positions[i];
m_radi[i] = radi[i];
if (radi[i] < startMargin)
startMargin = radi[i];
}
setMargin(startMargin);
}
btVector3 btMultiSphereShape::localGetSupportingVertexWithoutMargin(const btVector3& vec0)const
{
int i;
btVector3 supVec(0,0,0);
btScalar maxDot(btScalar(-1e30));
btVector3 vec = vec0;
btScalar lenSqr = vec.length2();
if (lenSqr < btScalar(0.0001))
{
vec.setValue(1,0,0);
} else
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
vec *= rlen;
}
btVector3 vtx;
btScalar newDot;
const btVector3* pos = &m_localPositions[0];
const btScalar* rad = &m_radi[0];
for (i=0;i<m_numSpheres;i++)
{
vtx = (*pos) +vec*m_localScaling*(*rad) - vec * getMargin();
pos++;
rad++;
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = vtx;
}
}
return supVec;
}
void btMultiSphereShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
for (int j=0;j<numVectors;j++)
{
btScalar maxDot(btScalar(-1e30));
const btVector3& vec = vectors[j];
btVector3 vtx;
btScalar newDot;
const btVector3* pos = &m_localPositions[0];
const btScalar* rad = &m_radi[0];
for (int i=0;i<m_numSpheres;i++)
{
vtx = (*pos) +vec*m_localScaling*(*rad) - vec * getMargin();
pos++;
rad++;
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supportVerticesOut[j] = vtx;
}
}
}
}
void btMultiSphereShape::calculateLocalInertia(btScalar mass,btVector3& inertia)
{
//as an approximation, take the inertia of the box that bounds the spheres
btTransform ident;
ident.setIdentity();
// btVector3 aabbMin,aabbMax;
// getAabb(ident,aabbMin,aabbMax);
btVector3 halfExtents = m_inertiaHalfExtents;//(aabbMax - aabbMin)* btScalar(0.5);
btScalar margin = CONVEX_DISTANCE_MARGIN;
btScalar lx=btScalar(2.)*(halfExtents[0]+margin);
btScalar ly=btScalar(2.)*(halfExtents[1]+margin);
btScalar lz=btScalar(2.)*(halfExtents[2]+margin);
const btScalar x2 = lx*lx;
const btScalar y2 = ly*ly;
const btScalar z2 = lz*lz;
const btScalar scaledmass = mass * btScalar(.08333333);
inertia[0] = scaledmass * (y2+z2);
inertia[1] = scaledmass * (x2+z2);
inertia[2] = scaledmass * (x2+y2);
}

View File

@ -0,0 +1,74 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef MULTI_SPHERE_MINKOWSKI_H
#define MULTI_SPHERE_MINKOWSKI_H
#include "btConvexInternalShape.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" // for the types
#define MAX_NUM_SPHERES 5
///btMultiSphereShape represents implicit convex hull of a collection of spheres (using getSupportingVertex)
class btMultiSphereShape : public btConvexInternalShape
{
btVector3 m_localPositions[MAX_NUM_SPHERES];
btScalar m_radi[MAX_NUM_SPHERES];
btVector3 m_inertiaHalfExtents;
int m_numSpheres;
public:
btMultiSphereShape (const btVector3& inertiaHalfExtents,const btVector3* positions,const btScalar* radi,int numSpheres);
///CollisionShape Interface
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia);
/// btConvexShape Interface
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
int getSphereCount() const
{
return m_numSpheres;
}
const btVector3& getSpherePosition(int index) const
{
return m_localPositions[index];
}
btScalar getSphereRadius(int index) const
{
return m_radi[index];
}
virtual int getShapeType() const { return MULTI_SPHERE_SHAPE_PROXYTYPE; }
virtual const char* getName()const
{
return "MultiSphere";
}
};
#endif //MULTI_SPHERE_MINKOWSKI_H

View File

@ -0,0 +1,845 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btOptimizedBvh.h"
#include "btStridingMeshInterface.h"
#include "LinearMath/btAabbUtil2.h"
#include "LinearMath/btIDebugDraw.h"
btOptimizedBvh::btOptimizedBvh() : m_useQuantization(false),
m_traversalMode(TRAVERSAL_STACKLESS_CACHE_FRIENDLY)
//m_traversalMode(TRAVERSAL_STACKLESS)
//m_traversalMode(TRAVERSAL_RECURSIVE)
{
}
void btOptimizedBvh::build(btStridingMeshInterface* triangles, bool useQuantizedAabbCompression, const btVector3& bvhAabbMin, const btVector3& bvhAabbMax)
{
m_useQuantization = useQuantizedAabbCompression;
// NodeArray triangleNodes;
struct NodeTriangleCallback : public btInternalTriangleIndexCallback
{
NodeArray& m_triangleNodes;
NodeTriangleCallback& operator=(NodeTriangleCallback& other)
{
m_triangleNodes = other.m_triangleNodes;
return *this;
}
NodeTriangleCallback(NodeArray& triangleNodes)
:m_triangleNodes(triangleNodes)
{
}
virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex)
{
btOptimizedBvhNode node;
btVector3 aabbMin,aabbMax;
aabbMin.setValue(btScalar(1e30),btScalar(1e30),btScalar(1e30));
aabbMax.setValue(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30));
aabbMin.setMin(triangle[0]);
aabbMax.setMax(triangle[0]);
aabbMin.setMin(triangle[1]);
aabbMax.setMax(triangle[1]);
aabbMin.setMin(triangle[2]);
aabbMax.setMax(triangle[2]);
//with quantization?
node.m_aabbMinOrg = aabbMin;
node.m_aabbMaxOrg = aabbMax;
node.m_escapeIndex = -1;
//for child nodes
node.m_subPart = partId;
node.m_triangleIndex = triangleIndex;
m_triangleNodes.push_back(node);
}
};
struct QuantizedNodeTriangleCallback : public btInternalTriangleIndexCallback
{
QuantizedNodeArray& m_triangleNodes;
const btOptimizedBvh* m_optimizedTree; // for quantization
QuantizedNodeTriangleCallback& operator=(QuantizedNodeTriangleCallback& other)
{
m_triangleNodes = other.m_triangleNodes;
m_optimizedTree = other.m_optimizedTree;
return *this;
}
QuantizedNodeTriangleCallback(QuantizedNodeArray& triangleNodes,const btOptimizedBvh* tree)
:m_triangleNodes(triangleNodes),m_optimizedTree(tree)
{
}
virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex)
{
btAssert(partId==0);
//negative indices are reserved for escapeIndex
btAssert(triangleIndex>=0);
btQuantizedBvhNode node;
btVector3 aabbMin,aabbMax;
aabbMin.setValue(btScalar(1e30),btScalar(1e30),btScalar(1e30));
aabbMax.setValue(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30));
aabbMin.setMin(triangle[0]);
aabbMax.setMax(triangle[0]);
aabbMin.setMin(triangle[1]);
aabbMax.setMax(triangle[1]);
aabbMin.setMin(triangle[2]);
aabbMax.setMax(triangle[2]);
m_optimizedTree->quantizeWithClamp(&node.m_quantizedAabbMin[0],aabbMin);
m_optimizedTree->quantizeWithClamp(&node.m_quantizedAabbMax[0],aabbMax);
node.m_escapeIndexOrTriangleIndex = triangleIndex;
m_triangleNodes.push_back(node);
}
};
int numLeafNodes = 0;
if (m_useQuantization)
{
//initialize quantization values
setQuantizationValues(bvhAabbMin,bvhAabbMax);
QuantizedNodeTriangleCallback callback(m_quantizedLeafNodes,this);
triangles->InternalProcessAllTriangles(&callback,m_bvhAabbMin,m_bvhAabbMax);
//now we have an array of leafnodes in m_leafNodes
numLeafNodes = m_quantizedLeafNodes.size();
m_quantizedContiguousNodes.resize(2*numLeafNodes);
} else
{
NodeTriangleCallback callback(m_leafNodes);
btVector3 aabbMin(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30));
btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30));
triangles->InternalProcessAllTriangles(&callback,aabbMin,aabbMax);
//now we have an array of leafnodes in m_leafNodes
numLeafNodes = m_leafNodes.size();
m_contiguousNodes.resize(2*numLeafNodes);
}
m_curNodeIndex = 0;
buildTree(0,numLeafNodes);
///if the entire tree is small then subtree size, we need to create a header info for the tree
if(m_useQuantization && !m_SubtreeHeaders.size())
{
btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]);
subtree.m_rootNodeIndex = 0;
subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex();
}
}
void btOptimizedBvh::refitPartial(btStridingMeshInterface* meshInterface,const btVector3& aabbMin,const btVector3& aabbMax)
{
//incrementally initialize quantization values
btAssert(m_useQuantization);
btAssert(aabbMin.getX() > m_bvhAabbMin.getX());
btAssert(aabbMin.getY() > m_bvhAabbMin.getY());
btAssert(aabbMin.getZ() > m_bvhAabbMin.getZ());
btAssert(aabbMax.getX() < m_bvhAabbMax.getX());
btAssert(aabbMax.getY() < m_bvhAabbMax.getY());
btAssert(aabbMax.getZ() < m_bvhAabbMax.getZ());
///we should update all quantization values, using updateBvhNodes(meshInterface);
///but we only update chunks that overlap the given aabb
unsigned short quantizedQueryAabbMin[3];
unsigned short quantizedQueryAabbMax[3];
quantizeWithClamp(&quantizedQueryAabbMin[0],aabbMin);
quantizeWithClamp(&quantizedQueryAabbMax[0],aabbMax);
int i;
for (i=0;i<this->m_SubtreeHeaders.size();i++)
{
btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
bool overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
if (overlap)
{
updateBvhNodes(meshInterface,subtree.m_rootNodeIndex,subtree.m_rootNodeIndex+subtree.m_subtreeSize,i);
subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
}
}
}
///just for debugging, to visualize the individual patches/subtrees
#ifdef DEBUG_PATCH_COLORS
btVector3 color[4]=
{
btVector3(255,0,0),
btVector3(0,255,0),
btVector3(0,0,255),
btVector3(0,255,255)
};
#endif //DEBUG_PATCH_COLORS
void btOptimizedBvh::updateBvhNodes(btStridingMeshInterface* meshInterface,int firstNode,int endNode,int index)
{
(void)index;
btAssert(m_useQuantization);
int nodeSubPart=0;
//get access info to trianglemesh data
const unsigned char *vertexbase;
int numverts;
PHY_ScalarType type;
int stride;
const unsigned char *indexbase;
int indexstride;
int numfaces;
PHY_ScalarType indicestype;
meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts, type,stride,&indexbase,indexstride,numfaces,indicestype,nodeSubPart);
btVector3 triangleVerts[3];
btVector3 aabbMin,aabbMax;
const btVector3& meshScaling = meshInterface->getScaling();
int i;
for (i=endNode-1;i>=firstNode;i--)
{
btQuantizedBvhNode& curNode = m_quantizedContiguousNodes[i];
if (curNode.isLeafNode())
{
//recalc aabb from triangle data
int nodeTriangleIndex = curNode.getTriangleIndex();
//triangles->getLockedReadOnlyVertexIndexBase(vertexBase,numVerts,
int* gfxbase = (int*)(indexbase+nodeTriangleIndex*indexstride);
for (int j=2;j>=0;j--)
{
int graphicsindex = gfxbase[j];
btScalar* graphicsbase = (btScalar*)(vertexbase+graphicsindex*stride);
#ifdef DEBUG_PATCH_COLORS
btVector3 mycolor = color[index&3];
graphicsbase[8] = mycolor.getX();
graphicsbase[9] = mycolor.getY();
graphicsbase[10] = mycolor.getZ();
#endif //DEBUG_PATCH_COLORS
triangleVerts[j] = btVector3(
graphicsbase[0]*meshScaling.getX(),
graphicsbase[1]*meshScaling.getY(),
graphicsbase[2]*meshScaling.getZ());
}
aabbMin.setValue(btScalar(1e30),btScalar(1e30),btScalar(1e30));
aabbMax.setValue(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30));
aabbMin.setMin(triangleVerts[0]);
aabbMax.setMax(triangleVerts[0]);
aabbMin.setMin(triangleVerts[1]);
aabbMax.setMax(triangleVerts[1]);
aabbMin.setMin(triangleVerts[2]);
aabbMax.setMax(triangleVerts[2]);
quantizeWithClamp(&curNode.m_quantizedAabbMin[0],aabbMin);
quantizeWithClamp(&curNode.m_quantizedAabbMax[0],aabbMax);
} else
{
//combine aabb from both children
btQuantizedBvhNode* leftChildNode = &m_quantizedContiguousNodes[i+1];
btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? &m_quantizedContiguousNodes[i+2] :
&m_quantizedContiguousNodes[i+1+leftChildNode->getEscapeIndex()];
{
for (int i=0;i<3;i++)
{
curNode.m_quantizedAabbMin[i] = leftChildNode->m_quantizedAabbMin[i];
if (curNode.m_quantizedAabbMin[i]>rightChildNode->m_quantizedAabbMin[i])
curNode.m_quantizedAabbMin[i]=rightChildNode->m_quantizedAabbMin[i];
curNode.m_quantizedAabbMax[i] = leftChildNode->m_quantizedAabbMax[i];
if (curNode.m_quantizedAabbMax[i] < rightChildNode->m_quantizedAabbMax[i])
curNode.m_quantizedAabbMax[i] = rightChildNode->m_quantizedAabbMax[i];
}
}
}
}
meshInterface->unLockReadOnlyVertexBase(nodeSubPart);
}
void btOptimizedBvh::setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin)
{
//enlarge the AABB to avoid division by zero when initializing the quantization values
btVector3 clampValue(quantizationMargin,quantizationMargin,quantizationMargin);
m_bvhAabbMin = bvhAabbMin - clampValue;
m_bvhAabbMax = bvhAabbMax + clampValue;
btVector3 aabbSize = m_bvhAabbMax - m_bvhAabbMin;
m_bvhQuantization = btVector3(btScalar(65535.0),btScalar(65535.0),btScalar(65535.0)) / aabbSize;
}
void btOptimizedBvh::refit(btStridingMeshInterface* meshInterface)
{
if (m_useQuantization)
{
//calculate new aabb
btVector3 aabbMin,aabbMax;
meshInterface->calculateAabbBruteForce(aabbMin,aabbMax);
setQuantizationValues(aabbMin,aabbMax);
updateBvhNodes(meshInterface,0,m_curNodeIndex,0);
///now update all subtree headers
int i;
for (i=0;i<m_SubtreeHeaders.size();i++)
{
btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
}
} else
{
}
}
btOptimizedBvh::~btOptimizedBvh()
{
}
#ifdef DEBUG_TREE_BUILDING
int gStackDepth = 0;
int gMaxStackDepth = 0;
#endif //DEBUG_TREE_BUILDING
void btOptimizedBvh::buildTree (int startIndex,int endIndex)
{
#ifdef DEBUG_TREE_BUILDING
gStackDepth++;
if (gStackDepth > gMaxStackDepth)
gMaxStackDepth = gStackDepth;
#endif //DEBUG_TREE_BUILDING
int splitAxis, splitIndex, i;
int numIndices =endIndex-startIndex;
int curIndex = m_curNodeIndex;
assert(numIndices>0);
if (numIndices==1)
{
#ifdef DEBUG_TREE_BUILDING
gStackDepth--;
#endif //DEBUG_TREE_BUILDING
assignInternalNodeFromLeafNode(m_curNodeIndex,startIndex);
m_curNodeIndex++;
return;
}
//calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'.
splitAxis = calcSplittingAxis(startIndex,endIndex);
splitIndex = sortAndCalcSplittingIndex(startIndex,endIndex,splitAxis);
int internalNodeIndex = m_curNodeIndex;
setInternalNodeAabbMax(m_curNodeIndex,btVector3(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)));
setInternalNodeAabbMin(m_curNodeIndex,btVector3(btScalar(1e30),btScalar(1e30),btScalar(1e30)));
for (i=startIndex;i<endIndex;i++)
{
mergeInternalNodeAabb(m_curNodeIndex,getAabbMin(i),getAabbMax(i));
}
m_curNodeIndex++;
//internalNode->m_escapeIndex;
int leftChildNodexIndex = m_curNodeIndex;
//build left child tree
buildTree(startIndex,splitIndex);
int rightChildNodexIndex = m_curNodeIndex;
//build right child tree
buildTree(splitIndex,endIndex);
#ifdef DEBUG_TREE_BUILDING
gStackDepth--;
#endif //DEBUG_TREE_BUILDING
int escapeIndex = m_curNodeIndex - curIndex;
if (m_useQuantization)
{
//escapeIndex is the number of nodes of this subtree
const int sizeQuantizedNode =sizeof(btQuantizedBvhNode);
const int treeSizeInBytes = escapeIndex * sizeQuantizedNode;
if (treeSizeInBytes > MAX_SUBTREE_SIZE_IN_BYTES)
{
updateSubtreeHeaders(leftChildNodexIndex,rightChildNodexIndex);
}
}
setInternalNodeEscapeIndex(internalNodeIndex,escapeIndex);
}
void btOptimizedBvh::updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex)
{
btAssert(m_useQuantization);
btQuantizedBvhNode& leftChildNode = m_quantizedContiguousNodes[leftChildNodexIndex];
int leftSubTreeSize = leftChildNode.isLeafNode() ? 1 : leftChildNode.getEscapeIndex();
int leftSubTreeSizeInBytes = leftSubTreeSize * sizeof(btQuantizedBvhNode);
btQuantizedBvhNode& rightChildNode = m_quantizedContiguousNodes[rightChildNodexIndex];
int rightSubTreeSize = rightChildNode.isLeafNode() ? 1 : rightChildNode.getEscapeIndex();
int rightSubTreeSizeInBytes = rightSubTreeSize * sizeof(btQuantizedBvhNode);
if(leftSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES)
{
btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
subtree.setAabbFromQuantizeNode(leftChildNode);
subtree.m_rootNodeIndex = leftChildNodexIndex;
subtree.m_subtreeSize = leftSubTreeSize;
}
if(rightSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES)
{
btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
subtree.setAabbFromQuantizeNode(rightChildNode);
subtree.m_rootNodeIndex = rightChildNodexIndex;
subtree.m_subtreeSize = rightSubTreeSize;
}
}
int btOptimizedBvh::sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis)
{
int i;
int splitIndex =startIndex;
int numIndices = endIndex - startIndex;
btScalar splitValue;
btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
for (i=startIndex;i<endIndex;i++)
{
btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
means+=center;
}
means *= (btScalar(1.)/(btScalar)numIndices);
splitValue = means[splitAxis];
//sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'.
for (i=startIndex;i<endIndex;i++)
{
btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
if (center[splitAxis] > splitValue)
{
//swap
swapLeafNodes(i,splitIndex);
splitIndex++;
}
}
//if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex
//otherwise the tree-building might fail due to stack-overflows in certain cases.
//unbalanced1 is unsafe: it can cause stack overflows
//bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1)));
//unbalanced2 should work too: always use center (perfect balanced trees)
//bool unbalanced2 = true;
//this should be safe too:
int rangeBalancedIndices = numIndices/3;
bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices)));
if (unbalanced)
{
splitIndex = startIndex+ (numIndices>>1);
}
bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex));
btAssert(!unbal);
return splitIndex;
}
int btOptimizedBvh::calcSplittingAxis(int startIndex,int endIndex)
{
int i;
btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.));
int numIndices = endIndex-startIndex;
for (i=startIndex;i<endIndex;i++)
{
btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
means+=center;
}
means *= (btScalar(1.)/(btScalar)numIndices);
for (i=startIndex;i<endIndex;i++)
{
btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
btVector3 diff2 = center-means;
diff2 = diff2 * diff2;
variance += diff2;
}
variance *= (btScalar(1.)/ ((btScalar)numIndices-1) );
return variance.maxAxis();
}
void btOptimizedBvh::reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
//either choose recursive traversal (walkTree) or stackless (walkStacklessTree)
if (m_useQuantization)
{
///quantize query AABB
unsigned short int quantizedQueryAabbMin[3];
unsigned short int quantizedQueryAabbMax[3];
quantizeWithClamp(quantizedQueryAabbMin,aabbMin);
quantizeWithClamp(quantizedQueryAabbMax,aabbMax);
switch (m_traversalMode)
{
case TRAVERSAL_STACKLESS:
walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,0,m_curNodeIndex);
break;
case TRAVERSAL_STACKLESS_CACHE_FRIENDLY:
walkStacklessQuantizedTreeCacheFriendly(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
break;
case TRAVERSAL_RECURSIVE:
{
const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[0];
walkRecursiveQuantizedTreeAgainstQueryAabb(rootNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
}
break;
default:
//unsupported
btAssert(0);
}
} else
{
walkStacklessTree(nodeCallback,aabbMin,aabbMax);
}
}
int maxIterations = 0;
void btOptimizedBvh::walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
btAssert(!m_useQuantization);
const btOptimizedBvhNode* rootNode = &m_contiguousNodes[0];
int escapeIndex, curIndex = 0;
int walkIterations = 0;
bool aabbOverlap, isLeafNode;
while (curIndex < m_curNodeIndex)
{
//catch bugs in tree data
assert (walkIterations < m_curNodeIndex);
walkIterations++;
aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg);
isLeafNode = rootNode->m_escapeIndex == -1;
if (isLeafNode && aabbOverlap)
{
nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex);
}
if (aabbOverlap || isLeafNode)
{
rootNode++;
curIndex++;
} else
{
escapeIndex = rootNode->m_escapeIndex;
rootNode += escapeIndex;
curIndex += escapeIndex;
}
}
if (maxIterations < walkIterations)
maxIterations = walkIterations;
}
/*
///this was the original recursive traversal, before we optimized towards stackless traversal
void btOptimizedBvh::walkTree(btOptimizedBvhNode* rootNode,btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
bool isLeafNode, aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMin,rootNode->m_aabbMax);
if (aabbOverlap)
{
isLeafNode = (!rootNode->m_leftChild && !rootNode->m_rightChild);
if (isLeafNode)
{
nodeCallback->processNode(rootNode);
} else
{
walkTree(rootNode->m_leftChild,nodeCallback,aabbMin,aabbMax);
walkTree(rootNode->m_rightChild,nodeCallback,aabbMin,aabbMax);
}
}
}
*/
void btOptimizedBvh::walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const
{
btAssert(m_useQuantization);
bool aabbOverlap, isLeafNode;
aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,currentNode->m_quantizedAabbMin,currentNode->m_quantizedAabbMax);
isLeafNode = currentNode->isLeafNode();
if (aabbOverlap)
{
if (isLeafNode)
{
nodeCallback->processNode(0,currentNode->getTriangleIndex());
} else
{
//process left and right children
const btQuantizedBvhNode* leftChildNode = currentNode+1;
walkRecursiveQuantizedTreeAgainstQueryAabb(leftChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
const btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? leftChildNode+1:leftChildNode+leftChildNode->getEscapeIndex();
walkRecursiveQuantizedTreeAgainstQueryAabb(rightChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
}
}
}
void btOptimizedBvh::walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const
{
btAssert(m_useQuantization);
int curIndex = startNodeIndex;
int walkIterations = 0;
int subTreeSize = endNodeIndex - startNodeIndex;
const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex];
int escapeIndex;
bool aabbOverlap, isLeafNode;
while (curIndex < endNodeIndex)
{
//#define VISUALLY_ANALYZE_BVH 1
#ifdef VISUALLY_ANALYZE_BVH
//some code snippet to debugDraw aabb, to visually analyze bvh structure
static int drawPatch = 0;
//need some global access to a debugDrawer
extern btIDebugDraw* debugDrawerPtr;
if (curIndex==drawPatch)
{
btVector3 aabbMin,aabbMax;
aabbMin = unQuantize(rootNode->m_quantizedAabbMin);
aabbMax = unQuantize(rootNode->m_quantizedAabbMax);
btVector3 color(1,0,0);
debugDrawerPtr->drawAabb(aabbMin,aabbMax,color);
}
#endif//VISUALLY_ANALYZE_BVH
//catch bugs in tree data
assert (walkIterations < subTreeSize);
walkIterations++;
aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
isLeafNode = rootNode->isLeafNode();
if (isLeafNode && aabbOverlap)
{
nodeCallback->processNode(0,rootNode->getTriangleIndex());
}
if (aabbOverlap || isLeafNode)
{
rootNode++;
curIndex++;
} else
{
escapeIndex = rootNode->getEscapeIndex();
rootNode += escapeIndex;
curIndex += escapeIndex;
}
}
if (maxIterations < walkIterations)
maxIterations = walkIterations;
}
//This traversal can be called from Playstation 3 SPU
void btOptimizedBvh::walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const
{
btAssert(m_useQuantization);
int i;
for (i=0;i<this->m_SubtreeHeaders.size();i++)
{
const btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
bool overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
if (overlap)
{
walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,
subtree.m_rootNodeIndex,
subtree.m_rootNodeIndex+subtree.m_subtreeSize);
}
}
}
void btOptimizedBvh::reportSphereOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
(void)nodeCallback;
(void)aabbMin;
(void)aabbMax;
//not yet, please use aabb
btAssert(0);
}
void btOptimizedBvh::quantizeWithClamp(unsigned short* out, const btVector3& point) const
{
btAssert(m_useQuantization);
btVector3 clampedPoint(point);
clampedPoint.setMax(m_bvhAabbMin);
clampedPoint.setMin(m_bvhAabbMax);
btVector3 v = (clampedPoint - m_bvhAabbMin) * m_bvhQuantization;
out[0] = (unsigned short)(v.getX()+0.5f);
out[1] = (unsigned short)(v.getY()+0.5f);
out[2] = (unsigned short)(v.getZ()+0.5f);
}
btVector3 btOptimizedBvh::unQuantize(const unsigned short* vecIn) const
{
btVector3 vecOut;
vecOut.setValue(
(btScalar)(vecIn[0]) / (m_bvhQuantization.getX()),
(btScalar)(vecIn[1]) / (m_bvhQuantization.getY()),
(btScalar)(vecIn[2]) / (m_bvhQuantization.getZ()));
vecOut += m_bvhAabbMin;
return vecOut;
}
void btOptimizedBvh::swapLeafNodes(int i,int splitIndex)
{
if (m_useQuantization)
{
btQuantizedBvhNode tmp = m_quantizedLeafNodes[i];
m_quantizedLeafNodes[i] = m_quantizedLeafNodes[splitIndex];
m_quantizedLeafNodes[splitIndex] = tmp;
} else
{
btOptimizedBvhNode tmp = m_leafNodes[i];
m_leafNodes[i] = m_leafNodes[splitIndex];
m_leafNodes[splitIndex] = tmp;
}
}
void btOptimizedBvh::assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex)
{
if (m_useQuantization)
{
m_quantizedContiguousNodes[internalNode] = m_quantizedLeafNodes[leafNodeIndex];
} else
{
m_contiguousNodes[internalNode] = m_leafNodes[leafNodeIndex];
}
}

View File

@ -0,0 +1,330 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef OPTIMIZED_BVH_H
#define OPTIMIZED_BVH_H
#include "LinearMath/btVector3.h"
//http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang/html/vclrf__m128.asp
class btStridingMeshInterface;
//Note: currently we have 16 bytes per quantized node
#define MAX_SUBTREE_SIZE_IN_BYTES 2048
///btQuantizedBvhNode is a compressed aabb node, 16 bytes.
///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).
ATTRIBUTE_ALIGNED16 (struct) btQuantizedBvhNode
{
//12 bytes
unsigned short int m_quantizedAabbMin[3];
unsigned short int m_quantizedAabbMax[3];
//4 bytes
int m_escapeIndexOrTriangleIndex;
bool isLeafNode() const
{
//skipindex is negative (internal node), triangleindex >=0 (leafnode)
return (m_escapeIndexOrTriangleIndex >= 0);
}
int getEscapeIndex() const
{
btAssert(!isLeafNode());
return -m_escapeIndexOrTriangleIndex;
}
int getTriangleIndex() const
{
btAssert(isLeafNode());
return m_escapeIndexOrTriangleIndex;
}
}
;
/// btOptimizedBvhNode contains both internal and leaf node information.
/// Total node size is 44 bytes / node. You can use the compressed version of 16 bytes.
ATTRIBUTE_ALIGNED16 (struct) btOptimizedBvhNode
{
//32 bytes
btVector3 m_aabbMinOrg;
btVector3 m_aabbMaxOrg;
//4
int m_escapeIndex;
//8
//for child nodes
int m_subPart;
int m_triangleIndex;
int m_padding[5];//bad, due to alignment
};
///btBvhSubtreeInfo provides info to gather a subtree of limited size
ATTRIBUTE_ALIGNED16(class) btBvhSubtreeInfo
{
public:
//12 bytes
unsigned short int m_quantizedAabbMin[3];
unsigned short int m_quantizedAabbMax[3];
//4 bytes, points to the root of the subtree
int m_rootNodeIndex;
//4 bytes
int m_subtreeSize;
int m_padding[3];
void setAabbFromQuantizeNode(const btQuantizedBvhNode& quantizedNode)
{
m_quantizedAabbMin[0] = quantizedNode.m_quantizedAabbMin[0];
m_quantizedAabbMin[1] = quantizedNode.m_quantizedAabbMin[1];
m_quantizedAabbMin[2] = quantizedNode.m_quantizedAabbMin[2];
m_quantizedAabbMax[0] = quantizedNode.m_quantizedAabbMax[0];
m_quantizedAabbMax[1] = quantizedNode.m_quantizedAabbMax[1];
m_quantizedAabbMax[2] = quantizedNode.m_quantizedAabbMax[2];
}
}
;
class btNodeOverlapCallback
{
public:
virtual ~btNodeOverlapCallback() {};
virtual void processNode(int subPart, int triangleIndex) = 0;
};
#include "LinearMath/btAlignedAllocator.h"
#include "LinearMath/btAlignedObjectArray.h"
///for code readability:
typedef btAlignedObjectArray<btOptimizedBvhNode> NodeArray;
typedef btAlignedObjectArray<btQuantizedBvhNode> QuantizedNodeArray;
typedef btAlignedObjectArray<btBvhSubtreeInfo> BvhSubtreeInfoArray;
///OptimizedBvh store an AABB tree that can be quickly traversed on CPU (and SPU,GPU in future)
ATTRIBUTE_ALIGNED16(class) btOptimizedBvh
{
NodeArray m_leafNodes;
NodeArray m_contiguousNodes;
QuantizedNodeArray m_quantizedLeafNodes;
QuantizedNodeArray m_quantizedContiguousNodes;
int m_curNodeIndex;
//quantization data
bool m_useQuantization;
btVector3 m_bvhAabbMin;
btVector3 m_bvhAabbMax;
btVector3 m_bvhQuantization;
enum btTraversalMode
{
TRAVERSAL_STACKLESS = 0,
TRAVERSAL_STACKLESS_CACHE_FRIENDLY,
TRAVERSAL_RECURSIVE
};
btTraversalMode m_traversalMode;
BvhSubtreeInfoArray m_SubtreeHeaders;
///two versions, one for quantized and normal nodes. This allows code-reuse while maintaining readability (no template/macro!)
///this might be refactored into a virtual, it is usually not calculated at run-time
void setInternalNodeAabbMin(int nodeIndex, const btVector3& aabbMin)
{
if (m_useQuantization)
{
quantizeWithClamp(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] ,aabbMin);
} else
{
m_contiguousNodes[nodeIndex].m_aabbMinOrg = aabbMin;
}
}
void setInternalNodeAabbMax(int nodeIndex,const btVector3& aabbMax)
{
if (m_useQuantization)
{
quantizeWithClamp(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0],aabbMax);
} else
{
m_contiguousNodes[nodeIndex].m_aabbMaxOrg = aabbMax;
}
}
btVector3 getAabbMin(int nodeIndex) const
{
if (m_useQuantization)
{
return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMin[0]);
}
//non-quantized
return m_leafNodes[nodeIndex].m_aabbMinOrg;
}
btVector3 getAabbMax(int nodeIndex) const
{
if (m_useQuantization)
{
return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMax[0]);
}
//non-quantized
return m_leafNodes[nodeIndex].m_aabbMaxOrg;
}
void setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin=btScalar(1.0));
void setInternalNodeEscapeIndex(int nodeIndex, int escapeIndex)
{
if (m_useQuantization)
{
m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = -escapeIndex;
}
else
{
m_contiguousNodes[nodeIndex].m_escapeIndex = escapeIndex;
}
}
void mergeInternalNodeAabb(int nodeIndex,const btVector3& newAabbMin,const btVector3& newAabbMax)
{
if (m_useQuantization)
{
unsigned short int quantizedAabbMin[3];
unsigned short int quantizedAabbMax[3];
quantizeWithClamp(quantizedAabbMin,newAabbMin);
quantizeWithClamp(quantizedAabbMax,newAabbMax);
for (int i=0;i<3;i++)
{
if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] > quantizedAabbMin[i])
m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] = quantizedAabbMin[i];
if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] < quantizedAabbMax[i])
m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] = quantizedAabbMax[i];
}
} else
{
//non-quantized
m_contiguousNodes[nodeIndex].m_aabbMinOrg.setMin(newAabbMin);
m_contiguousNodes[nodeIndex].m_aabbMaxOrg.setMax(newAabbMax);
}
}
void swapLeafNodes(int firstIndex,int secondIndex);
void assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex);
protected:
void buildTree (int startIndex,int endIndex);
int calcSplittingAxis(int startIndex,int endIndex);
int sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis);
void walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const;
void walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const;
///tree traversal designed for small-memory processors like PS3 SPU
void walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const;
///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal
void walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const;
///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal
void walkRecursiveQuantizedTreeAgainstQuantizedTree(const btQuantizedBvhNode* treeNodeA,const btQuantizedBvhNode* treeNodeB,btNodeOverlapCallback* nodeCallback) const;
inline bool testQuantizedAabbAgainstQuantizedAabb(unsigned short int* aabbMin1,unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2) const
{
bool overlap = true;
overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? false : overlap;
overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? false : overlap;
overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? false : overlap;
return overlap;
}
void updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex);
public:
btOptimizedBvh();
virtual ~btOptimizedBvh();
void build(btStridingMeshInterface* triangles,bool useQuantizedAabbCompression, const btVector3& bvhAabbMin, const btVector3& bvhAabbMax);
void reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const;
void reportSphereOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const;
void quantizeWithClamp(unsigned short* out, const btVector3& point) const;
btVector3 unQuantize(const unsigned short* vecIn) const;
///setTraversalMode let's you choose between stackless, recursive or stackless cache friendly tree traversal. Note this is only implemented for quantized trees.
void setTraversalMode(btTraversalMode traversalMode)
{
m_traversalMode = traversalMode;
}
void refit(btStridingMeshInterface* triangles);
void refitPartial(btStridingMeshInterface* triangles,const btVector3& aabbMin, const btVector3& aabbMax);
void updateBvhNodes(btStridingMeshInterface* meshInterface,int firstNode,int endNode,int index);
QuantizedNodeArray& getQuantizedNodeArray()
{
return m_quantizedContiguousNodes;
}
BvhSubtreeInfoArray& getSubtreeInfoArray()
{
return m_SubtreeHeaders;
}
}
;
#endif //OPTIMIZED_BVH_H

View File

@ -0,0 +1,148 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include <BulletCollision/CollisionShapes/btPolyhedralConvexShape.h>
btPolyhedralConvexShape::btPolyhedralConvexShape()
:m_localAabbMin(1,1,1),
m_localAabbMax(-1,-1,-1),
m_isLocalAabbValid(false),
m_optionalHull(0)
{
}
btVector3 btPolyhedralConvexShape::localGetSupportingVertexWithoutMargin(const btVector3& vec0)const
{
int i;
btVector3 supVec(0,0,0);
btScalar maxDot(btScalar(-1e30));
btVector3 vec = vec0;
btScalar lenSqr = vec.length2();
if (lenSqr < btScalar(0.0001))
{
vec.setValue(1,0,0);
} else
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
vec *= rlen;
}
btVector3 vtx;
btScalar newDot;
for (i=0;i<getNumVertices();i++)
{
getVertex(i,vtx);
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = vtx;
}
}
return supVec;
}
void btPolyhedralConvexShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
int i;
btVector3 vtx;
btScalar newDot;
for (i=0;i<numVectors;i++)
{
supportVerticesOut[i][3] = btScalar(-1e30);
}
for (int j=0;j<numVectors;j++)
{
const btVector3& vec = vectors[j];
for (i=0;i<getNumVertices();i++)
{
getVertex(i,vtx);
newDot = vec.dot(vtx);
if (newDot > supportVerticesOut[j][3])
{
//WARNING: don't swap next lines, the w component would get overwritten!
supportVerticesOut[j] = vtx;
supportVerticesOut[j][3] = newDot;
}
}
}
}
void btPolyhedralConvexShape::calculateLocalInertia(btScalar mass,btVector3& inertia)
{
//not yet, return box inertia
btScalar margin = getMargin();
btTransform ident;
ident.setIdentity();
btVector3 aabbMin,aabbMax;
getAabb(ident,aabbMin,aabbMax);
btVector3 halfExtents = (aabbMax-aabbMin)*btScalar(0.5);
btScalar lx=btScalar(2.)*(halfExtents.x()+margin);
btScalar ly=btScalar(2.)*(halfExtents.y()+margin);
btScalar lz=btScalar(2.)*(halfExtents.z()+margin);
const btScalar x2 = lx*lx;
const btScalar y2 = ly*ly;
const btScalar z2 = lz*lz;
const btScalar scaledmass = mass * btScalar(0.08333333);
inertia = scaledmass * (btVector3(y2+z2,x2+z2,x2+y2));
}
void btPolyhedralConvexShape::getAabb(const btTransform& trans,btVector3& aabbMin,btVector3& aabbMax) const
{
getNonvirtualAabb(trans,aabbMin,aabbMax,getMargin());
}
void btPolyhedralConvexShape::recalcLocalAabb()
{
m_isLocalAabbValid = true;
for (int i=0;i<3;i++)
{
btVector3 vec(btScalar(0.),btScalar(0.),btScalar(0.));
vec[i] = btScalar(1.);
btVector3 tmp = localGetSupportingVertex(vec);
m_localAabbMax[i] = tmp[i]+m_collisionMargin;
vec[i] = btScalar(-1.);
tmp = localGetSupportingVertex(vec);
m_localAabbMin[i] = tmp[i]-m_collisionMargin;
}
}

View File

@ -0,0 +1,93 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BU_SHAPE
#define BU_SHAPE
#include "LinearMath/btPoint3.h"
#include "LinearMath/btMatrix3x3.h"
#include "btConvexInternalShape.h"
///PolyhedralConvexShape is an interface class for feature based (vertex/edge/face) convex shapes.
class btPolyhedralConvexShape : public btConvexInternalShape
{
protected:
btVector3 m_localAabbMin;
btVector3 m_localAabbMax;
bool m_isLocalAabbValid;
public:
btPolyhedralConvexShape();
//brute force implementations
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia);
inline void getNonvirtualAabb(const btTransform& trans,btVector3& aabbMin,btVector3& aabbMax, btScalar margin) const
{
//lazy evaluation of local aabb
btAssert(m_isLocalAabbValid);
btAssert(m_localAabbMin.getX() <= m_localAabbMax.getX());
btAssert(m_localAabbMin.getY() <= m_localAabbMax.getY());
btAssert(m_localAabbMin.getZ() <= m_localAabbMax.getZ());
btVector3 localHalfExtents = btScalar(0.5)*(m_localAabbMax-m_localAabbMin);
btVector3 localCenter = btScalar(0.5)*(m_localAabbMax+m_localAabbMin);
btMatrix3x3 abs_b = trans.getBasis().absolute();
btPoint3 center = trans(localCenter);
btVector3 extent = btVector3(abs_b[0].dot(localHalfExtents),
abs_b[1].dot(localHalfExtents),
abs_b[2].dot(localHalfExtents));
extent += btVector3(margin,margin,margin);
aabbMin = center - extent;
aabbMax = center + extent;
}
virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
void recalcLocalAabb();
virtual int getNumVertices() const = 0 ;
virtual int getNumEdges() const = 0;
virtual void getEdge(int i,btPoint3& pa,btPoint3& pb) const = 0;
virtual void getVertex(int i,btPoint3& vtx) const = 0;
virtual int getNumPlanes() const = 0;
virtual void getPlane(btVector3& planeNormal,btPoint3& planeSupport,int i ) const = 0;
// virtual int getIndex(int i) const = 0 ;
virtual bool isInside(const btPoint3& pt,btScalar tolerance) const = 0;
/// optional Hull is for optional Separating Axis Test Hull collision detection, see Hull.cpp
class Hull* m_optionalHull;
};
#endif //BU_SHAPE

View File

@ -0,0 +1,77 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btSphereShape.h"
#include "BulletCollision/CollisionShapes/btCollisionMargin.h"
#include "LinearMath/btQuaternion.h"
btSphereShape ::btSphereShape (btScalar radius)
{
m_implicitShapeDimensions.setX(radius);
}
btVector3 btSphereShape::localGetSupportingVertexWithoutMargin(const btVector3& vec)const
{
(void)vec;
return btVector3(btScalar(0.),btScalar(0.),btScalar(0.));
}
void btSphereShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
(void)vectors;
for (int i=0;i<numVectors;i++)
{
supportVerticesOut[i].setValue(btScalar(0.),btScalar(0.),btScalar(0.));
}
}
btVector3 btSphereShape::localGetSupportingVertex(const btVector3& vec)const
{
btVector3 supVertex;
supVertex = localGetSupportingVertexWithoutMargin(vec);
btVector3 vecnorm = vec;
if (vecnorm .length2() < (SIMD_EPSILON*SIMD_EPSILON))
{
vecnorm.setValue(btScalar(-1.),btScalar(-1.),btScalar(-1.));
}
vecnorm.normalize();
supVertex+= getMargin() * vecnorm;
return supVertex;
}
//broken due to scaling
void btSphereShape::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
{
const btVector3& center = t.getOrigin();
btVector3 extent(getMargin(),getMargin(),getMargin());
aabbMin = center - extent;
aabbMax = center + extent;
}
void btSphereShape::calculateLocalInertia(btScalar mass,btVector3& inertia)
{
btScalar elem = btScalar(0.4) * mass * getMargin()*getMargin();
inertia.setValue(elem,elem,elem);
}

View File

@ -0,0 +1,63 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef SPHERE_MINKOWSKI_H
#define SPHERE_MINKOWSKI_H
#include "btConvexInternalShape.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" // for the types
///btSphereShape implements an implicit (getSupportingVertex) Sphere
ATTRIBUTE_ALIGNED16(class) btSphereShape : public btConvexInternalShape
{
public:
btSphereShape (btScalar radius);
virtual btVector3 localGetSupportingVertex(const btVector3& vec)const;
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;
//notice that the vectors should be unit length
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia);
virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
virtual int getShapeType() const { return SPHERE_SHAPE_PROXYTYPE; }
btScalar getRadius() const { return m_implicitShapeDimensions.getX();}
//debugging
virtual const char* getName()const {return "SPHERE";}
virtual void setMargin(btScalar margin)
{
btConvexInternalShape::setMargin(margin);
}
virtual btScalar getMargin() const
{
//to improve gjk behaviour, use radius+margin as the full margin, so never get into the penetration case
//this means, non-uniform scaling is not supported anymore
return m_localScaling.getX() * getRadius() + btConvexInternalShape::getMargin();
}
};
#endif //SPHERE_MINKOWSKI_H

View File

@ -0,0 +1,105 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btStaticPlaneShape.h"
#include "LinearMath/btTransformUtil.h"
btStaticPlaneShape::btStaticPlaneShape(const btVector3& planeNormal,btScalar planeConstant)
:m_planeNormal(planeNormal),
m_planeConstant(planeConstant),
m_localScaling(btScalar(0.),btScalar(0.),btScalar(0.))
{
}
btStaticPlaneShape::~btStaticPlaneShape()
{
}
void btStaticPlaneShape::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
{
(void)t;
/*
btVector3 infvec (btScalar(1e30),btScalar(1e30),btScalar(1e30));
btVector3 center = m_planeNormal*m_planeConstant;
aabbMin = center + infvec*m_planeNormal;
aabbMax = aabbMin;
aabbMin.setMin(center - infvec*m_planeNormal);
aabbMax.setMax(center - infvec*m_planeNormal);
*/
aabbMin.setValue(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30));
aabbMax.setValue(btScalar(1e30),btScalar(1e30),btScalar(1e30));
}
void btStaticPlaneShape::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
btVector3 halfExtents = (aabbMax - aabbMin) * btScalar(0.5);
btScalar radius = halfExtents.length();
btVector3 center = (aabbMax + aabbMin) * btScalar(0.5);
//this is where the triangles are generated, given AABB and plane equation (normal/constant)
btVector3 tangentDir0,tangentDir1;
//tangentDir0/tangentDir1 can be precalculated
btPlaneSpace1(m_planeNormal,tangentDir0,tangentDir1);
btVector3 supVertex0,supVertex1;
btVector3 projectedCenter = center - (m_planeNormal.dot(center) - m_planeConstant)*m_planeNormal;
btVector3 triangle[3];
triangle[0] = projectedCenter + tangentDir0*radius + tangentDir1*radius;
triangle[1] = projectedCenter + tangentDir0*radius - tangentDir1*radius;
triangle[2] = projectedCenter - tangentDir0*radius - tangentDir1*radius;
callback->processTriangle(triangle,0,0);
triangle[0] = projectedCenter - tangentDir0*radius - tangentDir1*radius;
triangle[1] = projectedCenter - tangentDir0*radius + tangentDir1*radius;
triangle[2] = projectedCenter + tangentDir0*radius + tangentDir1*radius;
callback->processTriangle(triangle,0,1);
}
void btStaticPlaneShape::calculateLocalInertia(btScalar mass,btVector3& inertia)
{
(void)mass;
//moving concave objects not supported
inertia.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
}
void btStaticPlaneShape::setLocalScaling(const btVector3& scaling)
{
m_localScaling = scaling;
}
const btVector3& btStaticPlaneShape::getLocalScaling() const
{
return m_localScaling;
}

View File

@ -0,0 +1,61 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef STATIC_PLANE_SHAPE_H
#define STATIC_PLANE_SHAPE_H
#include "btConcaveShape.h"
///StaticPlaneShape simulates an 'infinite' plane by dynamically reporting triangles approximated by intersection of the plane with the AABB.
///Assumed is that the other objects is not also infinite, so a reasonable sized AABB.
class btStaticPlaneShape : public btConcaveShape
{
protected:
btVector3 m_localAabbMin;
btVector3 m_localAabbMax;
btVector3 m_planeNormal;
btScalar m_planeConstant;
btVector3 m_localScaling;
public:
btStaticPlaneShape(const btVector3& planeNormal,btScalar planeConstant);
virtual ~btStaticPlaneShape();
virtual int getShapeType() const
{
return STATIC_PLANE_PROXYTYPE;
}
virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
virtual void processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const;
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia);
virtual void setLocalScaling(const btVector3& scaling);
virtual const btVector3& getLocalScaling() const;
//debugging
virtual const char* getName()const {return "STATICPLANE";}
};
#endif //STATIC_PLANE_SHAPE_H

View File

@ -0,0 +1,125 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btStridingMeshInterface.h"
btStridingMeshInterface::~btStridingMeshInterface()
{
}
void btStridingMeshInterface::InternalProcessAllTriangles(btInternalTriangleIndexCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
(void)aabbMin;
(void)aabbMax;
int numtotalphysicsverts = 0;
int part,graphicssubparts = getNumSubParts();
const unsigned char * vertexbase;
const unsigned char * indexbase;
int indexstride;
PHY_ScalarType type;
PHY_ScalarType gfxindextype;
int stride,numverts,numtriangles;
int gfxindex;
btVector3 triangle[3];
btScalar* graphicsbase;
btVector3 meshScaling = getScaling();
///if the number of parts is big, the performance might drop due to the innerloop switch on indextype
for (part=0;part<graphicssubparts ;part++)
{
getLockedReadOnlyVertexIndexBase(&vertexbase,numverts,type,stride,&indexbase,indexstride,numtriangles,gfxindextype,part);
numtotalphysicsverts+=numtriangles*3; //upper bound
switch (gfxindextype)
{
case PHY_INTEGER:
{
for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
{
int* tri_indices= (int*)(indexbase+gfxindex*indexstride);
graphicsbase = (btScalar*)(vertexbase+tri_indices[0]*stride);
triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
graphicsbase = (btScalar*)(vertexbase+tri_indices[1]*stride);
triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ());
graphicsbase = (btScalar*)(vertexbase+tri_indices[2]*stride);
triangle[2].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ());
callback->internalProcessTriangleIndex(triangle,part,gfxindex);
}
break;
}
case PHY_SHORT:
{
for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
{
short int* tri_indices= (short int*)(indexbase+gfxindex*indexstride);
graphicsbase = (btScalar*)(vertexbase+tri_indices[0]*stride);
triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
graphicsbase = (btScalar*)(vertexbase+tri_indices[1]*stride);
triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ());
graphicsbase = (btScalar*)(vertexbase+tri_indices[2]*stride);
triangle[2].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ());
callback->internalProcessTriangleIndex(triangle,part,gfxindex);
}
break;
}
default:
btAssert((gfxindextype == PHY_INTEGER) || (gfxindextype == PHY_SHORT));
}
unLockReadOnlyVertexBase(part);
}
}
void btStridingMeshInterface::calculateAabbBruteForce(btVector3& aabbMin,btVector3& aabbMax)
{
struct AabbCalculationCallback : public btInternalTriangleIndexCallback
{
btVector3 m_aabbMin;
btVector3 m_aabbMax;
AabbCalculationCallback()
{
m_aabbMin.setValue(btScalar(1e30),btScalar(1e30),btScalar(1e30));
m_aabbMax.setValue(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30));
}
virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex)
{
(void)partId;
(void)triangleIndex;
m_aabbMin.setMin(triangle[0]);
m_aabbMax.setMax(triangle[0]);
m_aabbMin.setMin(triangle[1]);
m_aabbMax.setMax(triangle[1]);
m_aabbMin.setMin(triangle[2]);
m_aabbMax.setMax(triangle[2]);
}
};
//first calculate the total aabb for all triangles
AabbCalculationCallback aabbCallback;
aabbMin.setValue(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30));
aabbMax.setValue(btScalar(1e30),btScalar(1e30),btScalar(1e30));
InternalProcessAllTriangles(&aabbCallback,aabbMin,aabbMax);
aabbMin = aabbCallback.m_aabbMin;
aabbMax = aabbCallback.m_aabbMax;
}

View File

@ -0,0 +1,89 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef STRIDING_MESHINTERFACE_H
#define STRIDING_MESHINTERFACE_H
#include "LinearMath/btVector3.h"
#include "btTriangleCallback.h"
/// PHY_ScalarType enumerates possible scalar types.
/// See the btStridingMeshInterface for its use
typedef enum PHY_ScalarType {
PHY_FLOAT,
PHY_DOUBLE,
PHY_INTEGER,
PHY_SHORT,
PHY_FIXEDPOINT88
} PHY_ScalarType;
/// btStridingMeshInterface is the interface class for high performance access to triangle meshes
/// It allows for sharing graphics and collision meshes. Also it provides locking/unlocking of graphics meshes that are in gpu memory.
class btStridingMeshInterface
{
protected:
btVector3 m_scaling;
public:
btStridingMeshInterface() :m_scaling(btScalar(1.),btScalar(1.),btScalar(1.))
{
}
virtual ~btStridingMeshInterface();
void InternalProcessAllTriangles(btInternalTriangleIndexCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const;
///brute force method to calculate aabb
void calculateAabbBruteForce(btVector3& aabbMin,btVector3& aabbMax);
/// get read and write access to a subpart of a triangle mesh
/// this subpart has a continuous array of vertices and indices
/// in this way the mesh can be handled as chunks of memory with striding
/// very similar to OpenGL vertexarray support
/// make a call to unLockVertexBase when the read and write access is finished
virtual void getLockedVertexIndexBase(unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& stride,unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart=0)=0;
virtual void getLockedReadOnlyVertexIndexBase(const unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& stride,const unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart=0) const=0;
/// unLockVertexBase finishes the access to a subpart of the triangle mesh
/// make a call to unLockVertexBase when the read and write access (using getLockedVertexIndexBase) is finished
virtual void unLockVertexBase(int subpart)=0;
virtual void unLockReadOnlyVertexBase(int subpart) const=0;
/// getNumSubParts returns the number of seperate subparts
/// each subpart has a continuous array of vertices and indices
virtual int getNumSubParts() const=0;
virtual void preallocateVertices(int numverts)=0;
virtual void preallocateIndices(int numindices)=0;
const btVector3& getScaling() const {
return m_scaling;
}
void setScaling(const btVector3& scaling)
{
m_scaling = scaling;
}
};
#endif //STRIDING_MESHINTERFACE_H

View File

@ -0,0 +1,195 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btTetrahedronShape.h"
#include "LinearMath/btMatrix3x3.h"
btBU_Simplex1to4::btBU_Simplex1to4()
:m_numVertices(0)
{
}
btBU_Simplex1to4::btBU_Simplex1to4(const btPoint3& pt0)
:m_numVertices(0)
{
addVertex(pt0);
}
btBU_Simplex1to4::btBU_Simplex1to4(const btPoint3& pt0,const btPoint3& pt1)
:m_numVertices(0)
{
addVertex(pt0);
addVertex(pt1);
}
btBU_Simplex1to4::btBU_Simplex1to4(const btPoint3& pt0,const btPoint3& pt1,const btPoint3& pt2)
:m_numVertices(0)
{
addVertex(pt0);
addVertex(pt1);
addVertex(pt2);
}
btBU_Simplex1to4::btBU_Simplex1to4(const btPoint3& pt0,const btPoint3& pt1,const btPoint3& pt2,const btPoint3& pt3)
:m_numVertices(0)
{
addVertex(pt0);
addVertex(pt1);
addVertex(pt2);
addVertex(pt3);
}
void btBU_Simplex1to4::addVertex(const btPoint3& pt)
{
m_vertices[m_numVertices++] = pt;
recalcLocalAabb();
}
int btBU_Simplex1to4::getNumVertices() const
{
return m_numVertices;
}
int btBU_Simplex1to4::getNumEdges() const
{
//euler formula, F-E+V = 2, so E = F+V-2
switch (m_numVertices)
{
case 0:
return 0;
case 1: return 0;
case 2: return 1;
case 3: return 3;
case 4: return 6;
}
return 0;
}
void btBU_Simplex1to4::getEdge(int i,btPoint3& pa,btPoint3& pb) const
{
switch (m_numVertices)
{
case 2:
pa = m_vertices[0];
pb = m_vertices[1];
break;
case 3:
switch (i)
{
case 0:
pa = m_vertices[0];
pb = m_vertices[1];
break;
case 1:
pa = m_vertices[1];
pb = m_vertices[2];
break;
case 2:
pa = m_vertices[2];
pb = m_vertices[0];
break;
}
break;
case 4:
switch (i)
{
case 0:
pa = m_vertices[0];
pb = m_vertices[1];
break;
case 1:
pa = m_vertices[1];
pb = m_vertices[2];
break;
case 2:
pa = m_vertices[2];
pb = m_vertices[0];
break;
case 3:
pa = m_vertices[0];
pb = m_vertices[3];
break;
case 4:
pa = m_vertices[1];
pb = m_vertices[3];
break;
case 5:
pa = m_vertices[2];
pb = m_vertices[3];
break;
}
}
}
void btBU_Simplex1to4::getVertex(int i,btPoint3& vtx) const
{
vtx = m_vertices[i];
}
int btBU_Simplex1to4::getNumPlanes() const
{
switch (m_numVertices)
{
case 0:
return 0;
case 1:
return 0;
case 2:
return 0;
case 3:
return 2;
case 4:
return 4;
default:
{
}
}
return 0;
}
void btBU_Simplex1to4::getPlane(btVector3&, btPoint3& ,int ) const
{
}
int btBU_Simplex1to4::getIndex(int ) const
{
return 0;
}
bool btBU_Simplex1to4::isInside(const btPoint3& ,btScalar ) const
{
return false;
}

View File

@ -0,0 +1,75 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BU_SIMPLEX_1TO4_SHAPE
#define BU_SIMPLEX_1TO4_SHAPE
#include "btPolyhedralConvexShape.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
///BU_Simplex1to4 implements feature based and implicit simplex of up to 4 vertices (tetrahedron, triangle, line, vertex).
class btBU_Simplex1to4 : public btPolyhedralConvexShape
{
protected:
int m_numVertices;
btPoint3 m_vertices[4];
public:
btBU_Simplex1to4();
btBU_Simplex1to4(const btPoint3& pt0);
btBU_Simplex1to4(const btPoint3& pt0,const btPoint3& pt1);
btBU_Simplex1to4(const btPoint3& pt0,const btPoint3& pt1,const btPoint3& pt2);
btBU_Simplex1to4(const btPoint3& pt0,const btPoint3& pt1,const btPoint3& pt2,const btPoint3& pt3);
void reset()
{
m_numVertices = 0;
}
virtual int getShapeType() const{ return TETRAHEDRAL_SHAPE_PROXYTYPE; }
void addVertex(const btPoint3& pt);
//PolyhedralConvexShape interface
virtual int getNumVertices() const;
virtual int getNumEdges() const;
virtual void getEdge(int i,btPoint3& pa,btPoint3& pb) const;
virtual void getVertex(int i,btPoint3& vtx) const;
virtual int getNumPlanes() const;
virtual void getPlane(btVector3& planeNormal,btPoint3& planeSupport,int i) const;
virtual int getIndex(int i) const;
virtual bool isInside(const btPoint3& pt,btScalar tolerance) const;
///getName is for debugging
virtual const char* getName()const { return "btBU_Simplex1to4";}
};
#endif //BU_SIMPLEX_1TO4_SHAPE

View File

@ -0,0 +1,42 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btTriangleBuffer.h"
///example usage of this class:
// btTriangleBuffer triBuf;
// concaveShape->processAllTriangles(&triBuf,aabbMin, aabbMax);
// for (int i=0;i<triBuf.getNumTriangles();i++)
// {
// const btTriangle& tri = triBuf.getTriangle(i);
// //do something useful here with the triangle
// }
void btTriangleBuffer::processTriangle(btVector3* triangle,int partId,int triangleIndex)
{
btTriangle tri;
tri.m_vertex0 = triangle[0];
tri.m_vertex1 = triangle[1];
tri.m_vertex2 = triangle[2];
tri.m_partId = partId;
tri.m_triangleIndex = triangleIndex;
m_triangleBuffer.push_back(tri);
}

View File

@ -0,0 +1,61 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_TRIANGLE_BUFFER_H
#define BT_TRIANGLE_BUFFER_H
#include "btTriangleCallback.h"
#include "LinearMath/btAlignedObjectArray.h"
struct btTriangle
{
btVector3 m_vertex0;
btVector3 m_vertex1;
btVector3 m_vertex2;
int m_partId;
int m_triangleIndex;
};
///btTriangleBuffer can be useful to collect and store overlapping triangles between AABB and concave objects that support 'processAllTriangles'
class btTriangleBuffer : public btTriangleCallback
{
btAlignedObjectArray<btTriangle> m_triangleBuffer;
public:
virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex);
int getNumTriangles() const
{
return int(m_triangleBuffer.size());
}
const btTriangle& getTriangle(int index) const
{
return m_triangleBuffer[index];
}
void clearBuffer()
{
m_triangleBuffer.clear();
}
};
#endif //BT_TRIANGLE_BUFFER_H

View File

@ -0,0 +1,28 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btTriangleCallback.h"
btTriangleCallback::~btTriangleCallback()
{
}
btInternalTriangleIndexCallback::~btInternalTriangleIndexCallback()
{
}

View File

@ -0,0 +1,40 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef TRIANGLE_CALLBACK_H
#define TRIANGLE_CALLBACK_H
#include "LinearMath/btVector3.h"
class btTriangleCallback
{
public:
virtual ~btTriangleCallback();
virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex) = 0;
};
class btInternalTriangleIndexCallback
{
public:
virtual ~btInternalTriangleIndexCallback();
virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex) = 0;
};
#endif //TRIANGLE_CALLBACK_H

View File

@ -0,0 +1,65 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btTriangleIndexVertexArray.h"
btTriangleIndexVertexArray::btTriangleIndexVertexArray(int numTriangles,int* triangleIndexBase,int triangleIndexStride,int numVertices,btScalar* vertexBase,int vertexStride)
{
btIndexedMesh mesh;
mesh.m_numTriangles = numTriangles;
mesh.m_triangleIndexBase = (const unsigned char *)triangleIndexBase;
mesh.m_triangleIndexStride = triangleIndexStride;
mesh.m_numVertices = numVertices;
mesh.m_vertexBase = (const unsigned char *)vertexBase;
mesh.m_vertexStride = vertexStride;
addIndexedMesh(mesh);
}
void btTriangleIndexVertexArray::getLockedVertexIndexBase(unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& vertexStride,unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart)
{
btAssert(subpart< getNumSubParts() );
btIndexedMesh& mesh = m_indexedMeshes[subpart];
numverts = mesh.m_numVertices;
(*vertexbase) = (unsigned char *) mesh.m_vertexBase;
type = PHY_FLOAT;
vertexStride = mesh.m_vertexStride;
numfaces = mesh.m_numTriangles;
(*indexbase) = (unsigned char *)mesh.m_triangleIndexBase;
indexstride = mesh.m_triangleIndexStride;
indicestype = PHY_INTEGER;
}
void btTriangleIndexVertexArray::getLockedReadOnlyVertexIndexBase(const unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& vertexStride,const unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart) const
{
const btIndexedMesh& mesh = m_indexedMeshes[subpart];
numverts = mesh.m_numVertices;
(*vertexbase) = (const unsigned char *)mesh.m_vertexBase;
type = PHY_FLOAT;
vertexStride = mesh.m_vertexStride;
numfaces = mesh.m_numTriangles;
(*indexbase) = (const unsigned char *)mesh.m_triangleIndexBase;
indexstride = mesh.m_triangleIndexStride;
indicestype = PHY_INTEGER;
}

View File

@ -0,0 +1,97 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_TRIANGLE_INDEX_VERTEX_ARRAY_H
#define BT_TRIANGLE_INDEX_VERTEX_ARRAY_H
#include "btStridingMeshInterface.h"
#include "LinearMath/btAlignedObjectArray.h"
///IndexedMesh indexes into existing vertex and index arrays, in a similar way OpenGL glDrawElements
///instead of the number of indices, we pass the number of triangles
///todo: explain with pictures
ATTRIBUTE_ALIGNED16( struct) btIndexedMesh
{
int m_numTriangles;
const unsigned char * m_triangleIndexBase;
int m_triangleIndexStride;
int m_numVertices;
const unsigned char * m_vertexBase;
int m_vertexStride;
int pad[2];
}
;
typedef btAlignedObjectArray<btIndexedMesh> IndexedMeshArray;
///TriangleIndexVertexArray allows to use multiple meshes, by indexing into existing triangle/index arrays.
///Additional meshes can be added using addIndexedMesh
///No duplcate is made of the vertex/index data, it only indexes into external vertex/index arrays.
///So keep those arrays around during the lifetime of this btTriangleIndexVertexArray.
ATTRIBUTE_ALIGNED16( class) btTriangleIndexVertexArray : public btStridingMeshInterface
{
IndexedMeshArray m_indexedMeshes;
int m_pad[3];
public:
btTriangleIndexVertexArray()
{
}
//just to be backwards compatible
btTriangleIndexVertexArray(int numTriangleIndices,int* triangleIndexBase,int triangleIndexStride,int numVertices,btScalar* vertexBase,int vertexStride);
void addIndexedMesh(const btIndexedMesh& mesh)
{
m_indexedMeshes.push_back(mesh);
}
virtual void getLockedVertexIndexBase(unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& vertexStride,unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart=0);
virtual void getLockedReadOnlyVertexIndexBase(const unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& vertexStride,const unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart=0) const;
/// unLockVertexBase finishes the access to a subpart of the triangle mesh
/// make a call to unLockVertexBase when the read and write access (using getLockedVertexIndexBase) is finished
virtual void unLockVertexBase(int subpart) {(void)subpart;}
virtual void unLockReadOnlyVertexBase(int subpart) const {(void)subpart;}
/// getNumSubParts returns the number of seperate subparts
/// each subpart has a continuous array of vertices and indices
virtual int getNumSubParts() const {
return (int)m_indexedMeshes.size();
}
IndexedMeshArray& getIndexedMeshArray()
{
return m_indexedMeshes;
}
const IndexedMeshArray& getIndexedMeshArray() const
{
return m_indexedMeshes;
}
virtual void preallocateVertices(int numverts){(void) numverts;}
virtual void preallocateIndices(int numindices){(void) numindices;}
}
;
#endif //BT_TRIANGLE_INDEX_VERTEX_ARRAY_H

View File

@ -0,0 +1,60 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btTriangleMesh.h"
#include <assert.h>
btTriangleMesh::btTriangleMesh ()
{
}
void btTriangleMesh::getLockedVertexIndexBase(unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& stride,unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart)
{
(void)subpart;
numverts = m_vertices.size();
*vertexbase = (unsigned char*)&m_vertices[0];
type = PHY_FLOAT;
stride = sizeof(btVector3);
numfaces = m_indices.size()/3;
*indexbase = (unsigned char*) &m_indices[0];
indicestype = PHY_INTEGER;
indexstride = 3*sizeof(int);
}
void btTriangleMesh::getLockedReadOnlyVertexIndexBase(const unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& stride,const unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart) const
{
(void)subpart;
numverts = m_vertices.size();
*vertexbase = (unsigned char*)&m_vertices[0];
type = PHY_FLOAT;
stride = sizeof(btVector3);
numfaces = m_indices.size()/3;
*indexbase = (unsigned char*) &m_indices[0];
indicestype = PHY_INTEGER;
indexstride = 3*sizeof(int);
}
int btTriangleMesh::getNumSubParts() const
{
return 1;
}

View File

@ -0,0 +1,75 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef TRIANGLE_MESH_H
#define TRIANGLE_MESH_H
#include "btStridingMeshInterface.h"
#include "LinearMath/btVector3.h"
#include "LinearMath/btAlignedObjectArray.h"
///TriangleMesh provides storage for a concave triangle mesh. It can be used as data for the btTriangleMeshShape.
class btTriangleMesh : public btStridingMeshInterface
{
btAlignedObjectArray<btVector3> m_vertices;
btAlignedObjectArray<int> m_indices;
public:
btTriangleMesh ();
void addTriangle(const btVector3& vertex0,const btVector3& vertex1,const btVector3& vertex2)
{
int curIndex = m_indices.size();
m_vertices.push_back(vertex0);
m_vertices.push_back(vertex1);
m_vertices.push_back(vertex2);
m_indices.push_back(curIndex++);
m_indices.push_back(curIndex++);
m_indices.push_back(curIndex++);
}
int getNumTriangles() const
{
return m_indices.size() / 3;
}
//StridingMeshInterface interface implementation
virtual void getLockedVertexIndexBase(unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& stride,unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart=0);
virtual void getLockedReadOnlyVertexIndexBase(const unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& stride,const unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart=0) const;
/// unLockVertexBase finishes the access to a subpart of the triangle mesh
/// make a call to unLockVertexBase when the read and write access (using getLockedVertexIndexBase) is finished
virtual void unLockVertexBase(int subpart) {(void) subpart;}
virtual void unLockReadOnlyVertexBase(int subpart) const { (void) subpart;}
/// getNumSubParts returns the number of seperate subparts
/// each subpart has a continuous array of vertices and indices
virtual int getNumSubParts() const;
virtual void preallocateVertices(int numverts){(void) numverts;}
virtual void preallocateIndices(int numindices){(void) numindices;}
};
#endif //TRIANGLE_MESH_H

View File

@ -0,0 +1,203 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btTriangleMeshShape.h"
#include "LinearMath/btVector3.h"
#include "LinearMath/btQuaternion.h"
#include "btStridingMeshInterface.h"
#include "LinearMath/btAabbUtil2.h"
#include "BulletCollision/CollisionShapes/btCollisionMargin.h"
#include "stdio.h"
btTriangleMeshShape::btTriangleMeshShape(btStridingMeshInterface* meshInterface)
: m_meshInterface(meshInterface)
{
recalcLocalAabb();
}
btTriangleMeshShape::~btTriangleMeshShape()
{
}
void btTriangleMeshShape::getAabb(const btTransform& trans,btVector3& aabbMin,btVector3& aabbMax) const
{
btVector3 localHalfExtents = btScalar(0.5)*(m_localAabbMax-m_localAabbMin);
btVector3 localCenter = btScalar(0.5)*(m_localAabbMax+m_localAabbMin);
btMatrix3x3 abs_b = trans.getBasis().absolute();
btPoint3 center = trans(localCenter);
btVector3 extent = btVector3(abs_b[0].dot(localHalfExtents),
abs_b[1].dot(localHalfExtents),
abs_b[2].dot(localHalfExtents));
extent += btVector3(getMargin(),getMargin(),getMargin());
aabbMin = center - extent;
aabbMax = center + extent;
}
void btTriangleMeshShape::recalcLocalAabb()
{
for (int i=0;i<3;i++)
{
btVector3 vec(btScalar(0.),btScalar(0.),btScalar(0.));
vec[i] = btScalar(1.);
btVector3 tmp = localGetSupportingVertex(vec);
m_localAabbMax[i] = tmp[i]+m_collisionMargin;
vec[i] = btScalar(-1.);
tmp = localGetSupportingVertex(vec);
m_localAabbMin[i] = tmp[i]-m_collisionMargin;
}
}
class SupportVertexCallback : public btTriangleCallback
{
btVector3 m_supportVertexLocal;
public:
btTransform m_worldTrans;
btScalar m_maxDot;
btVector3 m_supportVecLocal;
SupportVertexCallback(const btVector3& supportVecWorld,const btTransform& trans)
: m_supportVertexLocal(btScalar(0.),btScalar(0.),btScalar(0.)), m_worldTrans(trans) ,m_maxDot(btScalar(-1e30))
{
m_supportVecLocal = supportVecWorld * m_worldTrans.getBasis();
}
virtual void processTriangle( btVector3* triangle,int partId, int triangleIndex)
{
(void)partId;
(void)triangleIndex;
for (int i=0;i<3;i++)
{
btScalar dot = m_supportVecLocal.dot(triangle[i]);
if (dot > m_maxDot)
{
m_maxDot = dot;
m_supportVertexLocal = triangle[i];
}
}
}
btVector3 GetSupportVertexWorldSpace()
{
return m_worldTrans(m_supportVertexLocal);
}
btVector3 GetSupportVertexLocal()
{
return m_supportVertexLocal;
}
};
void btTriangleMeshShape::setLocalScaling(const btVector3& scaling)
{
m_meshInterface->setScaling(scaling);
recalcLocalAabb();
}
const btVector3& btTriangleMeshShape::getLocalScaling() const
{
return m_meshInterface->getScaling();
}
//#define DEBUG_TRIANGLE_MESH
void btTriangleMeshShape::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
struct FilteredCallback : public btInternalTriangleIndexCallback
{
btTriangleCallback* m_callback;
btVector3 m_aabbMin;
btVector3 m_aabbMax;
FilteredCallback(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax)
:m_callback(callback),
m_aabbMin(aabbMin),
m_aabbMax(aabbMax)
{
}
virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex)
{
if (TestTriangleAgainstAabb2(&triangle[0],m_aabbMin,m_aabbMax))
{
//check aabb in triangle-space, before doing this
m_callback->processTriangle(triangle,partId,triangleIndex);
}
}
};
FilteredCallback filterCallback(callback,aabbMin,aabbMax);
m_meshInterface->InternalProcessAllTriangles(&filterCallback,aabbMin,aabbMax);
}
void btTriangleMeshShape::calculateLocalInertia(btScalar mass,btVector3& inertia)
{
(void)mass;
//moving concave objects not supported
btAssert(0);
inertia.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
}
btVector3 btTriangleMeshShape::localGetSupportingVertex(const btVector3& vec) const
{
btVector3 supportVertex;
btTransform ident;
ident.setIdentity();
SupportVertexCallback supportCallback(vec,ident);
btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30));
processAllTriangles(&supportCallback,-aabbMax,aabbMax);
supportVertex = supportCallback.GetSupportVertexLocal();
return supportVertex;
}

View File

@ -0,0 +1,78 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef TRIANGLE_MESH_SHAPE_H
#define TRIANGLE_MESH_SHAPE_H
#include "btConcaveShape.h"
#include "btStridingMeshInterface.h"
///Concave triangle mesh. Uses an interface to access the triangles to allow for sharing graphics/physics triangles.
class btTriangleMeshShape : public btConcaveShape
{
protected:
btVector3 m_localAabbMin;
btVector3 m_localAabbMax;
btStridingMeshInterface* m_meshInterface;
public:
btTriangleMeshShape(btStridingMeshInterface* meshInterface);
virtual ~btTriangleMeshShape();
virtual btVector3 localGetSupportingVertex(const btVector3& vec) const;
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const
{
assert(0);
return localGetSupportingVertex(vec);
}
void recalcLocalAabb();
virtual int getShapeType() const
{
return TRIANGLE_MESH_SHAPE_PROXYTYPE;
}
virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
virtual void processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const;
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia);
virtual void setLocalScaling(const btVector3& scaling);
virtual const btVector3& getLocalScaling() const;
btStridingMeshInterface* getMeshInterface()
{
return m_meshInterface;
}
const btStridingMeshInterface* getMeshInterface() const
{
return m_meshInterface;
}
//debugging
virtual const char* getName()const {return "TRIANGLEMESH";}
};
#endif //TRIANGLE_MESH_SHAPE_H

View File

@ -0,0 +1,179 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef OBB_TRIANGLE_MINKOWSKI_H
#define OBB_TRIANGLE_MINKOWSKI_H
#include "btConvexShape.h"
#include "btBoxShape.h"
class btTriangleShape : public btPolyhedralConvexShape
{
public:
btVector3 m_vertices1[3];
virtual int getNumVertices() const
{
return 3;
}
const btVector3& getVertexPtr(int index) const
{
return m_vertices1[index];
}
virtual void getVertex(int index,btVector3& vert) const
{
vert = m_vertices1[index];
}
virtual int getShapeType() const
{
return TRIANGLE_SHAPE_PROXYTYPE;
}
virtual int getNumEdges() const
{
return 3;
}
virtual void getEdge(int i,btPoint3& pa,btPoint3& pb) const
{
getVertex(i,pa);
getVertex((i+1)%3,pb);
}
virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax)const
{
// btAssert(0);
getAabbSlow(t,aabbMin,aabbMax);
}
btVector3 localGetSupportingVertexWithoutMargin(const btVector3& dir)const
{
btVector3 dots(dir.dot(m_vertices1[0]), dir.dot(m_vertices1[1]), dir.dot(m_vertices1[2]));
return m_vertices1[dots.maxAxis()];
}
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
for (int i=0;i<numVectors;i++)
{
const btVector3& dir = vectors[i];
btVector3 dots(dir.dot(m_vertices1[0]), dir.dot(m_vertices1[1]), dir.dot(m_vertices1[2]));
supportVerticesOut[i] = m_vertices1[dots.maxAxis()];
}
}
btTriangleShape(const btVector3& p0,const btVector3& p1,const btVector3& p2)
{
m_vertices1[0] = p0;
m_vertices1[1] = p1;
m_vertices1[2] = p2;
}
virtual void getPlane(btVector3& planeNormal,btPoint3& planeSupport,int i) const
{
getPlaneEquation(i,planeNormal,planeSupport);
}
virtual int getNumPlanes() const
{
return 1;
}
void calcNormal(btVector3& normal) const
{
normal = (m_vertices1[1]-m_vertices1[0]).cross(m_vertices1[2]-m_vertices1[0]);
normal.normalize();
}
virtual void getPlaneEquation(int i, btVector3& planeNormal,btPoint3& planeSupport) const
{
(void)i;
calcNormal(planeNormal);
planeSupport = m_vertices1[0];
}
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia)
{
(void)mass;
btAssert(0);
inertia.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
}
virtual bool isInside(const btPoint3& pt,btScalar tolerance) const
{
btVector3 normal;
calcNormal(normal);
//distance to plane
btScalar dist = pt.dot(normal);
btScalar planeconst = m_vertices1[0].dot(normal);
dist -= planeconst;
if (dist >= -tolerance && dist <= tolerance)
{
//inside check on edge-planes
int i;
for (i=0;i<3;i++)
{
btPoint3 pa,pb;
getEdge(i,pa,pb);
btVector3 edge = pb-pa;
btVector3 edgeNormal = edge.cross(normal);
edgeNormal.normalize();
btScalar dist = pt.dot( edgeNormal);
btScalar edgeConst = pa.dot(edgeNormal);
dist -= edgeConst;
if (dist < -tolerance)
return false;
}
return true;
}
return false;
}
//debugging
virtual const char* getName()const
{
return "Triangle";
}
virtual int getNumPreferredPenetrationDirections() const
{
return 2;
}
virtual void getPreferredPenetrationDirection(int index, btVector3& penetrationVector) const
{
calcNormal(penetrationVector);
if (index)
penetrationVector *= btScalar(-1.);
}
};
#endif //OBB_TRIANGLE_MINKOWSKI_H

View File

@ -0,0 +1,114 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2007 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btUniformScalingShape.h"
btUniformScalingShape::btUniformScalingShape( btConvexShape* convexChildShape,btScalar uniformScalingFactor):
m_childConvexShape(convexChildShape),
m_uniformScalingFactor(uniformScalingFactor)
{
}
btUniformScalingShape::~btUniformScalingShape()
{
}
btVector3 btUniformScalingShape::localGetSupportingVertexWithoutMargin(const btVector3& vec)const
{
btVector3 tmpVertex;
tmpVertex = m_childConvexShape->localGetSupportingVertexWithoutMargin(vec);
return tmpVertex*m_uniformScalingFactor;
}
void btUniformScalingShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
m_childConvexShape->batchedUnitVectorGetSupportingVertexWithoutMargin(vectors,supportVerticesOut,numVectors);
int i;
for (i=0;i<numVectors;i++)
{
supportVerticesOut[i] = supportVerticesOut[i] * m_uniformScalingFactor;
}
}
btVector3 btUniformScalingShape::localGetSupportingVertex(const btVector3& vec)const
{
btVector3 tmpVertex;
tmpVertex = m_childConvexShape->localGetSupportingVertex(vec);
return tmpVertex*m_uniformScalingFactor;
}
void btUniformScalingShape::calculateLocalInertia(btScalar mass,btVector3& inertia)
{
///this linear upscaling is not realistic, but we don't deal with large mass ratios...
btVector3 tmpInertia;
m_childConvexShape->calculateLocalInertia(mass,tmpInertia);
inertia = tmpInertia * m_uniformScalingFactor;
}
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
void btUniformScalingShape::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
{
m_childConvexShape->getAabb(t,aabbMin,aabbMax);
btVector3 aabbCenter = (aabbMax+aabbMin)*btScalar(0.5);
btVector3 scaledAabbHalfExtends = (aabbMax-aabbMin)*btScalar(0.5)*m_uniformScalingFactor;
aabbMin = aabbCenter - scaledAabbHalfExtends;
aabbMax = aabbCenter + scaledAabbHalfExtends;
}
void btUniformScalingShape::getAabbSlow(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
{
m_childConvexShape->getAabbSlow(t,aabbMin,aabbMax);
btVector3 aabbCenter = (aabbMax+aabbMin)*btScalar(0.5);
btVector3 scaledAabbHalfExtends = (aabbMax-aabbMin)*btScalar(0.5)*m_uniformScalingFactor;
aabbMin = aabbCenter - scaledAabbHalfExtends;
aabbMax = aabbCenter + scaledAabbHalfExtends;
}
void btUniformScalingShape::setLocalScaling(const btVector3& scaling)
{
m_childConvexShape->setLocalScaling(scaling);
}
const btVector3& btUniformScalingShape::getLocalScaling() const
{
return m_childConvexShape->getLocalScaling();
}
void btUniformScalingShape::setMargin(btScalar margin)
{
m_childConvexShape->setMargin(margin);
}
btScalar btUniformScalingShape::getMargin() const
{
return m_childConvexShape->getMargin() * m_uniformScalingFactor;
}
int btUniformScalingShape::getNumPreferredPenetrationDirections() const
{
return m_childConvexShape->getNumPreferredPenetrationDirections();
}
void btUniformScalingShape::getPreferredPenetrationDirection(int index, btVector3& penetrationVector) const
{
return m_childConvexShape->getPreferredPenetrationDirection(index,penetrationVector);
}

View File

@ -0,0 +1,86 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_UNIFORM_SCALING_SHAPE_H
#define BT_UNIFORM_SCALING_SHAPE_H
#include "btConvexShape.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" // for the types
class btUniformScalingShape : public btConvexShape
{
btConvexShape* m_childConvexShape;
btScalar m_uniformScalingFactor;
public:
btUniformScalingShape( btConvexShape* convexChildShape, btScalar uniformScalingFactor);
virtual ~btUniformScalingShape();
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;
virtual btVector3 localGetSupportingVertex(const btVector3& vec)const;
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia);
btScalar getUniformScalingFactor() const
{
return m_uniformScalingFactor;
}
btConvexShape* getChildShape()
{
return m_childConvexShape;
}
const btConvexShape* getChildShape() const
{
return m_childConvexShape;
}
virtual const char* getName()const
{
return "UniformScalingShape";
}
virtual int getShapeType() const { return UNIFORM_SCALING_SHAPE_PROXYTYPE; }
///////////////////////////
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
virtual void getAabbSlow(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
virtual void setLocalScaling(const btVector3& scaling) ;
virtual const btVector3& getLocalScaling() const ;
virtual void setMargin(btScalar margin);
virtual btScalar getMargin() const;
virtual int getNumPreferredPenetrationDirections() const;
virtual void getPreferredPenetrationDirection(int index, btVector3& penetrationVector) const;
};
#endif //BT_UNIFORM_SCALING_SHAPE_H