bluecore/bullet/src/BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h

89 lines
3.1 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef HEIGHTFIELD_TERRAIN_SHAPE_H
#define HEIGHTFIELD_TERRAIN_SHAPE_H
#include "btConcaveShape.h"
///btHeightfieldTerrainShape simulates a 2D heightfield terrain
class btHeightfieldTerrainShape : public btConcaveShape
{
protected:
btVector3 m_localAabbMin;
btVector3 m_localAabbMax;
///terrain data
int m_width;
int m_length;
btScalar m_maxHeight;
union
{
unsigned char* m_heightfieldDataUnsignedChar;
btScalar* m_heightfieldDataFloat;
void* m_heightfieldDataUnknown;
};
bool m_useFloatData;
bool m_flipQuadEdges;
bool m_useDiamondSubdivision;
int m_upAxis;
btVector3 m_localScaling;
virtual btScalar getHeightFieldValue(int x,int y) const;
void quantizeWithClamp(int* out, const btVector3& point) const;
void getVertex(int x,int y,btVector3& vertex) const;
inline bool testQuantizedAabbAgainstQuantizedAabb(int* aabbMin1, int* aabbMax1,const int* aabbMin2,const int* aabbMax2) const
{
bool overlap = true;
overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? false : overlap;
overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? false : overlap;
overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? false : overlap;
return overlap;
}
public:
btHeightfieldTerrainShape(int width,int height,void* heightfieldData, btScalar maxHeight,int upAxis,bool useFloatData,bool flipQuadEdges);
virtual ~btHeightfieldTerrainShape();
void setUseDiamondSubdivision(bool useDiamondSubdivision=true) { m_useDiamondSubdivision = useDiamondSubdivision;}
virtual int getShapeType() const
{
return TERRAIN_SHAPE_PROXYTYPE;
}
virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
virtual void processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const;
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia);
virtual void setLocalScaling(const btVector3& scaling);
virtual const btVector3& getLocalScaling() const;
//debugging
virtual const char* getName()const {return "HEIGHTFIELD";}
};
#endif //HEIGHTFIELD_TERRAIN_SHAPE_H