/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #ifndef COLLISION_OBJECT_H #define COLLISION_OBJECT_H #include "LinearMath/btTransform.h" //island management, m_activationState1 #define ACTIVE_TAG 1 #define ISLAND_SLEEPING 2 #define WANTS_DEACTIVATION 3 #define DISABLE_DEACTIVATION 4 #define DISABLE_SIMULATION 5 struct btBroadphaseProxy; class btCollisionShape; struct btCollisionShapeData; #include "LinearMath/btMotionState.h" #include "LinearMath/btAlignedAllocator.h" #include "LinearMath/btAlignedObjectArray.h" typedef btAlignedObjectArray<class btCollisionObject*> btCollisionObjectArray; #ifdef BT_USE_DOUBLE_PRECISION #define btCollisionObjectData btCollisionObjectDoubleData #define btCollisionObjectDataName "btCollisionObjectDoubleData" #else #define btCollisionObjectData btCollisionObjectFloatData #define btCollisionObjectDataName "btCollisionObjectFloatData" #endif /// btCollisionObject can be used to manage collision detection objects. /// btCollisionObject maintains all information that is needed for a collision detection: Shape, Transform and AABB proxy. /// They can be added to the btCollisionWorld. ATTRIBUTE_ALIGNED16(class) btCollisionObject { protected: btTransform m_worldTransform; ///m_interpolationWorldTransform is used for CCD and interpolation ///it can be either previous or future (predicted) transform btTransform m_interpolationWorldTransform; //those two are experimental: just added for bullet time effect, so you can still apply impulses (directly modifying velocities) //without destroying the continuous interpolated motion (which uses this interpolation velocities) btVector3 m_interpolationLinearVelocity; btVector3 m_interpolationAngularVelocity; btVector3 m_anisotropicFriction; int m_hasAnisotropicFriction; btScalar m_contactProcessingThreshold; btBroadphaseProxy* m_broadphaseHandle; btCollisionShape* m_collisionShape; ///m_extensionPointer is used by some internal low-level Bullet extensions. void* m_extensionPointer; ///m_rootCollisionShape is temporarily used to store the original collision shape ///The m_collisionShape might be temporarily replaced by a child collision shape during collision detection purposes ///If it is NULL, the m_collisionShape is not temporarily replaced. btCollisionShape* m_rootCollisionShape; int m_collisionFlags; int m_islandTag1; int m_companionId; int m_activationState1; btScalar m_deactivationTime; btScalar m_friction; btScalar m_restitution; ///m_internalType is reserved to distinguish Bullet's btCollisionObject, btRigidBody, btSoftBody, btGhostObject etc. ///do not assign your own m_internalType unless you write a new dynamics object class. int m_internalType; ///users can point to their objects, m_userPointer is not used by Bullet, see setUserPointer/getUserPointer void* m_userObjectPointer; ///time of impact calculation btScalar m_hitFraction; ///Swept sphere radius (0.0 by default), see btConvexConvexAlgorithm:: btScalar m_ccdSweptSphereRadius; /// Don't do continuous collision detection if the motion (in one step) is less then m_ccdMotionThreshold btScalar m_ccdMotionThreshold; /// If some object should have elaborate collision filtering by sub-classes int m_checkCollideWith; virtual bool checkCollideWithOverride(btCollisionObject* /* co */) { return true; } public: BT_DECLARE_ALIGNED_ALLOCATOR(); enum CollisionFlags { CF_STATIC_OBJECT= 1, CF_KINEMATIC_OBJECT= 2, CF_NO_CONTACT_RESPONSE = 4, CF_CUSTOM_MATERIAL_CALLBACK = 8,//this allows per-triangle material (friction/restitution) CF_CHARACTER_OBJECT = 16, CF_DISABLE_VISUALIZE_OBJECT = 32, //disable debug drawing CF_DISABLE_SPU_COLLISION_PROCESSING = 64//disable parallel/SPU processing }; enum CollisionObjectTypes { CO_COLLISION_OBJECT =1, CO_RIGID_BODY=2, ///CO_GHOST_OBJECT keeps track of all objects overlapping its AABB and that pass its collision filter ///It is useful for collision sensors, explosion objects, character controller etc. CO_GHOST_OBJECT=4, CO_SOFT_BODY=8, CO_HF_FLUID=16, CO_USER_TYPE=32 }; SIMD_FORCE_INLINE bool mergesSimulationIslands() const { ///static objects, kinematic and object without contact response don't merge islands return ((m_collisionFlags & (CF_STATIC_OBJECT | CF_KINEMATIC_OBJECT | CF_NO_CONTACT_RESPONSE) )==0); } const btVector3& getAnisotropicFriction() const { return m_anisotropicFriction; } void setAnisotropicFriction(const btVector3& anisotropicFriction) { m_anisotropicFriction = anisotropicFriction; m_hasAnisotropicFriction = (anisotropicFriction[0]!=1.f) || (anisotropicFriction[1]!=1.f) || (anisotropicFriction[2]!=1.f); } bool hasAnisotropicFriction() const { return m_hasAnisotropicFriction!=0; } ///the constraint solver can discard solving contacts, if the distance is above this threshold. 0 by default. ///Note that using contacts with positive distance can improve stability. It increases, however, the chance of colliding with degerate contacts, such as 'interior' triangle edges void setContactProcessingThreshold( btScalar contactProcessingThreshold) { m_contactProcessingThreshold = contactProcessingThreshold; } btScalar getContactProcessingThreshold() const { return m_contactProcessingThreshold; } SIMD_FORCE_INLINE bool isStaticObject() const { return (m_collisionFlags & CF_STATIC_OBJECT) != 0; } SIMD_FORCE_INLINE bool isKinematicObject() const { return (m_collisionFlags & CF_KINEMATIC_OBJECT) != 0; } SIMD_FORCE_INLINE bool isStaticOrKinematicObject() const { return (m_collisionFlags & (CF_KINEMATIC_OBJECT | CF_STATIC_OBJECT)) != 0 ; } SIMD_FORCE_INLINE bool hasContactResponse() const { return (m_collisionFlags & CF_NO_CONTACT_RESPONSE)==0; } btCollisionObject(); virtual ~btCollisionObject(); virtual void setCollisionShape(btCollisionShape* collisionShape) { m_collisionShape = collisionShape; m_rootCollisionShape = collisionShape; } SIMD_FORCE_INLINE const btCollisionShape* getCollisionShape() const { return m_collisionShape; } SIMD_FORCE_INLINE btCollisionShape* getCollisionShape() { return m_collisionShape; } SIMD_FORCE_INLINE const btCollisionShape* getRootCollisionShape() const { return m_rootCollisionShape; } SIMD_FORCE_INLINE btCollisionShape* getRootCollisionShape() { return m_rootCollisionShape; } ///Avoid using this internal API call ///internalSetTemporaryCollisionShape is used to temporary replace the actual collision shape by a child collision shape. void internalSetTemporaryCollisionShape(btCollisionShape* collisionShape) { m_collisionShape = collisionShape; } ///Avoid using this internal API call, the extension pointer is used by some Bullet extensions. ///If you need to store your own user pointer, use 'setUserPointer/getUserPointer' instead. void* internalGetExtensionPointer() const { return m_extensionPointer; } ///Avoid using this internal API call, the extension pointer is used by some Bullet extensions ///If you need to store your own user pointer, use 'setUserPointer/getUserPointer' instead. void internalSetExtensionPointer(void* pointer) { m_extensionPointer = pointer; } SIMD_FORCE_INLINE int getActivationState() const { return m_activationState1;} void setActivationState(int newState); void setDeactivationTime(btScalar time) { m_deactivationTime = time; } btScalar getDeactivationTime() const { return m_deactivationTime; } void forceActivationState(int newState); void activate(bool forceActivation = false); SIMD_FORCE_INLINE bool isActive() const { return ((getActivationState() != ISLAND_SLEEPING) && (getActivationState() != DISABLE_SIMULATION)); } void setRestitution(btScalar rest) { m_restitution = rest; } btScalar getRestitution() const { return m_restitution; } void setFriction(btScalar frict) { m_friction = frict; } btScalar getFriction() const { return m_friction; } ///reserved for Bullet internal usage int getInternalType() const { return m_internalType; } btTransform& getWorldTransform() { return m_worldTransform; } const btTransform& getWorldTransform() const { return m_worldTransform; } void setWorldTransform(const btTransform& worldTrans) { m_worldTransform = worldTrans; } SIMD_FORCE_INLINE btBroadphaseProxy* getBroadphaseHandle() { return m_broadphaseHandle; } SIMD_FORCE_INLINE const btBroadphaseProxy* getBroadphaseHandle() const { return m_broadphaseHandle; } void setBroadphaseHandle(btBroadphaseProxy* handle) { m_broadphaseHandle = handle; } const btTransform& getInterpolationWorldTransform() const { return m_interpolationWorldTransform; } btTransform& getInterpolationWorldTransform() { return m_interpolationWorldTransform; } void setInterpolationWorldTransform(const btTransform& trans) { m_interpolationWorldTransform = trans; } void setInterpolationLinearVelocity(const btVector3& linvel) { m_interpolationLinearVelocity = linvel; } void setInterpolationAngularVelocity(const btVector3& angvel) { m_interpolationAngularVelocity = angvel; } const btVector3& getInterpolationLinearVelocity() const { return m_interpolationLinearVelocity; } const btVector3& getInterpolationAngularVelocity() const { return m_interpolationAngularVelocity; } SIMD_FORCE_INLINE int getIslandTag() const { return m_islandTag1; } void setIslandTag(int tag) { m_islandTag1 = tag; } SIMD_FORCE_INLINE int getCompanionId() const { return m_companionId; } void setCompanionId(int id) { m_companionId = id; } SIMD_FORCE_INLINE btScalar getHitFraction() const { return m_hitFraction; } void setHitFraction(btScalar hitFraction) { m_hitFraction = hitFraction; } SIMD_FORCE_INLINE int getCollisionFlags() const { return m_collisionFlags; } void setCollisionFlags(int flags) { m_collisionFlags = flags; } ///Swept sphere radius (0.0 by default), see btConvexConvexAlgorithm:: btScalar getCcdSweptSphereRadius() const { return m_ccdSweptSphereRadius; } ///Swept sphere radius (0.0 by default), see btConvexConvexAlgorithm:: void setCcdSweptSphereRadius(btScalar radius) { m_ccdSweptSphereRadius = radius; } btScalar getCcdMotionThreshold() const { return m_ccdMotionThreshold; } btScalar getCcdSquareMotionThreshold() const { return m_ccdMotionThreshold*m_ccdMotionThreshold; } /// Don't do continuous collision detection if the motion (in one step) is less then m_ccdMotionThreshold void setCcdMotionThreshold(btScalar ccdMotionThreshold) { m_ccdMotionThreshold = ccdMotionThreshold; } ///users can point to their objects, userPointer is not used by Bullet void* getUserPointer() const { return m_userObjectPointer; } ///users can point to their objects, userPointer is not used by Bullet void setUserPointer(void* userPointer) { m_userObjectPointer = userPointer; } inline bool checkCollideWith(btCollisionObject* co) { if (m_checkCollideWith) return checkCollideWithOverride(co); return true; } virtual int calculateSerializeBufferSize() const; ///fills the dataBuffer and returns the struct name (and 0 on failure) virtual const char* serialize(void* dataBuffer, class btSerializer* serializer) const; virtual void serializeSingleObject(class btSerializer* serializer) const; }; ///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64 struct btCollisionObjectDoubleData { void *m_broadphaseHandle; void *m_collisionShape; btCollisionShapeData *m_rootCollisionShape; char *m_name; btTransformDoubleData m_worldTransform; btTransformDoubleData m_interpolationWorldTransform; btVector3DoubleData m_interpolationLinearVelocity; btVector3DoubleData m_interpolationAngularVelocity; btVector3DoubleData m_anisotropicFriction; double m_contactProcessingThreshold; double m_deactivationTime; double m_friction; double m_restitution; double m_hitFraction; double m_ccdSweptSphereRadius; double m_ccdMotionThreshold; int m_hasAnisotropicFriction; int m_collisionFlags; int m_islandTag1; int m_companionId; int m_activationState1; int m_internalType; int m_checkCollideWith; char m_padding[4]; }; ///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64 struct btCollisionObjectFloatData { void *m_broadphaseHandle; void *m_collisionShape; btCollisionShapeData *m_rootCollisionShape; char *m_name; btTransformFloatData m_worldTransform; btTransformFloatData m_interpolationWorldTransform; btVector3FloatData m_interpolationLinearVelocity; btVector3FloatData m_interpolationAngularVelocity; btVector3FloatData m_anisotropicFriction; float m_contactProcessingThreshold; float m_deactivationTime; float m_friction; float m_restitution; float m_hitFraction; float m_ccdSweptSphereRadius; float m_ccdMotionThreshold; int m_hasAnisotropicFriction; int m_collisionFlags; int m_islandTag1; int m_companionId; int m_activationState1; int m_internalType; int m_checkCollideWith; }; SIMD_FORCE_INLINE int btCollisionObject::calculateSerializeBufferSize() const { return sizeof(btCollisionObjectData); } #endif //COLLISION_OBJECT_H