/** * pugixml parser - version 1.0 * -------------------------------------------------------- * Copyright (C) 2006-2010, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com) * Report bugs and download new versions at http://pugixml.org/ * * This library is distributed under the MIT License. See notice at the end * of this file. * * This work is based on the pugxml parser, which is: * Copyright (C) 2003, by Kristen Wegner (kristen@tima.net) */ #include "pugixml.hpp" #include <stdlib.h> #include <stdio.h> #include <string.h> #include <assert.h> #include <setjmp.h> #include <wchar.h> #ifndef PUGIXML_NO_XPATH # include <math.h> # include <float.h> #endif #ifndef PUGIXML_NO_STL # include <istream> # include <ostream> # include <string> #endif // For placement new #include <new> #ifdef _MSC_VER # pragma warning(disable: 4127) // conditional expression is constant # pragma warning(disable: 4324) // structure was padded due to __declspec(align()) # pragma warning(disable: 4611) // interaction between '_setjmp' and C++ object destruction is non-portable # pragma warning(disable: 4702) // unreachable code # pragma warning(disable: 4996) // this function or variable may be unsafe #endif #ifdef __INTEL_COMPILER # pragma warning(disable: 177) // function was declared but never referenced # pragma warning(disable: 1478 1786) // function was declared "deprecated" #endif #ifdef __BORLANDC__ # pragma warn -8008 // condition is always false # pragma warn -8066 // unreachable code #endif #ifdef __SNC__ # pragma diag_suppress=178 // function was declared but never referenced # pragma diag_suppress=237 // controlling expression is constant #endif // uintptr_t #if !defined(_MSC_VER) || _MSC_VER >= 1600 # include <stdint.h> #else # if _MSC_VER < 1300 // No native uintptr_t in MSVC6 typedef size_t uintptr_t; # endif typedef unsigned __int8 uint8_t; typedef unsigned __int16 uint16_t; typedef unsigned __int32 uint32_t; typedef __int32 int32_t; #endif // Inlining controls #if defined(_MSC_VER) && _MSC_VER >= 1300 # define PUGIXML_NO_INLINE __declspec(noinline) #elif defined(__GNUC__) # define PUGIXML_NO_INLINE __attribute__((noinline)) #else # define PUGIXML_NO_INLINE #endif // Simple static assertion #define STATIC_ASSERT(cond) { static const char condition_failed[(cond) ? 1 : -1] = {0}; (void)condition_failed[0]; } // Digital Mars C++ bug workaround for passing char loaded from memory via stack #ifdef __DMC__ # define DMC_VOLATILE volatile #else # define DMC_VOLATILE #endif using namespace pugi; // Memory allocation namespace { void* default_allocate(size_t size) { return malloc(size); } void default_deallocate(void* ptr) { free(ptr); } allocation_function global_allocate = default_allocate; deallocation_function global_deallocate = default_deallocate; } // String utilities namespace { // Get string length size_t strlength(const char_t* s) { assert(s); #ifdef PUGIXML_WCHAR_MODE return wcslen(s); #else return strlen(s); #endif } // Compare two strings bool strequal(const char_t* src, const char_t* dst) { assert(src && dst); #ifdef PUGIXML_WCHAR_MODE return wcscmp(src, dst) == 0; #else return strcmp(src, dst) == 0; #endif } // Compare lhs with [rhs_begin, rhs_end) bool strequalrange(const char_t* lhs, const char_t* rhs, size_t count) { for (size_t i = 0; i < count; ++i) if (lhs[i] != rhs[i]) return false; return lhs[count] == 0; } #ifdef PUGIXML_WCHAR_MODE // Convert string to wide string, assuming all symbols are ASCII void widen_ascii(wchar_t* dest, const char* source) { for (const char* i = source; *i; ++i) *dest++ = *i; *dest = 0; } #endif } #if !defined(PUGIXML_NO_STL) || !defined(PUGIXML_NO_XPATH) // auto_ptr-like buffer holder for exception recovery namespace { struct buffer_holder { void* data; void (*deleter)(void*); buffer_holder(void* data, void (*deleter)(void*)): data(data), deleter(deleter) { } ~buffer_holder() { if (data) deleter(data); } void* release() { void* result = data; data = 0; return result; } }; } #endif namespace { static const size_t xml_memory_page_size = 32768; static const uintptr_t xml_memory_page_alignment = 32; static const uintptr_t xml_memory_page_pointer_mask = ~(xml_memory_page_alignment - 1); static const uintptr_t xml_memory_page_name_allocated_mask = 16; static const uintptr_t xml_memory_page_value_allocated_mask = 8; static const uintptr_t xml_memory_page_type_mask = 7; struct xml_allocator; struct xml_memory_page { static xml_memory_page* construct(void* memory) { if (!memory) return 0; //$ redundant, left for performance xml_memory_page* result = static_cast<xml_memory_page*>(memory); result->allocator = 0; result->memory = 0; result->prev = 0; result->next = 0; result->busy_size = 0; result->freed_size = 0; return result; } xml_allocator* allocator; void* memory; xml_memory_page* prev; xml_memory_page* next; size_t busy_size; size_t freed_size; char data[1]; }; struct xml_memory_string_header { uint16_t page_offset; // offset from page->data uint16_t full_size; // 0 if string occupies whole page }; struct xml_allocator { xml_allocator(xml_memory_page* root): _root(root), _busy_size(root->busy_size) { } xml_memory_page* allocate_page(size_t data_size) { size_t size = offsetof(xml_memory_page, data) + data_size; // allocate block with some alignment, leaving memory for worst-case padding void* memory = global_allocate(size + xml_memory_page_alignment); if (!memory) return 0; // align upwards to page boundary void* page_memory = reinterpret_cast<void*>((reinterpret_cast<uintptr_t>(memory) + (xml_memory_page_alignment - 1)) & ~(xml_memory_page_alignment - 1)); // prepare page structure xml_memory_page* page = xml_memory_page::construct(page_memory); page->memory = memory; page->allocator = _root->allocator; return page; } static void deallocate_page(xml_memory_page* page) { global_deallocate(page->memory); } void* allocate_memory_oob(size_t size, xml_memory_page*& out_page); void* allocate_memory(size_t size, xml_memory_page*& out_page) { if (_busy_size + size > xml_memory_page_size) return allocate_memory_oob(size, out_page); void* buf = _root->data + _busy_size; _busy_size += size; out_page = _root; return buf; } void deallocate_memory(void* ptr, size_t size, xml_memory_page* page) { if (page == _root) page->busy_size = _busy_size; assert(ptr >= page->data && ptr < page->data + page->busy_size); (void)!ptr; page->freed_size += size; assert(page->freed_size <= page->busy_size); if (page->freed_size == page->busy_size) { if (page->next == 0) { assert(_root == page); // top page freed, just reset sizes page->busy_size = page->freed_size = 0; _busy_size = 0; } else { assert(_root != page); assert(page->prev); // remove from the list page->prev->next = page->next; page->next->prev = page->prev; // deallocate deallocate_page(page); } } } char_t* allocate_string(size_t length) { // allocate memory for string and header block size_t size = sizeof(xml_memory_string_header) + length * sizeof(char_t); // round size up to pointer alignment boundary size_t full_size = (size + (sizeof(void*) - 1)) & ~(sizeof(void*) - 1); xml_memory_page* page; xml_memory_string_header* header = static_cast<xml_memory_string_header*>(allocate_memory(full_size, page)); if (!header) return 0; // setup header ptrdiff_t page_offset = reinterpret_cast<char*>(header) - page->data; assert(page_offset >= 0 && page_offset < (1 << 16)); header->page_offset = static_cast<uint16_t>(page_offset); // full_size == 0 for large strings that occupy the whole page assert(full_size < (1 << 16) || (page->busy_size == full_size && page_offset == 0)); header->full_size = static_cast<uint16_t>(full_size < (1 << 16) ? full_size : 0); return reinterpret_cast<char_t*>(header + 1); } void deallocate_string(char_t* string) { // get header xml_memory_string_header* header = reinterpret_cast<xml_memory_string_header*>(string) - 1; // deallocate size_t page_offset = offsetof(xml_memory_page, data) + header->page_offset; xml_memory_page* page = reinterpret_cast<xml_memory_page*>(reinterpret_cast<char*>(header) - page_offset); // if full_size == 0 then this string occupies the whole page size_t full_size = header->full_size == 0 ? page->busy_size : header->full_size; deallocate_memory(header, full_size, page); } xml_memory_page* _root; size_t _busy_size; }; PUGIXML_NO_INLINE void* xml_allocator::allocate_memory_oob(size_t size, xml_memory_page*& out_page) { const size_t large_allocation_threshold = xml_memory_page_size / 4; xml_memory_page* page = allocate_page(size <= large_allocation_threshold ? xml_memory_page_size : size); if (!page) return 0; if (size <= large_allocation_threshold) { _root->busy_size = _busy_size; // insert page at the end of linked list page->prev = _root; _root->next = page; _root = page; _busy_size = size; } else { // insert page before the end of linked list, so that it is deleted as soon as possible // the last page is not deleted even if it's empty (see deallocate_memory) assert(_root->prev); page->prev = _root->prev; page->next = _root; _root->prev->next = page; _root->prev = page; } // allocate inside page page->busy_size = size; out_page = page; return page->data; } } namespace pugi { /// A 'name=value' XML attribute structure. struct xml_attribute_struct { /// Default ctor xml_attribute_struct(xml_memory_page* page): header(reinterpret_cast<uintptr_t>(page)), name(0), value(0), prev_attribute_c(0), next_attribute(0) { } uintptr_t header; char_t* name; ///< Pointer to attribute name. char_t* value; ///< Pointer to attribute value. xml_attribute_struct* prev_attribute_c; ///< Previous attribute (cyclic list) xml_attribute_struct* next_attribute; ///< Next attribute }; /// An XML document tree node. struct xml_node_struct { /// Default ctor /// \param type - node type xml_node_struct(xml_memory_page* page, xml_node_type type): header(reinterpret_cast<uintptr_t>(page) | (type - 1)), parent(0), name(0), value(0), first_child(0), prev_sibling_c(0), next_sibling(0), first_attribute(0) { } uintptr_t header; xml_node_struct* parent; ///< Pointer to parent char_t* name; ///< Pointer to element name. char_t* value; ///< Pointer to any associated string data. xml_node_struct* first_child; ///< First child xml_node_struct* prev_sibling_c; ///< Left brother (cyclic list) xml_node_struct* next_sibling; ///< Right brother xml_attribute_struct* first_attribute; ///< First attribute }; } namespace { struct xml_document_struct: public xml_node_struct, public xml_allocator { xml_document_struct(xml_memory_page* page): xml_node_struct(page, node_document), xml_allocator(page), buffer(0) { } const char_t* buffer; }; static inline xml_allocator& get_allocator(const xml_node_struct* node) { assert(node); return *reinterpret_cast<xml_memory_page*>(node->header & xml_memory_page_pointer_mask)->allocator; } } // Low-level DOM operations namespace { inline xml_attribute_struct* allocate_attribute(xml_allocator& alloc) { xml_memory_page* page; void* memory = alloc.allocate_memory(sizeof(xml_attribute_struct), page); return new (memory) xml_attribute_struct(page); } inline xml_node_struct* allocate_node(xml_allocator& alloc, xml_node_type type) { xml_memory_page* page; void* memory = alloc.allocate_memory(sizeof(xml_node_struct), page); return new (memory) xml_node_struct(page, type); } inline void destroy_attribute(xml_attribute_struct* a, xml_allocator& alloc) { uintptr_t header = a->header; if (header & xml_memory_page_name_allocated_mask) alloc.deallocate_string(a->name); if (header & xml_memory_page_value_allocated_mask) alloc.deallocate_string(a->value); alloc.deallocate_memory(a, sizeof(xml_attribute_struct), reinterpret_cast<xml_memory_page*>(header & xml_memory_page_pointer_mask)); } inline void destroy_node(xml_node_struct* n, xml_allocator& alloc) { uintptr_t header = n->header; if (header & xml_memory_page_name_allocated_mask) alloc.deallocate_string(n->name); if (header & xml_memory_page_value_allocated_mask) alloc.deallocate_string(n->value); for (xml_attribute_struct* attr = n->first_attribute; attr; ) { xml_attribute_struct* next = attr->next_attribute; destroy_attribute(attr, alloc); attr = next; } for (xml_node_struct* child = n->first_child; child; ) { xml_node_struct* next = child->next_sibling; destroy_node(child, alloc); child = next; } alloc.deallocate_memory(n, sizeof(xml_node_struct), reinterpret_cast<xml_memory_page*>(header & xml_memory_page_pointer_mask)); } PUGIXML_NO_INLINE xml_node_struct* append_node(xml_node_struct* node, xml_allocator& alloc, xml_node_type type = node_element) { xml_node_struct* child = allocate_node(alloc, type); if (!child) return 0; child->parent = node; xml_node_struct* first_child = node->first_child; if (first_child) { xml_node_struct* last_child = first_child->prev_sibling_c; last_child->next_sibling = child; child->prev_sibling_c = last_child; first_child->prev_sibling_c = child; } else { node->first_child = child; child->prev_sibling_c = child; } return child; } PUGIXML_NO_INLINE xml_attribute_struct* append_attribute_ll(xml_node_struct* node, xml_allocator& alloc) { xml_attribute_struct* a = allocate_attribute(alloc); if (!a) return 0; xml_attribute_struct* first_attribute = node->first_attribute; if (first_attribute) { xml_attribute_struct* last_attribute = first_attribute->prev_attribute_c; last_attribute->next_attribute = a; a->prev_attribute_c = last_attribute; first_attribute->prev_attribute_c = a; } else { node->first_attribute = a; a->prev_attribute_c = a; } return a; } } // Helper classes for code generation namespace { struct opt_false { enum { value = 0 }; }; struct opt_true { enum { value = 1 }; }; } // Unicode utilities namespace { inline uint16_t endian_swap(uint16_t value) { return static_cast<uint16_t>(((value & 0xff) << 8) | (value >> 8)); } inline uint32_t endian_swap(uint32_t value) { return ((value & 0xff) << 24) | ((value & 0xff00) << 8) | ((value & 0xff0000) >> 8) | (value >> 24); } struct utf8_counter { typedef size_t value_type; static value_type low(value_type result, uint32_t ch) { // U+0000..U+007F if (ch < 0x80) return result + 1; // U+0080..U+07FF else if (ch < 0x800) return result + 2; // U+0800..U+FFFF else return result + 3; } static value_type high(value_type result, uint32_t) { // U+10000..U+10FFFF return result + 4; } }; struct utf8_writer { typedef uint8_t* value_type; static value_type low(value_type result, uint32_t ch) { // U+0000..U+007F if (ch < 0x80) { *result = static_cast<uint8_t>(ch); return result + 1; } // U+0080..U+07FF else if (ch < 0x800) { result[0] = static_cast<uint8_t>(0xC0 | (ch >> 6)); result[1] = static_cast<uint8_t>(0x80 | (ch & 0x3F)); return result + 2; } // U+0800..U+FFFF else { result[0] = static_cast<uint8_t>(0xE0 | (ch >> 12)); result[1] = static_cast<uint8_t>(0x80 | ((ch >> 6) & 0x3F)); result[2] = static_cast<uint8_t>(0x80 | (ch & 0x3F)); return result + 3; } } static value_type high(value_type result, uint32_t ch) { // U+10000..U+10FFFF result[0] = static_cast<uint8_t>(0xF0 | (ch >> 18)); result[1] = static_cast<uint8_t>(0x80 | ((ch >> 12) & 0x3F)); result[2] = static_cast<uint8_t>(0x80 | ((ch >> 6) & 0x3F)); result[3] = static_cast<uint8_t>(0x80 | (ch & 0x3F)); return result + 4; } static value_type any(value_type result, uint32_t ch) { return (ch < 0x10000) ? low(result, ch) : high(result, ch); } }; struct utf16_counter { typedef size_t value_type; static value_type low(value_type result, uint32_t) { return result + 1; } static value_type high(value_type result, uint32_t) { return result + 2; } }; struct utf16_writer { typedef uint16_t* value_type; static value_type low(value_type result, uint32_t ch) { *result = static_cast<uint16_t>(ch); return result + 1; } static value_type high(value_type result, uint32_t ch) { uint32_t msh = (uint32_t)(ch - 0x10000) >> 10; uint32_t lsh = (uint32_t)(ch - 0x10000) & 0x3ff; result[0] = static_cast<uint16_t>(0xD800 + msh); result[1] = static_cast<uint16_t>(0xDC00 + lsh); return result + 2; } static value_type any(value_type result, uint32_t ch) { return (ch < 0x10000) ? low(result, ch) : high(result, ch); } }; struct utf32_counter { typedef size_t value_type; static value_type low(value_type result, uint32_t) { return result + 1; } static value_type high(value_type result, uint32_t) { return result + 1; } }; struct utf32_writer { typedef uint32_t* value_type; static value_type low(value_type result, uint32_t ch) { *result = ch; return result + 1; } static value_type high(value_type result, uint32_t ch) { *result = ch; return result + 1; } static value_type any(value_type result, uint32_t ch) { *result = ch; return result + 1; } }; template <size_t size> struct wchar_selector; template <> struct wchar_selector<2> { typedef uint16_t type; typedef utf16_counter counter; typedef utf16_writer writer; }; template <> struct wchar_selector<4> { typedef uint32_t type; typedef utf32_counter counter; typedef utf32_writer writer; }; typedef wchar_selector<sizeof(wchar_t)>::counter wchar_counter; typedef wchar_selector<sizeof(wchar_t)>::writer wchar_writer; template <typename Traits, typename opt_swap = opt_false> struct utf_decoder { static inline typename Traits::value_type decode_utf8_block(const uint8_t* data, size_t size, typename Traits::value_type result) { const uint8_t utf8_byte_mask = 0x3f; while (size) { uint8_t lead = *data; // 0xxxxxxx -> U+0000..U+007F if (lead < 0x80) { result = Traits::low(result, lead); data += 1; size -= 1; // process aligned single-byte (ascii) blocks if ((reinterpret_cast<uintptr_t>(data) & 3) == 0) { while (size >= 4 && (*reinterpret_cast<const uint32_t*>(data) & 0x80808080) == 0) { result = Traits::low(result, data[0]); result = Traits::low(result, data[1]); result = Traits::low(result, data[2]); result = Traits::low(result, data[3]); data += 4; size -= 4; } } } // 110xxxxx -> U+0080..U+07FF else if ((unsigned)(lead - 0xC0) < 0x20 && size >= 2 && (data[1] & 0xc0) == 0x80) { result = Traits::low(result, ((lead & ~0xC0) << 6) | (data[1] & utf8_byte_mask)); data += 2; size -= 2; } // 1110xxxx -> U+0800-U+FFFF else if ((unsigned)(lead - 0xE0) < 0x10 && size >= 3 && (data[1] & 0xc0) == 0x80 && (data[2] & 0xc0) == 0x80) { result = Traits::low(result, ((lead & ~0xE0) << 12) | ((data[1] & utf8_byte_mask) << 6) | (data[2] & utf8_byte_mask)); data += 3; size -= 3; } // 11110xxx -> U+10000..U+10FFFF else if ((unsigned)(lead - 0xF0) < 0x08 && size >= 4 && (data[1] & 0xc0) == 0x80 && (data[2] & 0xc0) == 0x80 && (data[3] & 0xc0) == 0x80) { result = Traits::high(result, ((lead & ~0xF0) << 18) | ((data[1] & utf8_byte_mask) << 12) | ((data[2] & utf8_byte_mask) << 6) | (data[3] & utf8_byte_mask)); data += 4; size -= 4; } // 10xxxxxx or 11111xxx -> invalid else { data += 1; size -= 1; } } return result; } static inline typename Traits::value_type decode_utf16_block(const uint16_t* data, size_t size, typename Traits::value_type result) { const uint16_t* end = data + size; while (data < end) { uint16_t lead = opt_swap::value ? endian_swap(*data) : *data; // U+0000..U+D7FF if (lead < 0xD800) { result = Traits::low(result, lead); data += 1; } // U+E000..U+FFFF else if ((unsigned)(lead - 0xE000) < 0x2000) { result = Traits::low(result, lead); data += 1; } // surrogate pair lead else if ((unsigned)(lead - 0xD800) < 0x400 && data + 1 < end) { uint16_t next = opt_swap::value ? endian_swap(data[1]) : data[1]; if ((unsigned)(next - 0xDC00) < 0x400) { result = Traits::high(result, 0x10000 + ((lead & 0x3ff) << 10) + (next & 0x3ff)); data += 2; } else { data += 1; } } else { data += 1; } } return result; } static inline typename Traits::value_type decode_utf32_block(const uint32_t* data, size_t size, typename Traits::value_type result) { const uint32_t* end = data + size; while (data < end) { uint32_t lead = opt_swap::value ? endian_swap(*data) : *data; // U+0000..U+FFFF if (lead < 0x10000) { result = Traits::low(result, lead); data += 1; } // U+10000..U+10FFFF else { result = Traits::high(result, lead); data += 1; } } return result; } }; template <typename T> inline void convert_utf_endian_swap(T* result, const T* data, size_t length) { for (size_t i = 0; i < length; ++i) result[i] = endian_swap(data[i]); } inline void convert_wchar_endian_swap(wchar_t* result, const wchar_t* data, size_t length) { for (size_t i = 0; i < length; ++i) result[i] = static_cast<wchar_t>(endian_swap(static_cast<wchar_selector<sizeof(wchar_t)>::type>(data[i]))); } } namespace { enum chartype_t { ct_parse_pcdata = 1, // \0, &, \r, < ct_parse_attr = 2, // \0, &, \r, ', " ct_parse_attr_ws = 4, // \0, &, \r, ', ", \n, tab ct_space = 8, // \r, \n, space, tab ct_parse_cdata = 16, // \0, ], >, \r ct_parse_comment = 32, // \0, -, >, \r ct_symbol = 64, // Any symbol > 127, a-z, A-Z, 0-9, _, :, -, . ct_start_symbol = 128 // Any symbol > 127, a-z, A-Z, _, : }; const unsigned char chartype_table[256] = { 55, 0, 0, 0, 0, 0, 0, 0, 0, 12, 12, 0, 0, 63, 0, 0, // 0-15 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 16-31 8, 0, 6, 0, 0, 0, 7, 6, 0, 0, 0, 0, 0, 96, 64, 0, // 32-47 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 192, 0, 1, 0, 48, 0, // 48-63 0, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, // 64-79 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 0, 0, 16, 0, 192, // 80-95 0, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, // 96-111 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 0, 0, 0, 0, 0, // 112-127 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, // 128+ 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192 }; enum chartypex_t { ctx_special_pcdata = 1, // Any symbol >= 0 and < 32 (except \t, \r, \n), &, <, > ctx_special_attr = 2, // Any symbol >= 0 and < 32 (except \t), &, <, >, " ctx_start_symbol = 4, // Any symbol > 127, a-z, A-Z, _ ctx_digit = 8, // 0-9 ctx_symbol = 16 // Any symbol > 127, a-z, A-Z, 0-9, _, -, . }; const unsigned char chartypex_table[256] = { 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 2, 3, 3, // 0-15 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // 16-31 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 16, 16, 0, // 32-47 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 0, 0, 3, 0, 3, 0, // 48-63 0, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, // 64-79 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 0, 0, 0, 0, 20, // 80-95 0, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, // 96-111 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 0, 0, 0, 0, 0, // 112-127 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, // 128+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20 }; #ifdef PUGIXML_WCHAR_MODE #define IS_CHARTYPE_IMPL(c, ct, table) ((static_cast<unsigned int>(c) < 128 ? table[static_cast<unsigned int>(c)] : table[128]) & (ct)) #else #define IS_CHARTYPE_IMPL(c, ct, table) (table[static_cast<unsigned char>(c)] & (ct)) #endif #define IS_CHARTYPE(c, ct) IS_CHARTYPE_IMPL(c, ct, chartype_table) #define IS_CHARTYPEX(c, ct) IS_CHARTYPE_IMPL(c, ct, chartypex_table) bool is_little_endian() { unsigned int ui = 1; return *reinterpret_cast<unsigned char*>(&ui) == 1; } xml_encoding get_wchar_encoding() { STATIC_ASSERT(sizeof(wchar_t) == 2 || sizeof(wchar_t) == 4); if (sizeof(wchar_t) == 2) return is_little_endian() ? encoding_utf16_le : encoding_utf16_be; else return is_little_endian() ? encoding_utf32_le : encoding_utf32_be; } xml_encoding guess_buffer_encoding(uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) { // look for BOM in first few bytes if (d0 == 0 && d1 == 0 && d2 == 0xfe && d3 == 0xff) return encoding_utf32_be; if (d0 == 0xff && d1 == 0xfe && d2 == 0 && d3 == 0) return encoding_utf32_le; if (d0 == 0xfe && d1 == 0xff) return encoding_utf16_be; if (d0 == 0xff && d1 == 0xfe) return encoding_utf16_le; if (d0 == 0xef && d1 == 0xbb && d2 == 0xbf) return encoding_utf8; // look for <, <? or <?xm in various encodings if (d0 == 0 && d1 == 0 && d2 == 0 && d3 == 0x3c) return encoding_utf32_be; if (d0 == 0x3c && d1 == 0 && d2 == 0 && d3 == 0) return encoding_utf32_le; if (d0 == 0 && d1 == 0x3c && d2 == 0 && d3 == 0x3f) return encoding_utf16_be; if (d0 == 0x3c && d1 == 0 && d2 == 0x3f && d3 == 0) return encoding_utf16_le; if (d0 == 0x3c && d1 == 0x3f && d2 == 0x78 && d3 == 0x6d) return encoding_utf8; // look for utf16 < followed by node name (this may fail, but is better than utf8 since it's zero terminated so early) if (d0 == 0 && d1 == 0x3c) return encoding_utf16_be; if (d0 == 0x3c && d1 == 0) return encoding_utf16_le; // no known BOM detected, assume utf8 return encoding_utf8; } xml_encoding get_buffer_encoding(xml_encoding encoding, const void* contents, size_t size) { // replace wchar encoding with utf implementation if (encoding == encoding_wchar) return get_wchar_encoding(); // replace utf16 encoding with utf16 with specific endianness if (encoding == encoding_utf16) return is_little_endian() ? encoding_utf16_le : encoding_utf16_be; // replace utf32 encoding with utf32 with specific endianness if (encoding == encoding_utf32) return is_little_endian() ? encoding_utf32_le : encoding_utf32_be; // only do autodetection if no explicit encoding is requested if (encoding != encoding_auto) return encoding; // skip encoding autodetection if input buffer is too small if (size < 4) return encoding_utf8; // try to guess encoding (based on XML specification, Appendix F.1) const uint8_t* data = static_cast<const uint8_t*>(contents); DMC_VOLATILE uint8_t d0 = data[0], d1 = data[1], d2 = data[2], d3 = data[3]; return guess_buffer_encoding(d0, d1, d2, d3); } bool get_mutable_buffer(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, bool is_mutable) { if (is_mutable) { out_buffer = static_cast<char_t*>(const_cast<void*>(contents)); } else { void* buffer = global_allocate(size > 0 ? size : 1); if (!buffer) return false; memcpy(buffer, contents, size); out_buffer = static_cast<char_t*>(buffer); } out_length = size / sizeof(char_t); return true; } #ifdef PUGIXML_WCHAR_MODE inline bool need_endian_swap_utf(xml_encoding le, xml_encoding re) { return (le == encoding_utf16_be && re == encoding_utf16_le) || (le == encoding_utf16_le && re == encoding_utf16_be) || (le == encoding_utf32_be && re == encoding_utf32_le) || (le == encoding_utf32_le && re == encoding_utf32_be); } bool convert_buffer_endian_swap(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, bool is_mutable) { const char_t* data = static_cast<const char_t*>(contents); if (is_mutable) { out_buffer = const_cast<char_t*>(data); } else { out_buffer = static_cast<char_t*>(global_allocate(size > 0 ? size : 1)); if (!out_buffer) return false; } out_length = size / sizeof(char_t); convert_wchar_endian_swap(out_buffer, data, out_length); return true; } bool convert_buffer_utf8(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size) { const uint8_t* data = static_cast<const uint8_t*>(contents); // first pass: get length in wchar_t units out_length = utf_decoder<wchar_counter>::decode_utf8_block(data, size, 0); // allocate buffer of suitable length out_buffer = static_cast<char_t*>(global_allocate((out_length > 0 ? out_length : 1) * sizeof(char_t))); if (!out_buffer) return false; // second pass: convert utf8 input to wchar_t wchar_writer::value_type out_begin = reinterpret_cast<wchar_writer::value_type>(out_buffer); wchar_writer::value_type out_end = utf_decoder<wchar_writer>::decode_utf8_block(data, size, out_begin); assert(out_end == out_begin + out_length); (void)!out_end; return true; } template <typename opt_swap> bool convert_buffer_utf16(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, opt_swap) { const uint16_t* data = static_cast<const uint16_t*>(contents); size_t length = size / sizeof(uint16_t); // first pass: get length in wchar_t units out_length = utf_decoder<wchar_counter, opt_swap>::decode_utf16_block(data, length, 0); // allocate buffer of suitable length out_buffer = static_cast<char_t*>(global_allocate((out_length > 0 ? out_length : 1) * sizeof(char_t))); if (!out_buffer) return false; // second pass: convert utf16 input to wchar_t wchar_writer::value_type out_begin = reinterpret_cast<wchar_writer::value_type>(out_buffer); wchar_writer::value_type out_end = utf_decoder<wchar_writer, opt_swap>::decode_utf16_block(data, length, out_begin); assert(out_end == out_begin + out_length); (void)!out_end; return true; } template <typename opt_swap> bool convert_buffer_utf32(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, opt_swap) { const uint32_t* data = static_cast<const uint32_t*>(contents); size_t length = size / sizeof(uint32_t); // first pass: get length in wchar_t units out_length = utf_decoder<wchar_counter, opt_swap>::decode_utf32_block(data, length, 0); // allocate buffer of suitable length out_buffer = static_cast<char_t*>(global_allocate((out_length > 0 ? out_length : 1) * sizeof(char_t))); if (!out_buffer) return false; // second pass: convert utf32 input to wchar_t wchar_writer::value_type out_begin = reinterpret_cast<wchar_writer::value_type>(out_buffer); wchar_writer::value_type out_end = utf_decoder<wchar_writer, opt_swap>::decode_utf32_block(data, length, out_begin); assert(out_end == out_begin + out_length); (void)!out_end; return true; } bool convert_buffer(char_t*& out_buffer, size_t& out_length, xml_encoding encoding, const void* contents, size_t size, bool is_mutable) { // get native encoding xml_encoding wchar_encoding = get_wchar_encoding(); // fast path: no conversion required if (encoding == wchar_encoding) return get_mutable_buffer(out_buffer, out_length, contents, size, is_mutable); // only endian-swapping is required if (need_endian_swap_utf(encoding, wchar_encoding)) return convert_buffer_endian_swap(out_buffer, out_length, contents, size, is_mutable); // source encoding is utf8 if (encoding == encoding_utf8) return convert_buffer_utf8(out_buffer, out_length, contents, size); // source encoding is utf16 if (encoding == encoding_utf16_be || encoding == encoding_utf16_le) { xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be; return (native_encoding == encoding) ? convert_buffer_utf16(out_buffer, out_length, contents, size, opt_false()) : convert_buffer_utf16(out_buffer, out_length, contents, size, opt_true()); } // source encoding is utf32 if (encoding == encoding_utf32_be || encoding == encoding_utf32_le) { xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be; return (native_encoding == encoding) ? convert_buffer_utf32(out_buffer, out_length, contents, size, opt_false()) : convert_buffer_utf32(out_buffer, out_length, contents, size, opt_true()); } assert(!"Invalid encoding"); return false; } #else template <typename opt_swap> bool convert_buffer_utf16(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, opt_swap) { const uint16_t* data = static_cast<const uint16_t*>(contents); size_t length = size / sizeof(uint16_t); // first pass: get length in utf8 units out_length = utf_decoder<utf8_counter, opt_swap>::decode_utf16_block(data, length, 0); // allocate buffer of suitable length out_buffer = static_cast<char_t*>(global_allocate((out_length > 0 ? out_length : 1) * sizeof(char_t))); if (!out_buffer) return false; // second pass: convert utf16 input to utf8 uint8_t* out_begin = reinterpret_cast<uint8_t*>(out_buffer); uint8_t* out_end = utf_decoder<utf8_writer, opt_swap>::decode_utf16_block(data, length, out_begin); assert(out_end == out_begin + out_length); (void)!out_end; return true; } template <typename opt_swap> bool convert_buffer_utf32(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, opt_swap) { const uint32_t* data = static_cast<const uint32_t*>(contents); size_t length = size / sizeof(uint32_t); // first pass: get length in utf8 units out_length = utf_decoder<utf8_counter, opt_swap>::decode_utf32_block(data, length, 0); // allocate buffer of suitable length out_buffer = static_cast<char_t*>(global_allocate((out_length > 0 ? out_length : 1) * sizeof(char_t))); if (!out_buffer) return false; // second pass: convert utf32 input to utf8 uint8_t* out_begin = reinterpret_cast<uint8_t*>(out_buffer); uint8_t* out_end = utf_decoder<utf8_writer, opt_swap>::decode_utf32_block(data, length, out_begin); assert(out_end == out_begin + out_length); (void)!out_end; return true; } bool convert_buffer(char_t*& out_buffer, size_t& out_length, xml_encoding encoding, const void* contents, size_t size, bool is_mutable) { // fast path: no conversion required if (encoding == encoding_utf8) return get_mutable_buffer(out_buffer, out_length, contents, size, is_mutable); // source encoding is utf16 if (encoding == encoding_utf16_be || encoding == encoding_utf16_le) { xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be; return (native_encoding == encoding) ? convert_buffer_utf16(out_buffer, out_length, contents, size, opt_false()) : convert_buffer_utf16(out_buffer, out_length, contents, size, opt_true()); } // source encoding is utf32 if (encoding == encoding_utf32_be || encoding == encoding_utf32_le) { xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be; return (native_encoding == encoding) ? convert_buffer_utf32(out_buffer, out_length, contents, size, opt_false()) : convert_buffer_utf32(out_buffer, out_length, contents, size, opt_true()); } assert(!"Invalid encoding"); return false; } #endif size_t as_utf8_begin(const wchar_t* str, size_t length) { STATIC_ASSERT(sizeof(wchar_t) == 2 || sizeof(wchar_t) == 4); // get length in utf8 characters return sizeof(wchar_t) == 2 ? utf_decoder<utf8_counter>::decode_utf16_block(reinterpret_cast<const uint16_t*>(str), length, 0) : utf_decoder<utf8_counter>::decode_utf32_block(reinterpret_cast<const uint32_t*>(str), length, 0); } void as_utf8_end(char* buffer, size_t size, const wchar_t* str, size_t length) { STATIC_ASSERT(sizeof(wchar_t) == 2 || sizeof(wchar_t) == 4); // convert to utf8 uint8_t* begin = reinterpret_cast<uint8_t*>(buffer); uint8_t* end = sizeof(wchar_t) == 2 ? utf_decoder<utf8_writer>::decode_utf16_block(reinterpret_cast<const uint16_t*>(str), length, begin) : utf_decoder<utf8_writer>::decode_utf32_block(reinterpret_cast<const uint32_t*>(str), length, begin); assert(begin + size == end); (void)!end; // zero-terminate buffer[size] = 0; } #ifndef PUGIXML_NO_STL std::string as_utf8_impl(const wchar_t* str, size_t length) { // first pass: get length in utf8 characters size_t size = as_utf8_begin(str, length); // allocate resulting string std::string result; result.resize(size); // second pass: convert to utf8 if (size > 0) as_utf8_end(&result[0], size, str, length); return result; } std::wstring as_wide_impl(const char* str, size_t size) { const uint8_t* data = reinterpret_cast<const uint8_t*>(str); // first pass: get length in wchar_t units size_t length = utf_decoder<wchar_counter>::decode_utf8_block(data, size, 0); // allocate resulting string std::wstring result; result.resize(length); // second pass: convert to wchar_t if (length > 0) { wchar_writer::value_type begin = reinterpret_cast<wchar_writer::value_type>(&result[0]); wchar_writer::value_type end = utf_decoder<wchar_writer>::decode_utf8_block(data, size, begin); assert(begin + length == end); (void)!end; } return result; } #endif inline bool strcpy_insitu_allow(size_t length, uintptr_t allocated, char_t* target) { assert(target); size_t target_length = strlength(target); // always reuse document buffer memory if possible if (!allocated) return target_length >= length; // reuse heap memory if waste is not too great const size_t reuse_threshold = 32; return target_length >= length && (target_length < reuse_threshold || target_length - length < target_length / 2); } bool strcpy_insitu(char_t*& dest, uintptr_t& header, uintptr_t header_mask, const char_t* source) { size_t source_length = strlength(source); if (source_length == 0) { // empty string and null pointer are equivalent, so just deallocate old memory xml_allocator* alloc = reinterpret_cast<xml_memory_page*>(header & xml_memory_page_pointer_mask)->allocator; if (header & header_mask) alloc->deallocate_string(dest); // mark the string as not allocated dest = 0; header &= ~header_mask; return true; } else if (dest && strcpy_insitu_allow(source_length, header & header_mask, dest)) { // we can reuse old buffer, so just copy the new data (including zero terminator) memcpy(dest, source, (source_length + 1) * sizeof(char_t)); return true; } else { xml_allocator* alloc = reinterpret_cast<xml_memory_page*>(header & xml_memory_page_pointer_mask)->allocator; // allocate new buffer char_t* buf = alloc->allocate_string(source_length + 1); if (!buf) return false; // copy the string (including zero terminator) memcpy(buf, source, (source_length + 1) * sizeof(char_t)); // deallocate old buffer (*after* the above to protect against overlapping memory and/or allocation failures) if (header & header_mask) alloc->deallocate_string(dest); // the string is now allocated, so set the flag dest = buf; header |= header_mask; return true; } } struct gap { char_t* end; size_t size; gap(): end(0), size(0) { } // Push new gap, move s count bytes further (skipping the gap). // Collapse previous gap. void push(char_t*& s, size_t count) { if (end) // there was a gap already; collapse it { // Move [old_gap_end, new_gap_start) to [old_gap_start, ...) assert(s >= end); memmove(end - size, end, reinterpret_cast<char*>(s) - reinterpret_cast<char*>(end)); } s += count; // end of current gap // "merge" two gaps end = s; size += count; } // Collapse all gaps, return past-the-end pointer char_t* flush(char_t* s) { if (end) { // Move [old_gap_end, current_pos) to [old_gap_start, ...) assert(s >= end); memmove(end - size, end, reinterpret_cast<char*>(s) - reinterpret_cast<char*>(end)); return s - size; } else return s; } }; char_t* strconv_escape(char_t* s, gap& g) { char_t* stre = s + 1; switch (*stre) { case '#': // &#... { unsigned int ucsc = 0; if (stre[1] == 'x') // &#x... (hex code) { stre += 2; char_t ch = *stre; if (ch == ';') return stre; for (;;) { if (static_cast<unsigned int>(ch - '0') <= 9) ucsc = 16 * ucsc + (ch - '0'); else if (static_cast<unsigned int>((ch | ' ') - 'a') <= 5) ucsc = 16 * ucsc + ((ch | ' ') - 'a' + 10); else if (ch == ';') break; else // cancel return stre; ch = *++stre; } ++stre; } else // &#... (dec code) { char_t ch = *++stre; if (ch == ';') return stre; for (;;) { if (static_cast<unsigned int>(ch - '0') <= 9) ucsc = 10 * ucsc + (ch - '0'); else if (ch == ';') break; else // cancel return stre; ch = *++stre; } ++stre; } #ifdef PUGIXML_WCHAR_MODE s = reinterpret_cast<char_t*>(wchar_writer::any(reinterpret_cast<wchar_writer::value_type>(s), ucsc)); #else s = reinterpret_cast<char_t*>(utf8_writer::any(reinterpret_cast<uint8_t*>(s), ucsc)); #endif g.push(s, stre - s); return stre; } case 'a': // &a { ++stre; if (*stre == 'm') // &am { if (*++stre == 'p' && *++stre == ';') // & { *s++ = '&'; ++stre; g.push(s, stre - s); return stre; } } else if (*stre == 'p') // &ap { if (*++stre == 'o' && *++stre == 's' && *++stre == ';') // ' { *s++ = '\''; ++stre; g.push(s, stre - s); return stre; } } break; } case 'g': // &g { if (*++stre == 't' && *++stre == ';') // > { *s++ = '>'; ++stre; g.push(s, stre - s); return stre; } break; } case 'l': // &l { if (*++stre == 't' && *++stre == ';') // < { *s++ = '<'; ++stre; g.push(s, stre - s); return stre; } break; } case 'q': // &q { if (*++stre == 'u' && *++stre == 'o' && *++stre == 't' && *++stre == ';') // " { *s++ = '"'; ++stre; g.push(s, stre - s); return stre; } break; } } return stre; } // Utility macro for last character handling #define ENDSWITH(c, e) ((c) == (e) || ((c) == 0 && endch == (e))) char_t* strconv_comment(char_t* s, char_t endch) { gap g; while (true) { while (!IS_CHARTYPE(*s, ct_parse_comment)) ++s; if (*s == '\r') // Either a single 0x0d or 0x0d 0x0a pair { *s++ = '\n'; // replace first one with 0x0a if (*s == '\n') g.push(s, 1); } else if (s[0] == '-' && s[1] == '-' && ENDSWITH(s[2], '>')) // comment ends here { *g.flush(s) = 0; return s + (s[2] == '>' ? 3 : 2); } else if (*s == 0) { return 0; } else ++s; } } char_t* strconv_cdata(char_t* s, char_t endch) { gap g; while (true) { while (!IS_CHARTYPE(*s, ct_parse_cdata)) ++s; if (*s == '\r') // Either a single 0x0d or 0x0d 0x0a pair { *s++ = '\n'; // replace first one with 0x0a if (*s == '\n') g.push(s, 1); } else if (s[0] == ']' && s[1] == ']' && ENDSWITH(s[2], '>')) // CDATA ends here { *g.flush(s) = 0; return s + 1; } else if (*s == 0) { return 0; } else ++s; } } typedef char_t* (*strconv_pcdata_t)(char_t*); template <typename opt_eol, typename opt_escape> struct strconv_pcdata_impl { static char_t* parse(char_t* s) { gap g; while (true) { while (!IS_CHARTYPE(*s, ct_parse_pcdata)) ++s; if (*s == '<') // PCDATA ends here { *g.flush(s) = 0; return s + 1; } else if (opt_eol::value && *s == '\r') // Either a single 0x0d or 0x0d 0x0a pair { *s++ = '\n'; // replace first one with 0x0a if (*s == '\n') g.push(s, 1); } else if (opt_escape::value && *s == '&') { s = strconv_escape(s, g); } else if (*s == 0) { return s; } else ++s; } } }; strconv_pcdata_t get_strconv_pcdata(unsigned int optmask) { STATIC_ASSERT(parse_escapes == 0x10 && parse_eol == 0x20); switch ((optmask >> 4) & 3) // get bitmask for flags (eol escapes) { case 0: return strconv_pcdata_impl<opt_false, opt_false>::parse; case 1: return strconv_pcdata_impl<opt_false, opt_true>::parse; case 2: return strconv_pcdata_impl<opt_true, opt_false>::parse; case 3: return strconv_pcdata_impl<opt_true, opt_true>::parse; default: return 0; // should not get here } } typedef char_t* (*strconv_attribute_t)(char_t*, char_t); template <typename opt_escape> struct strconv_attribute_impl { static char_t* parse_wnorm(char_t* s, char_t end_quote) { gap g; // trim leading whitespaces if (IS_CHARTYPE(*s, ct_space)) { char_t* str = s; do ++str; while (IS_CHARTYPE(*str, ct_space)); g.push(s, str - s); } while (true) { while (!IS_CHARTYPE(*s, ct_parse_attr_ws | ct_space)) ++s; if (*s == end_quote) { char_t* str = g.flush(s); do *str-- = 0; while (IS_CHARTYPE(*str, ct_space)); return s + 1; } else if (IS_CHARTYPE(*s, ct_space)) { *s++ = ' '; if (IS_CHARTYPE(*s, ct_space)) { char_t* str = s + 1; while (IS_CHARTYPE(*str, ct_space)) ++str; g.push(s, str - s); } } else if (opt_escape::value && *s == '&') { s = strconv_escape(s, g); } else if (!*s) { return 0; } else ++s; } } static char_t* parse_wconv(char_t* s, char_t end_quote) { gap g; while (true) { while (!IS_CHARTYPE(*s, ct_parse_attr_ws)) ++s; if (*s == end_quote) { *g.flush(s) = 0; return s + 1; } else if (IS_CHARTYPE(*s, ct_space)) { if (*s == '\r') { *s++ = ' '; if (*s == '\n') g.push(s, 1); } else *s++ = ' '; } else if (opt_escape::value && *s == '&') { s = strconv_escape(s, g); } else if (!*s) { return 0; } else ++s; } } static char_t* parse_eol(char_t* s, char_t end_quote) { gap g; while (true) { while (!IS_CHARTYPE(*s, ct_parse_attr)) ++s; if (*s == end_quote) { *g.flush(s) = 0; return s + 1; } else if (*s == '\r') { *s++ = '\n'; if (*s == '\n') g.push(s, 1); } else if (opt_escape::value && *s == '&') { s = strconv_escape(s, g); } else if (!*s) { return 0; } else ++s; } } static char_t* parse_simple(char_t* s, char_t end_quote) { gap g; while (true) { while (!IS_CHARTYPE(*s, ct_parse_attr)) ++s; if (*s == end_quote) { *g.flush(s) = 0; return s + 1; } else if (opt_escape::value && *s == '&') { s = strconv_escape(s, g); } else if (!*s) { return 0; } else ++s; } } }; strconv_attribute_t get_strconv_attribute(unsigned int optmask) { STATIC_ASSERT(parse_escapes == 0x10 && parse_eol == 0x20 && parse_wconv_attribute == 0x40 && parse_wnorm_attribute == 0x80); switch ((optmask >> 4) & 15) // get bitmask for flags (wconv wnorm eol escapes) { case 0: return strconv_attribute_impl<opt_false>::parse_simple; case 1: return strconv_attribute_impl<opt_true>::parse_simple; case 2: return strconv_attribute_impl<opt_false>::parse_eol; case 3: return strconv_attribute_impl<opt_true>::parse_eol; case 4: return strconv_attribute_impl<opt_false>::parse_wconv; case 5: return strconv_attribute_impl<opt_true>::parse_wconv; case 6: return strconv_attribute_impl<opt_false>::parse_wconv; case 7: return strconv_attribute_impl<opt_true>::parse_wconv; case 8: return strconv_attribute_impl<opt_false>::parse_wnorm; case 9: return strconv_attribute_impl<opt_true>::parse_wnorm; case 10: return strconv_attribute_impl<opt_false>::parse_wnorm; case 11: return strconv_attribute_impl<opt_true>::parse_wnorm; case 12: return strconv_attribute_impl<opt_false>::parse_wnorm; case 13: return strconv_attribute_impl<opt_true>::parse_wnorm; case 14: return strconv_attribute_impl<opt_false>::parse_wnorm; case 15: return strconv_attribute_impl<opt_true>::parse_wnorm; default: return 0; // should not get here } } inline xml_parse_result make_parse_result(xml_parse_status status, ptrdiff_t offset = 0) { xml_parse_result result; result.status = status; result.offset = offset; return result; } struct xml_parser { xml_allocator alloc; char_t* error_offset; jmp_buf error_handler; // Parser utilities. #define SKIPWS() { while (IS_CHARTYPE(*s, ct_space)) ++s; } #define OPTSET(OPT) ( optmsk & OPT ) #define PUSHNODE(TYPE) { cursor = append_node(cursor, alloc, TYPE); if (!cursor) THROW_ERROR(status_out_of_memory, s); } #define POPNODE() { cursor = cursor->parent; } #define SCANFOR(X) { while (*s != 0 && !(X)) ++s; } #define SCANWHILE(X) { while ((X)) ++s; } #define ENDSEG() { ch = *s; *s = 0; ++s; } #define THROW_ERROR(err, m) error_offset = m, longjmp(error_handler, err) #define CHECK_ERROR(err, m) { if (*s == 0) THROW_ERROR(err, m); } xml_parser(const xml_allocator& alloc): alloc(alloc), error_offset(0) { } // DOCTYPE consists of nested sections of the following possible types: // <!-- ... -->, <? ... ?>, "...", '...' // <![...]]> // <!...> // First group can not contain nested groups // Second group can contain nested groups of the same type // Third group can contain all other groups char_t* parse_doctype_primitive(char_t* s) { if (*s == '"' || *s == '\'') { // quoted string char_t ch = *s++; SCANFOR(*s == ch); if (!*s) THROW_ERROR(status_bad_doctype, s); s++; } else if (s[0] == '<' && s[1] == '?') { // <? ... ?> s += 2; SCANFOR(s[0] == '?' && s[1] == '>'); // no need for ENDSWITH because ?> can't terminate proper doctype if (!*s) THROW_ERROR(status_bad_doctype, s); s += 2; } else if (s[0] == '<' && s[1] == '!' && s[2] == '-' && s[3] == '-') { s += 4; SCANFOR(s[0] == '-' && s[1] == '-' && s[2] == '>'); // no need for ENDSWITH because --> can't terminate proper doctype if (!*s) THROW_ERROR(status_bad_doctype, s); s += 4; } else THROW_ERROR(status_bad_doctype, s); return s; } char_t* parse_doctype_ignore(char_t* s) { assert(s[0] == '<' && s[1] == '!' && s[2] == '['); s++; while (*s) { if (s[0] == '<' && s[1] == '!' && s[2] == '[') { // nested ignore section s = parse_doctype_ignore(s); } else if (s[0] == ']' && s[1] == ']' && s[2] == '>') { // ignore section end s += 3; return s; } else s++; } THROW_ERROR(status_bad_doctype, s); return s; } char_t* parse_doctype_group(char_t* s, char_t endch, bool toplevel) { assert(s[0] == '<' && s[1] == '!'); s++; while (*s) { if (s[0] == '<' && s[1] == '!' && s[2] != '-') { if (s[2] == '[') { // ignore s = parse_doctype_ignore(s); } else { // some control group s = parse_doctype_group(s, endch, false); } } else if (s[0] == '<' || s[0] == '"' || s[0] == '\'') { // unknown tag (forbidden), or some primitive group s = parse_doctype_primitive(s); } else if (*s == '>') { s++; return s; } else s++; } if (!toplevel || endch != '>') THROW_ERROR(status_bad_doctype, s); return s; } char_t* parse_exclamation(char_t* s, xml_node_struct* cursor, unsigned int optmsk, char_t endch) { // parse node contents, starting with exclamation mark ++s; if (*s == '-') // '<!-...' { ++s; if (*s == '-') // '<!--...' { ++s; if (OPTSET(parse_comments)) { PUSHNODE(node_comment); // Append a new node on the tree. cursor->value = s; // Save the offset. } if (OPTSET(parse_eol) && OPTSET(parse_comments)) { s = strconv_comment(s, endch); if (!s) THROW_ERROR(status_bad_comment, cursor->value); } else { // Scan for terminating '-->'. SCANFOR(s[0] == '-' && s[1] == '-' && ENDSWITH(s[2], '>')); CHECK_ERROR(status_bad_comment, s); if (OPTSET(parse_comments)) *s = 0; // Zero-terminate this segment at the first terminating '-'. s += (s[2] == '>' ? 3 : 2); // Step over the '\0->'. } } else THROW_ERROR(status_bad_comment, s); } else if (*s == '[') { // '<![CDATA[...' if (*++s=='C' && *++s=='D' && *++s=='A' && *++s=='T' && *++s=='A' && *++s == '[') { ++s; if (OPTSET(parse_cdata)) { PUSHNODE(node_cdata); // Append a new node on the tree. cursor->value = s; // Save the offset. if (OPTSET(parse_eol)) { s = strconv_cdata(s, endch); if (!s) THROW_ERROR(status_bad_cdata, cursor->value); } else { // Scan for terminating ']]>'. SCANFOR(s[0] == ']' && s[1] == ']' && ENDSWITH(s[2], '>')); CHECK_ERROR(status_bad_cdata, s); *s++ = 0; // Zero-terminate this segment. } } else // Flagged for discard, but we still have to scan for the terminator. { // Scan for terminating ']]>'. SCANFOR(s[0] == ']' && s[1] == ']' && ENDSWITH(s[2], '>')); CHECK_ERROR(status_bad_cdata, s); ++s; } s += (s[1] == '>' ? 2 : 1); // Step over the last ']>'. } else THROW_ERROR(status_bad_cdata, s); } else if (s[0] == 'D' && s[1] == 'O' && s[2] == 'C' && s[3] == 'T' && s[4] == 'Y' && s[5] == 'P' && ENDSWITH(s[6], 'E')) { s -= 2; if (cursor->parent) THROW_ERROR(status_bad_doctype, s); char_t* mark = s + 9; s = parse_doctype_group(s, endch, true); if (OPTSET(parse_doctype)) { while (IS_CHARTYPE(*mark, ct_space)) ++mark; PUSHNODE(node_doctype); cursor->value = mark; assert((s[0] == 0 && endch == '>') || s[-1] == '>'); s[*s == 0 ? 0 : -1] = 0; POPNODE(); } } else if (*s == 0 && endch == '-') THROW_ERROR(status_bad_comment, s); else if (*s == 0 && endch == '[') THROW_ERROR(status_bad_cdata, s); else THROW_ERROR(status_unrecognized_tag, s); return s; } char_t* parse_question(char_t* s, xml_node_struct*& ref_cursor, unsigned int optmsk, char_t endch) { // load into registers xml_node_struct* cursor = ref_cursor; char_t ch = 0; // parse node contents, starting with question mark ++s; // read PI target char_t* target = s; if (!IS_CHARTYPE(*s, ct_start_symbol)) THROW_ERROR(status_bad_pi, s); SCANWHILE(IS_CHARTYPE(*s, ct_symbol)); CHECK_ERROR(status_bad_pi, s); // determine node type; stricmp / strcasecmp is not portable bool declaration = (target[0] | ' ') == 'x' && (target[1] | ' ') == 'm' && (target[2] | ' ') == 'l' && target + 3 == s; if (declaration ? OPTSET(parse_declaration) : OPTSET(parse_pi)) { if (declaration) { // disallow non top-level declarations if (cursor->parent) THROW_ERROR(status_bad_pi, s); PUSHNODE(node_declaration); } else { PUSHNODE(node_pi); } cursor->name = target; ENDSEG(); // parse value/attributes if (ch == '?') { // empty node if (!ENDSWITH(*s, '>')) THROW_ERROR(status_bad_pi, s); s += (*s == '>'); POPNODE(); } else if (IS_CHARTYPE(ch, ct_space)) { SKIPWS(); // scan for tag end char_t* value = s; SCANFOR(s[0] == '?' && ENDSWITH(s[1], '>')); CHECK_ERROR(status_bad_pi, s); if (declaration) { // replace ending ? with / so that 'element' terminates properly *s = '/'; // we exit from this function with cursor at node_declaration, which is a signal to parse() to go to LOC_ATTRIBUTES s = value; } else { // store value and step over > cursor->value = value; POPNODE(); ENDSEG(); s += (*s == '>'); } } else THROW_ERROR(status_bad_pi, s); } else { // scan for tag end SCANFOR(s[0] == '?' && ENDSWITH(s[1], '>')); CHECK_ERROR(status_bad_pi, s); s += (s[1] == '>' ? 2 : 1); } // store from registers ref_cursor = cursor; return s; } void parse(char_t* s, xml_node_struct* xmldoc, unsigned int optmsk, char_t endch) { strconv_attribute_t strconv_attribute = get_strconv_attribute(optmsk); strconv_pcdata_t strconv_pcdata = get_strconv_pcdata(optmsk); char_t ch = 0; xml_node_struct* cursor = xmldoc; char_t* mark = s; while (*s != 0) { if (*s == '<') { ++s; LOC_TAG: if (IS_CHARTYPE(*s, ct_start_symbol)) // '<#...' { PUSHNODE(node_element); // Append a new node to the tree. cursor->name = s; SCANWHILE(IS_CHARTYPE(*s, ct_symbol)); // Scan for a terminator. ENDSEG(); // Save char in 'ch', terminate & step over. if (ch == '>') { // end of tag } else if (IS_CHARTYPE(ch, ct_space)) { LOC_ATTRIBUTES: while (true) { SKIPWS(); // Eat any whitespace. if (IS_CHARTYPE(*s, ct_start_symbol)) // <... #... { xml_attribute_struct* a = append_attribute_ll(cursor, alloc); // Make space for this attribute. if (!a) THROW_ERROR(status_out_of_memory, s); a->name = s; // Save the offset. SCANWHILE(IS_CHARTYPE(*s, ct_symbol)); // Scan for a terminator. CHECK_ERROR(status_bad_attribute, s); //$ redundant, left for performance ENDSEG(); // Save char in 'ch', terminate & step over. CHECK_ERROR(status_bad_attribute, s); //$ redundant, left for performance if (IS_CHARTYPE(ch, ct_space)) { SKIPWS(); // Eat any whitespace. CHECK_ERROR(status_bad_attribute, s); //$ redundant, left for performance ch = *s; ++s; } if (ch == '=') // '<... #=...' { SKIPWS(); // Eat any whitespace. if (*s == '"' || *s == '\'') // '<... #="...' { ch = *s; // Save quote char to avoid breaking on "''" -or- '""'. ++s; // Step over the quote. a->value = s; // Save the offset. s = strconv_attribute(s, ch); if (!s) THROW_ERROR(status_bad_attribute, a->value); // After this line the loop continues from the start; // Whitespaces, / and > are ok, symbols and EOF are wrong, // everything else will be detected if (IS_CHARTYPE(*s, ct_start_symbol)) THROW_ERROR(status_bad_attribute, s); } else THROW_ERROR(status_bad_attribute, s); } else THROW_ERROR(status_bad_attribute, s); } else if (*s == '/') { ++s; if (*s == '>') { POPNODE(); s++; break; } else if (*s == 0 && endch == '>') { POPNODE(); break; } else THROW_ERROR(status_bad_start_element, s); } else if (*s == '>') { ++s; break; } else if (*s == 0 && endch == '>') { break; } else THROW_ERROR(status_bad_start_element, s); } // !!! } else if (ch == '/') // '<#.../' { if (!ENDSWITH(*s, '>')) THROW_ERROR(status_bad_start_element, s); POPNODE(); // Pop. s += (*s == '>'); } else if (ch == 0) { // we stepped over null terminator, backtrack & handle closing tag --s; if (endch != '>') THROW_ERROR(status_bad_start_element, s); } else THROW_ERROR(status_bad_start_element, s); } else if (*s == '/') { ++s; char_t* name = cursor->name; if (!name) THROW_ERROR(status_end_element_mismatch, s); while (IS_CHARTYPE(*s, ct_symbol)) { if (*s++ != *name++) THROW_ERROR(status_end_element_mismatch, s); } if (*name) { if (*s == 0 && name[0] == endch && name[1] == 0) THROW_ERROR(status_bad_end_element, s); else THROW_ERROR(status_end_element_mismatch, s); } POPNODE(); // Pop. SKIPWS(); if (*s == 0) { if (endch != '>') THROW_ERROR(status_bad_end_element, s); } else { if (*s != '>') THROW_ERROR(status_bad_end_element, s); ++s; } } else if (*s == '?') // '<?...' { s = parse_question(s, cursor, optmsk, endch); assert(cursor); if ((cursor->header & xml_memory_page_type_mask) + 1 == node_declaration) goto LOC_ATTRIBUTES; } else if (*s == '!') // '<!...' { s = parse_exclamation(s, cursor, optmsk, endch); } else if (*s == 0 && endch == '?') THROW_ERROR(status_bad_pi, s); else THROW_ERROR(status_unrecognized_tag, s); } else { mark = s; // Save this offset while searching for a terminator. SKIPWS(); // Eat whitespace if no genuine PCDATA here. if ((!OPTSET(parse_ws_pcdata) || mark == s) && (*s == '<' || !*s)) { continue; } s = mark; if (cursor->parent) { PUSHNODE(node_pcdata); // Append a new node on the tree. cursor->value = s; // Save the offset. s = strconv_pcdata(s); POPNODE(); // Pop since this is a standalone. if (!*s) break; } else { SCANFOR(*s == '<'); // '...<' if (!*s) break; ++s; } // We're after '<' goto LOC_TAG; } } // check that last tag is closed if (cursor != xmldoc) THROW_ERROR(status_end_element_mismatch, s); } static xml_parse_result parse(char_t* buffer, size_t length, xml_node_struct* root, unsigned int optmsk) { xml_document_struct* xmldoc = static_cast<xml_document_struct*>(root); // store buffer for offset_debug xmldoc->buffer = buffer; // early-out for empty documents if (length == 0) return make_parse_result(status_ok); // create parser on stack xml_parser parser(*xmldoc); // save last character and make buffer zero-terminated (speeds up parsing) char_t endch = buffer[length - 1]; buffer[length - 1] = 0; // perform actual parsing int error = setjmp(parser.error_handler); if (error == 0) { parser.parse(buffer, xmldoc, optmsk, endch); } xml_parse_result result = make_parse_result(static_cast<xml_parse_status>(error), parser.error_offset ? parser.error_offset - buffer : 0); assert(result.offset >= 0 && static_cast<size_t>(result.offset) <= length); // update allocator state *static_cast<xml_allocator*>(xmldoc) = parser.alloc; // since we removed last character, we have to handle the only possible false positive if (result && endch == '<') { // there's no possible well-formed document with < at the end return make_parse_result(status_unrecognized_tag, length); } return result; } }; // Output facilities xml_encoding get_write_native_encoding() { #ifdef PUGIXML_WCHAR_MODE return get_wchar_encoding(); #else return encoding_utf8; #endif } xml_encoding get_write_encoding(xml_encoding encoding) { // replace wchar encoding with utf implementation if (encoding == encoding_wchar) return get_wchar_encoding(); // replace utf16 encoding with utf16 with specific endianness if (encoding == encoding_utf16) return is_little_endian() ? encoding_utf16_le : encoding_utf16_be; // replace utf32 encoding with utf32 with specific endianness if (encoding == encoding_utf32) return is_little_endian() ? encoding_utf32_le : encoding_utf32_be; // only do autodetection if no explicit encoding is requested if (encoding != encoding_auto) return encoding; // assume utf8 encoding return encoding_utf8; } #ifdef PUGIXML_WCHAR_MODE size_t get_valid_length(const char_t* data, size_t length) { assert(length > 0); // discard last character if it's the lead of a surrogate pair return (sizeof(wchar_t) == 2 && (unsigned)(static_cast<uint16_t>(data[length - 1]) - 0xD800) < 0x400) ? length - 1 : length; } size_t convert_buffer(char* result, const char_t* data, size_t length, xml_encoding encoding) { // only endian-swapping is required if (need_endian_swap_utf(encoding, get_wchar_encoding())) { convert_wchar_endian_swap(reinterpret_cast<char_t*>(result), data, length); return length * sizeof(char_t); } // convert to utf8 if (encoding == encoding_utf8) { uint8_t* dest = reinterpret_cast<uint8_t*>(result); uint8_t* end = sizeof(wchar_t) == 2 ? utf_decoder<utf8_writer>::decode_utf16_block(reinterpret_cast<const uint16_t*>(data), length, dest) : utf_decoder<utf8_writer>::decode_utf32_block(reinterpret_cast<const uint32_t*>(data), length, dest); return static_cast<size_t>(end - dest); } // convert to utf16 if (encoding == encoding_utf16_be || encoding == encoding_utf16_le) { uint16_t* dest = reinterpret_cast<uint16_t*>(result); // convert to native utf16 uint16_t* end = utf_decoder<utf16_writer>::decode_utf32_block(reinterpret_cast<const uint32_t*>(data), length, dest); // swap if necessary xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be; if (native_encoding != encoding) convert_utf_endian_swap(dest, dest, static_cast<size_t>(end - dest)); return static_cast<size_t>(end - dest) * sizeof(uint16_t); } // convert to utf32 if (encoding == encoding_utf32_be || encoding == encoding_utf32_le) { uint32_t* dest = reinterpret_cast<uint32_t*>(result); // convert to native utf32 uint32_t* end = utf_decoder<utf32_writer>::decode_utf16_block(reinterpret_cast<const uint16_t*>(data), length, dest); // swap if necessary xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be; if (native_encoding != encoding) convert_utf_endian_swap(dest, dest, static_cast<size_t>(end - dest)); return static_cast<size_t>(end - dest) * sizeof(uint32_t); } assert(!"Invalid encoding"); return 0; } #else size_t get_valid_length(const char_t* data, size_t length) { assert(length > 4); for (size_t i = 1; i <= 4; ++i) { uint8_t ch = static_cast<uint8_t>(data[length - i]); // either a standalone character or a leading one if ((ch & 0xc0) != 0x80) return length - i; } // there are four non-leading characters at the end, sequence tail is broken so might as well process the whole chunk return length; } size_t convert_buffer(char* result, const char_t* data, size_t length, xml_encoding encoding) { if (encoding == encoding_utf16_be || encoding == encoding_utf16_le) { uint16_t* dest = reinterpret_cast<uint16_t*>(result); // convert to native utf16 uint16_t* end = utf_decoder<utf16_writer>::decode_utf8_block(reinterpret_cast<const uint8_t*>(data), length, dest); // swap if necessary xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be; if (native_encoding != encoding) convert_utf_endian_swap(dest, dest, static_cast<size_t>(end - dest)); return static_cast<size_t>(end - dest) * sizeof(uint16_t); } if (encoding == encoding_utf32_be || encoding == encoding_utf32_le) { uint32_t* dest = reinterpret_cast<uint32_t*>(result); // convert to native utf32 uint32_t* end = utf_decoder<utf32_writer>::decode_utf8_block(reinterpret_cast<const uint8_t*>(data), length, dest); // swap if necessary xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be; if (native_encoding != encoding) convert_utf_endian_swap(dest, dest, static_cast<size_t>(end - dest)); return static_cast<size_t>(end - dest) * sizeof(uint32_t); } assert(!"Invalid encoding"); return 0; } #endif class xml_buffered_writer { xml_buffered_writer(const xml_buffered_writer&); xml_buffered_writer& operator=(const xml_buffered_writer&); public: xml_buffered_writer(xml_writer& writer, xml_encoding user_encoding): writer(writer), bufsize(0), encoding(get_write_encoding(user_encoding)) { } ~xml_buffered_writer() { flush(); } void flush() { flush(buffer, bufsize); bufsize = 0; } void flush(const char_t* data, size_t size) { if (size == 0) return; // fast path, just write data if (encoding == get_write_native_encoding()) writer.write(data, size * sizeof(char_t)); else { // convert chunk size_t result = convert_buffer(scratch, data, size, encoding); assert(result <= sizeof(scratch)); // write data writer.write(scratch, result); } } void write(const char_t* data, size_t length) { if (bufsize + length > bufcapacity) { // flush the remaining buffer contents flush(); // handle large chunks if (length > bufcapacity) { if (encoding == get_write_native_encoding()) { // fast path, can just write data chunk writer.write(data, length * sizeof(char_t)); return; } // need to convert in suitable chunks while (length > bufcapacity) { // get chunk size by selecting such number of characters that are guaranteed to fit into scratch buffer // and form a complete codepoint sequence (i.e. discard start of last codepoint if necessary) size_t chunk_size = get_valid_length(data, bufcapacity); // convert chunk and write flush(data, chunk_size); // iterate data += chunk_size; length -= chunk_size; } // small tail is copied below bufsize = 0; } } memcpy(buffer + bufsize, data, length * sizeof(char_t)); bufsize += length; } void write(const char_t* data) { write(data, strlength(data)); } void write(char_t d0) { if (bufsize + 1 > bufcapacity) flush(); buffer[bufsize + 0] = d0; bufsize += 1; } void write(char_t d0, char_t d1) { if (bufsize + 2 > bufcapacity) flush(); buffer[bufsize + 0] = d0; buffer[bufsize + 1] = d1; bufsize += 2; } void write(char_t d0, char_t d1, char_t d2) { if (bufsize + 3 > bufcapacity) flush(); buffer[bufsize + 0] = d0; buffer[bufsize + 1] = d1; buffer[bufsize + 2] = d2; bufsize += 3; } void write(char_t d0, char_t d1, char_t d2, char_t d3) { if (bufsize + 4 > bufcapacity) flush(); buffer[bufsize + 0] = d0; buffer[bufsize + 1] = d1; buffer[bufsize + 2] = d2; buffer[bufsize + 3] = d3; bufsize += 4; } void write(char_t d0, char_t d1, char_t d2, char_t d3, char_t d4) { if (bufsize + 5 > bufcapacity) flush(); buffer[bufsize + 0] = d0; buffer[bufsize + 1] = d1; buffer[bufsize + 2] = d2; buffer[bufsize + 3] = d3; buffer[bufsize + 4] = d4; bufsize += 5; } void write(char_t d0, char_t d1, char_t d2, char_t d3, char_t d4, char_t d5) { if (bufsize + 6 > bufcapacity) flush(); buffer[bufsize + 0] = d0; buffer[bufsize + 1] = d1; buffer[bufsize + 2] = d2; buffer[bufsize + 3] = d3; buffer[bufsize + 4] = d4; buffer[bufsize + 5] = d5; bufsize += 6; } // utf8 maximum expansion: x4 (-> utf32) // utf16 maximum expansion: x2 (-> utf32) // utf32 maximum expansion: x1 enum { bufcapacity = 2048 }; char_t buffer[bufcapacity]; char scratch[4 * bufcapacity]; xml_writer& writer; size_t bufsize; xml_encoding encoding; }; void write_bom(xml_writer& writer, xml_encoding encoding) { switch (encoding) { case encoding_utf8: writer.write("\xef\xbb\xbf", 3); break; case encoding_utf16_be: writer.write("\xfe\xff", 2); break; case encoding_utf16_le: writer.write("\xff\xfe", 2); break; case encoding_utf32_be: writer.write("\x00\x00\xfe\xff", 4); break; case encoding_utf32_le: writer.write("\xff\xfe\x00\x00", 4); break; default: assert(!"Invalid encoding"); } } void text_output_escaped(xml_buffered_writer& writer, const char_t* s, chartypex_t type) { while (*s) { const char_t* prev = s; // While *s is a usual symbol while (!IS_CHARTYPEX(*s, type)) ++s; writer.write(prev, static_cast<size_t>(s - prev)); switch (*s) { case 0: break; case '&': writer.write('&', 'a', 'm', 'p', ';'); ++s; break; case '<': writer.write('&', 'l', 't', ';'); ++s; break; case '>': writer.write('&', 'g', 't', ';'); ++s; break; case '"': writer.write('&', 'q', 'u', 'o', 't', ';'); ++s; break; default: // s is not a usual symbol { unsigned int ch = static_cast<unsigned int>(*s++); assert(ch < 32); writer.write('&', '#', static_cast<char_t>((ch / 10) + '0'), static_cast<char_t>((ch % 10) + '0'), ';'); } } } } void text_output_cdata(xml_buffered_writer& writer, const char_t* s) { do { writer.write('<', '!', '[', 'C', 'D'); writer.write('A', 'T', 'A', '['); const char_t* prev = s; // look for ]]> sequence - we can't output it as is since it terminates CDATA while (*s && !(s[0] == ']' && s[1] == ']' && s[2] == '>')) ++s; // skip ]] if we stopped at ]]>, > will go to the next CDATA section if (*s) s += 2; writer.write(prev, static_cast<size_t>(s - prev)); writer.write(']', ']', '>'); } while (*s); } void node_output_attributes(xml_buffered_writer& writer, const xml_node& node) { const char_t* default_name = PUGIXML_TEXT(":anonymous"); for (xml_attribute a = node.first_attribute(); a; a = a.next_attribute()) { writer.write(' '); writer.write(a.name()[0] ? a.name() : default_name); writer.write('=', '"'); text_output_escaped(writer, a.value(), ctx_special_attr); writer.write('"'); } } void node_output(xml_buffered_writer& writer, const xml_node& node, const char_t* indent, unsigned int flags, unsigned int depth) { const char_t* default_name = PUGIXML_TEXT(":anonymous"); if ((flags & format_indent) != 0 && (flags & format_raw) == 0) for (unsigned int i = 0; i < depth; ++i) writer.write(indent); switch (node.type()) { case node_document: { for (xml_node n = node.first_child(); n; n = n.next_sibling()) node_output(writer, n, indent, flags, depth); break; } case node_element: { const char_t* name = node.name()[0] ? node.name() : default_name; writer.write('<'); writer.write(name); node_output_attributes(writer, node); if (flags & format_raw) { if (!node.first_child()) writer.write(' ', '/', '>'); else { writer.write('>'); for (xml_node n = node.first_child(); n; n = n.next_sibling()) node_output(writer, n, indent, flags, depth + 1); writer.write('<', '/'); writer.write(name); writer.write('>'); } } else if (!node.first_child()) writer.write(' ', '/', '>', '\n'); else if (node.first_child() == node.last_child() && (node.first_child().type() == node_pcdata || node.first_child().type() == node_cdata)) { writer.write('>'); if (node.first_child().type() == node_pcdata) text_output_escaped(writer, node.first_child().value(), ctx_special_pcdata); else text_output_cdata(writer, node.first_child().value()); writer.write('<', '/'); writer.write(name); writer.write('>', '\n'); } else { writer.write('>', '\n'); for (xml_node n = node.first_child(); n; n = n.next_sibling()) node_output(writer, n, indent, flags, depth + 1); if ((flags & format_indent) != 0 && (flags & format_raw) == 0) for (unsigned int i = 0; i < depth; ++i) writer.write(indent); writer.write('<', '/'); writer.write(name); writer.write('>', '\n'); } break; } case node_pcdata: text_output_escaped(writer, node.value(), ctx_special_pcdata); if ((flags & format_raw) == 0) writer.write('\n'); break; case node_cdata: text_output_cdata(writer, node.value()); if ((flags & format_raw) == 0) writer.write('\n'); break; case node_comment: writer.write('<', '!', '-', '-'); writer.write(node.value()); writer.write('-', '-', '>'); if ((flags & format_raw) == 0) writer.write('\n'); break; case node_pi: case node_declaration: writer.write('<', '?'); writer.write(node.name()[0] ? node.name() : default_name); if (node.type() == node_declaration) { node_output_attributes(writer, node); } else if (node.value()[0]) { writer.write(' '); writer.write(node.value()); } writer.write('?', '>'); if ((flags & format_raw) == 0) writer.write('\n'); break; case node_doctype: writer.write('<', '!', 'D', 'O', 'C'); writer.write('T', 'Y', 'P', 'E'); if (node.value()[0]) { writer.write(' '); writer.write(node.value()); } writer.write('>'); if ((flags & format_raw) == 0) writer.write('\n'); break; default: assert(!"Invalid node type"); } } inline bool has_declaration(const xml_node& node) { for (xml_node child = node.first_child(); child; child = child.next_sibling()) { xml_node_type type = child.type(); if (type == node_declaration) return true; if (type == node_element) return false; } return false; } inline bool allow_insert_child(xml_node_type parent, xml_node_type child) { if (parent != node_document && parent != node_element) return false; if (child == node_document || child == node_null) return false; if (parent != node_document && (child == node_declaration || child == node_doctype)) return false; return true; } void recursive_copy_skip(xml_node& dest, const xml_node& source, const xml_node& skip) { assert(dest.type() == source.type()); switch (source.type()) { case node_element: { dest.set_name(source.name()); for (xml_attribute a = source.first_attribute(); a; a = a.next_attribute()) dest.append_attribute(a.name()).set_value(a.value()); for (xml_node c = source.first_child(); c; c = c.next_sibling()) { if (c == skip) continue; xml_node cc = dest.append_child(c.type()); assert(cc); recursive_copy_skip(cc, c, skip); } break; } case node_pcdata: case node_cdata: case node_comment: case node_doctype: dest.set_value(source.value()); break; case node_pi: dest.set_name(source.name()); dest.set_value(source.value()); break; case node_declaration: { dest.set_name(source.name()); for (xml_attribute a = source.first_attribute(); a; a = a.next_attribute()) dest.append_attribute(a.name()).set_value(a.value()); break; } default: assert(!"Invalid node type"); } } // we need to get length of entire file to load it in memory; the only (relatively) sane way to do it is via seek/tell trick xml_parse_status get_file_size(FILE* file, size_t& out_result) { #if defined(_MSC_VER) && _MSC_VER >= 1400 // there are 64-bit versions of fseek/ftell, let's use them typedef __int64 length_type; _fseeki64(file, 0, SEEK_END); length_type length = _ftelli64(file); _fseeki64(file, 0, SEEK_SET); #elif defined(__MINGW32__) && !defined(__NO_MINGW_LFS) && !defined(__STRICT_ANSI__) // there are 64-bit versions of fseek/ftell, let's use them typedef off64_t length_type; fseeko64(file, 0, SEEK_END); length_type length = ftello64(file); fseeko64(file, 0, SEEK_SET); #else // if this is a 32-bit OS, long is enough; if this is a unix system, long is 64-bit, which is enough; otherwise we can't do anything anyway. typedef long length_type; fseek(file, 0, SEEK_END); length_type length = ftell(file); fseek(file, 0, SEEK_SET); #endif // check for I/O errors if (length < 0) return status_io_error; // check for overflow size_t result = static_cast<size_t>(length); if (static_cast<length_type>(result) != length) return status_out_of_memory; // finalize out_result = result; return status_ok; } xml_parse_result load_file_impl(xml_document& doc, FILE* file, unsigned int options, xml_encoding encoding) { if (!file) return make_parse_result(status_file_not_found); // get file size (can result in I/O errors) size_t size = 0; xml_parse_status size_status = get_file_size(file, size); if (size_status != status_ok) { fclose(file); return make_parse_result(size_status); } // allocate buffer for the whole file char* contents = static_cast<char*>(global_allocate(size > 0 ? size : 1)); if (!contents) { fclose(file); return make_parse_result(status_out_of_memory); } // read file in memory size_t read_size = fread(contents, 1, size, file); fclose(file); if (read_size != size) { global_deallocate(contents); return make_parse_result(status_io_error); } return doc.load_buffer_inplace_own(contents, size, options, encoding); } #ifndef PUGIXML_NO_STL template <typename T> xml_parse_result load_stream_impl(xml_document& doc, std::basic_istream<T>& stream, unsigned int options, xml_encoding encoding) { // get length of remaining data in stream typename std::basic_istream<T>::pos_type pos = stream.tellg(); stream.seekg(0, std::ios::end); std::streamoff length = stream.tellg() - pos; stream.seekg(pos); if (stream.fail() || pos < 0) return make_parse_result(status_io_error); // guard against huge files size_t read_length = static_cast<size_t>(length); if (static_cast<std::streamsize>(read_length) != length || length < 0) return make_parse_result(status_out_of_memory); // read stream data into memory (guard against stream exceptions with buffer holder) buffer_holder buffer(global_allocate((read_length > 0 ? read_length : 1) * sizeof(T)), global_deallocate); if (!buffer.data) return make_parse_result(status_out_of_memory); stream.read(static_cast<T*>(buffer.data), static_cast<std::streamsize>(read_length)); // read may set failbit | eofbit in case gcount() is less than read_length (i.e. line ending conversion), so check for other I/O errors if (stream.bad()) return make_parse_result(status_io_error); // load data from buffer size_t actual_length = static_cast<size_t>(stream.gcount()); assert(actual_length <= read_length); return doc.load_buffer_inplace_own(buffer.release(), actual_length * sizeof(T), options, encoding); } #endif #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__MINGW32__) FILE* open_file_wide(const wchar_t* path, const wchar_t* mode) { return _wfopen(path, mode); } #else char* convert_path_heap(const wchar_t* str) { assert(str); // first pass: get length in utf8 characters size_t length = wcslen(str); size_t size = as_utf8_begin(str, length); // allocate resulting string char* result = static_cast<char*>(global_allocate(size + 1)); if (!result) return 0; // second pass: convert to utf8 as_utf8_end(result, size, str, length); return result; } FILE* open_file_wide(const wchar_t* path, const wchar_t* mode) { // there is no standard function to open wide paths, so our best bet is to try utf8 path char* path_utf8 = convert_path_heap(path); if (!path_utf8) return 0; // convert mode to ASCII (we mirror _wfopen interface) char mode_ascii[4] = {0}; for (size_t i = 0; mode[i]; ++i) mode_ascii[i] = static_cast<char>(mode[i]); // try to open the utf8 path FILE* result = fopen(path_utf8, mode_ascii); // free dummy buffer global_deallocate(path_utf8); return result; } #endif } namespace pugi { xml_writer_file::xml_writer_file(void* file): file(file) { } void xml_writer_file::write(const void* data, size_t size) { fwrite(data, size, 1, static_cast<FILE*>(file)); } #ifndef PUGIXML_NO_STL xml_writer_stream::xml_writer_stream(std::basic_ostream<char, std::char_traits<char> >& stream): narrow_stream(&stream), wide_stream(0) { } xml_writer_stream::xml_writer_stream(std::basic_ostream<wchar_t, std::char_traits<wchar_t> >& stream): narrow_stream(0), wide_stream(&stream) { } void xml_writer_stream::write(const void* data, size_t size) { if (narrow_stream) { assert(!wide_stream); narrow_stream->write(reinterpret_cast<const char*>(data), static_cast<std::streamsize>(size)); } else { assert(wide_stream); assert(size % sizeof(wchar_t) == 0); wide_stream->write(reinterpret_cast<const wchar_t*>(data), static_cast<std::streamsize>(size / sizeof(wchar_t))); } } #endif xml_tree_walker::xml_tree_walker(): _depth(0) { } xml_tree_walker::~xml_tree_walker() { } int xml_tree_walker::depth() const { return _depth; } bool xml_tree_walker::begin(xml_node&) { return true; } bool xml_tree_walker::end(xml_node&) { return true; } xml_attribute::xml_attribute(): _attr(0) { } xml_attribute::xml_attribute(xml_attribute_struct* attr): _attr(attr) { } xml_attribute::operator xml_attribute::unspecified_bool_type() const { return _attr ? &xml_attribute::_attr : 0; } bool xml_attribute::operator!() const { return !_attr; } bool xml_attribute::operator==(const xml_attribute& r) const { return (_attr == r._attr); } bool xml_attribute::operator!=(const xml_attribute& r) const { return (_attr != r._attr); } bool xml_attribute::operator<(const xml_attribute& r) const { return (_attr < r._attr); } bool xml_attribute::operator>(const xml_attribute& r) const { return (_attr > r._attr); } bool xml_attribute::operator<=(const xml_attribute& r) const { return (_attr <= r._attr); } bool xml_attribute::operator>=(const xml_attribute& r) const { return (_attr >= r._attr); } xml_attribute xml_attribute::next_attribute() const { return _attr ? xml_attribute(_attr->next_attribute) : xml_attribute(); } xml_attribute xml_attribute::previous_attribute() const { return _attr && _attr->prev_attribute_c->next_attribute ? xml_attribute(_attr->prev_attribute_c) : xml_attribute(); } int xml_attribute::as_int() const { if (!_attr || !_attr->value) return 0; #ifdef PUGIXML_WCHAR_MODE return (int)wcstol(_attr->value, 0, 10); #else return (int)strtol(_attr->value, 0, 10); #endif } unsigned int xml_attribute::as_uint() const { if (!_attr || !_attr->value) return 0; #ifdef PUGIXML_WCHAR_MODE return (unsigned int)wcstoul(_attr->value, 0, 10); #else return (unsigned int)strtoul(_attr->value, 0, 10); #endif } double xml_attribute::as_double() const { if (!_attr || !_attr->value) return 0; #ifdef PUGIXML_WCHAR_MODE return wcstod(_attr->value, 0); #else return strtod(_attr->value, 0); #endif } float xml_attribute::as_float() const { if (!_attr || !_attr->value) return 0; #ifdef PUGIXML_WCHAR_MODE return (float)wcstod(_attr->value, 0); #else return (float)strtod(_attr->value, 0); #endif } bool xml_attribute::as_bool() const { if (!_attr || !_attr->value) return false; // only look at first char char_t first = *_attr->value; // 1*, t* (true), T* (True), y* (yes), Y* (YES) return (first == '1' || first == 't' || first == 'T' || first == 'y' || first == 'Y'); } bool xml_attribute::empty() const { return !_attr; } const char_t* xml_attribute::name() const { return (_attr && _attr->name) ? _attr->name : PUGIXML_TEXT(""); } const char_t* xml_attribute::value() const { return (_attr && _attr->value) ? _attr->value : PUGIXML_TEXT(""); } size_t xml_attribute::hash_value() const { return static_cast<size_t>(reinterpret_cast<uintptr_t>(_attr) / sizeof(xml_attribute_struct)); } xml_attribute_struct* xml_attribute::internal_object() const { return _attr; } xml_attribute& xml_attribute::operator=(const char_t* rhs) { set_value(rhs); return *this; } xml_attribute& xml_attribute::operator=(int rhs) { set_value(rhs); return *this; } xml_attribute& xml_attribute::operator=(unsigned int rhs) { set_value(rhs); return *this; } xml_attribute& xml_attribute::operator=(double rhs) { set_value(rhs); return *this; } xml_attribute& xml_attribute::operator=(bool rhs) { set_value(rhs); return *this; } bool xml_attribute::set_name(const char_t* rhs) { if (!_attr) return false; return strcpy_insitu(_attr->name, _attr->header, xml_memory_page_name_allocated_mask, rhs); } bool xml_attribute::set_value(const char_t* rhs) { if (!_attr) return false; return strcpy_insitu(_attr->value, _attr->header, xml_memory_page_value_allocated_mask, rhs); } bool xml_attribute::set_value(int rhs) { char buf[128]; sprintf(buf, "%d", rhs); #ifdef PUGIXML_WCHAR_MODE char_t wbuf[128]; widen_ascii(wbuf, buf); return set_value(wbuf); #else return set_value(buf); #endif } bool xml_attribute::set_value(unsigned int rhs) { char buf[128]; sprintf(buf, "%u", rhs); #ifdef PUGIXML_WCHAR_MODE char_t wbuf[128]; widen_ascii(wbuf, buf); return set_value(wbuf); #else return set_value(buf); #endif } bool xml_attribute::set_value(double rhs) { char buf[128]; sprintf(buf, "%g", rhs); #ifdef PUGIXML_WCHAR_MODE char_t wbuf[128]; widen_ascii(wbuf, buf); return set_value(wbuf); #else return set_value(buf); #endif } bool xml_attribute::set_value(bool rhs) { return set_value(rhs ? PUGIXML_TEXT("true") : PUGIXML_TEXT("false")); } #ifdef __BORLANDC__ bool operator&&(const xml_attribute& lhs, bool rhs) { return (bool)lhs && rhs; } bool operator||(const xml_attribute& lhs, bool rhs) { return (bool)lhs || rhs; } #endif xml_node::xml_node(): _root(0) { } xml_node::xml_node(xml_node_struct* p): _root(p) { } xml_node::operator xml_node::unspecified_bool_type() const { return _root ? &xml_node::_root : 0; } bool xml_node::operator!() const { return !_root; } xml_node::iterator xml_node::begin() const { return iterator(_root ? _root->first_child : 0, _root); } xml_node::iterator xml_node::end() const { return iterator(0, _root); } xml_node::attribute_iterator xml_node::attributes_begin() const { return attribute_iterator(_root ? _root->first_attribute : 0, _root); } xml_node::attribute_iterator xml_node::attributes_end() const { return attribute_iterator(0, _root); } bool xml_node::operator==(const xml_node& r) const { return (_root == r._root); } bool xml_node::operator!=(const xml_node& r) const { return (_root != r._root); } bool xml_node::operator<(const xml_node& r) const { return (_root < r._root); } bool xml_node::operator>(const xml_node& r) const { return (_root > r._root); } bool xml_node::operator<=(const xml_node& r) const { return (_root <= r._root); } bool xml_node::operator>=(const xml_node& r) const { return (_root >= r._root); } bool xml_node::empty() const { return !_root; } const char_t* xml_node::name() const { return (_root && _root->name) ? _root->name : PUGIXML_TEXT(""); } xml_node_type xml_node::type() const { return _root ? static_cast<xml_node_type>((_root->header & xml_memory_page_type_mask) + 1) : node_null; } const char_t* xml_node::value() const { return (_root && _root->value) ? _root->value : PUGIXML_TEXT(""); } xml_node xml_node::child(const char_t* name) const { if (!_root) return xml_node(); for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling) if (i->name && strequal(name, i->name)) return xml_node(i); return xml_node(); } xml_attribute xml_node::attribute(const char_t* name) const { if (!_root) return xml_attribute(); for (xml_attribute_struct* i = _root->first_attribute; i; i = i->next_attribute) if (i->name && strequal(name, i->name)) return xml_attribute(i); return xml_attribute(); } xml_node xml_node::next_sibling(const char_t* name) const { if (!_root) return xml_node(); for (xml_node_struct* i = _root->next_sibling; i; i = i->next_sibling) if (i->name && strequal(name, i->name)) return xml_node(i); return xml_node(); } xml_node xml_node::next_sibling() const { if (!_root) return xml_node(); if (_root->next_sibling) return xml_node(_root->next_sibling); else return xml_node(); } xml_node xml_node::previous_sibling(const char_t* name) const { if (!_root) return xml_node(); for (xml_node_struct* i = _root->prev_sibling_c; i->next_sibling; i = i->prev_sibling_c) if (i->name && strequal(name, i->name)) return xml_node(i); return xml_node(); } xml_node xml_node::previous_sibling() const { if (!_root) return xml_node(); if (_root->prev_sibling_c->next_sibling) return xml_node(_root->prev_sibling_c); else return xml_node(); } xml_node xml_node::parent() const { return _root ? xml_node(_root->parent) : xml_node(); } xml_node xml_node::root() const { if (!_root) return xml_node(); xml_memory_page* page = reinterpret_cast<xml_memory_page*>(_root->header & xml_memory_page_pointer_mask); return xml_node(static_cast<xml_document_struct*>(page->allocator)); } const char_t* xml_node::child_value() const { if (!_root) return PUGIXML_TEXT(""); for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling) { xml_node_type type = static_cast<xml_node_type>((i->header & xml_memory_page_type_mask) + 1); if (i->value && (type == node_pcdata || type == node_cdata)) return i->value; } return PUGIXML_TEXT(""); } const char_t* xml_node::child_value(const char_t* name) const { return child(name).child_value(); } xml_attribute xml_node::first_attribute() const { return _root ? xml_attribute(_root->first_attribute) : xml_attribute(); } xml_attribute xml_node::last_attribute() const { return _root && _root->first_attribute ? xml_attribute(_root->first_attribute->prev_attribute_c) : xml_attribute(); } xml_node xml_node::first_child() const { return _root ? xml_node(_root->first_child) : xml_node(); } xml_node xml_node::last_child() const { return _root && _root->first_child ? xml_node(_root->first_child->prev_sibling_c) : xml_node(); } bool xml_node::set_name(const char_t* rhs) { switch (type()) { case node_pi: case node_declaration: case node_element: return strcpy_insitu(_root->name, _root->header, xml_memory_page_name_allocated_mask, rhs); default: return false; } } bool xml_node::set_value(const char_t* rhs) { switch (type()) { case node_pi: case node_cdata: case node_pcdata: case node_comment: case node_doctype: return strcpy_insitu(_root->value, _root->header, xml_memory_page_value_allocated_mask, rhs); default: return false; } } xml_attribute xml_node::append_attribute(const char_t* name) { if (type() != node_element && type() != node_declaration) return xml_attribute(); xml_attribute a(append_attribute_ll(_root, get_allocator(_root))); a.set_name(name); return a; } xml_attribute xml_node::prepend_attribute(const char_t* name) { if (type() != node_element && type() != node_declaration) return xml_attribute(); xml_attribute a(allocate_attribute(get_allocator(_root))); if (!a) return xml_attribute(); a.set_name(name); xml_attribute_struct* head = _root->first_attribute; if (head) { a._attr->prev_attribute_c = head->prev_attribute_c; head->prev_attribute_c = a._attr; } else a._attr->prev_attribute_c = a._attr; a._attr->next_attribute = head; _root->first_attribute = a._attr; return a; } xml_attribute xml_node::insert_attribute_before(const char_t* name, const xml_attribute& attr) { if ((type() != node_element && type() != node_declaration) || attr.empty()) return xml_attribute(); // check that attribute belongs to *this xml_attribute_struct* cur = attr._attr; while (cur->prev_attribute_c->next_attribute) cur = cur->prev_attribute_c; if (cur != _root->first_attribute) return xml_attribute(); xml_attribute a(allocate_attribute(get_allocator(_root))); if (!a) return xml_attribute(); a.set_name(name); if (attr._attr->prev_attribute_c->next_attribute) attr._attr->prev_attribute_c->next_attribute = a._attr; else _root->first_attribute = a._attr; a._attr->prev_attribute_c = attr._attr->prev_attribute_c; a._attr->next_attribute = attr._attr; attr._attr->prev_attribute_c = a._attr; return a; } xml_attribute xml_node::insert_attribute_after(const char_t* name, const xml_attribute& attr) { if ((type() != node_element && type() != node_declaration) || attr.empty()) return xml_attribute(); // check that attribute belongs to *this xml_attribute_struct* cur = attr._attr; while (cur->prev_attribute_c->next_attribute) cur = cur->prev_attribute_c; if (cur != _root->first_attribute) return xml_attribute(); xml_attribute a(allocate_attribute(get_allocator(_root))); if (!a) return xml_attribute(); a.set_name(name); if (attr._attr->next_attribute) attr._attr->next_attribute->prev_attribute_c = a._attr; else _root->first_attribute->prev_attribute_c = a._attr; a._attr->next_attribute = attr._attr->next_attribute; a._attr->prev_attribute_c = attr._attr; attr._attr->next_attribute = a._attr; return a; } xml_attribute xml_node::append_copy(const xml_attribute& proto) { if (!proto) return xml_attribute(); xml_attribute result = append_attribute(proto.name()); result.set_value(proto.value()); return result; } xml_attribute xml_node::prepend_copy(const xml_attribute& proto) { if (!proto) return xml_attribute(); xml_attribute result = prepend_attribute(proto.name()); result.set_value(proto.value()); return result; } xml_attribute xml_node::insert_copy_after(const xml_attribute& proto, const xml_attribute& attr) { if (!proto) return xml_attribute(); xml_attribute result = insert_attribute_after(proto.name(), attr); result.set_value(proto.value()); return result; } xml_attribute xml_node::insert_copy_before(const xml_attribute& proto, const xml_attribute& attr) { if (!proto) return xml_attribute(); xml_attribute result = insert_attribute_before(proto.name(), attr); result.set_value(proto.value()); return result; } xml_node xml_node::append_child(xml_node_type type) { if (!allow_insert_child(this->type(), type)) return xml_node(); xml_node n(append_node(_root, get_allocator(_root), type)); if (type == node_declaration) n.set_name(PUGIXML_TEXT("xml")); return n; } xml_node xml_node::prepend_child(xml_node_type type) { if (!allow_insert_child(this->type(), type)) return xml_node(); xml_node n(allocate_node(get_allocator(_root), type)); if (!n) return xml_node(); n._root->parent = _root; xml_node_struct* head = _root->first_child; if (head) { n._root->prev_sibling_c = head->prev_sibling_c; head->prev_sibling_c = n._root; } else n._root->prev_sibling_c = n._root; n._root->next_sibling = head; _root->first_child = n._root; if (type == node_declaration) n.set_name(PUGIXML_TEXT("xml")); return n; } xml_node xml_node::insert_child_before(xml_node_type type, const xml_node& node) { if (!allow_insert_child(this->type(), type)) return xml_node(); if (!node._root || node._root->parent != _root) return xml_node(); xml_node n(allocate_node(get_allocator(_root), type)); if (!n) return xml_node(); n._root->parent = _root; if (node._root->prev_sibling_c->next_sibling) node._root->prev_sibling_c->next_sibling = n._root; else _root->first_child = n._root; n._root->prev_sibling_c = node._root->prev_sibling_c; n._root->next_sibling = node._root; node._root->prev_sibling_c = n._root; if (type == node_declaration) n.set_name(PUGIXML_TEXT("xml")); return n; } xml_node xml_node::insert_child_after(xml_node_type type, const xml_node& node) { if (!allow_insert_child(this->type(), type)) return xml_node(); if (!node._root || node._root->parent != _root) return xml_node(); xml_node n(allocate_node(get_allocator(_root), type)); if (!n) return xml_node(); n._root->parent = _root; if (node._root->next_sibling) node._root->next_sibling->prev_sibling_c = n._root; else _root->first_child->prev_sibling_c = n._root; n._root->next_sibling = node._root->next_sibling; n._root->prev_sibling_c = node._root; node._root->next_sibling = n._root; if (type == node_declaration) n.set_name(PUGIXML_TEXT("xml")); return n; } xml_node xml_node::append_child(const char_t* name) { xml_node result = append_child(node_element); result.set_name(name); return result; } xml_node xml_node::prepend_child(const char_t* name) { xml_node result = prepend_child(node_element); result.set_name(name); return result; } xml_node xml_node::insert_child_after(const char_t* name, const xml_node& node) { xml_node result = insert_child_after(node_element, node); result.set_name(name); return result; } xml_node xml_node::insert_child_before(const char_t* name, const xml_node& node) { xml_node result = insert_child_before(node_element, node); result.set_name(name); return result; } xml_node xml_node::append_copy(const xml_node& proto) { xml_node result = append_child(proto.type()); if (result) recursive_copy_skip(result, proto, result); return result; } xml_node xml_node::prepend_copy(const xml_node& proto) { xml_node result = prepend_child(proto.type()); if (result) recursive_copy_skip(result, proto, result); return result; } xml_node xml_node::insert_copy_after(const xml_node& proto, const xml_node& node) { xml_node result = insert_child_after(proto.type(), node); if (result) recursive_copy_skip(result, proto, result); return result; } xml_node xml_node::insert_copy_before(const xml_node& proto, const xml_node& node) { xml_node result = insert_child_before(proto.type(), node); if (result) recursive_copy_skip(result, proto, result); return result; } bool xml_node::remove_attribute(const char_t* name) { return remove_attribute(attribute(name)); } bool xml_node::remove_attribute(const xml_attribute& a) { if (!_root || !a._attr) return false; // check that attribute belongs to *this xml_attribute_struct* attr = a._attr; while (attr->prev_attribute_c->next_attribute) attr = attr->prev_attribute_c; if (attr != _root->first_attribute) return false; if (a._attr->next_attribute) a._attr->next_attribute->prev_attribute_c = a._attr->prev_attribute_c; else if (_root->first_attribute) _root->first_attribute->prev_attribute_c = a._attr->prev_attribute_c; if (a._attr->prev_attribute_c->next_attribute) a._attr->prev_attribute_c->next_attribute = a._attr->next_attribute; else _root->first_attribute = a._attr->next_attribute; destroy_attribute(a._attr, get_allocator(_root)); return true; } bool xml_node::remove_child(const char_t* name) { return remove_child(child(name)); } bool xml_node::remove_child(const xml_node& n) { if (!_root || !n._root || n._root->parent != _root) return false; if (n._root->next_sibling) n._root->next_sibling->prev_sibling_c = n._root->prev_sibling_c; else if (_root->first_child) _root->first_child->prev_sibling_c = n._root->prev_sibling_c; if (n._root->prev_sibling_c->next_sibling) n._root->prev_sibling_c->next_sibling = n._root->next_sibling; else _root->first_child = n._root->next_sibling; destroy_node(n._root, get_allocator(_root)); return true; } xml_node xml_node::find_child_by_attribute(const char_t* name, const char_t* attr_name, const char_t* attr_value) const { if (!_root) return xml_node(); for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling) if (i->name && strequal(name, i->name)) { for (xml_attribute_struct* a = i->first_attribute; a; a = a->next_attribute) if (strequal(attr_name, a->name) && strequal(attr_value, a->value)) return xml_node(i); } return xml_node(); } xml_node xml_node::find_child_by_attribute(const char_t* attr_name, const char_t* attr_value) const { if (!_root) return xml_node(); for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling) for (xml_attribute_struct* a = i->first_attribute; a; a = a->next_attribute) if (strequal(attr_name, a->name) && strequal(attr_value, a->value)) return xml_node(i); return xml_node(); } #ifndef PUGIXML_NO_STL string_t xml_node::path(char_t delimiter) const { string_t path; xml_node cursor = *this; // Make a copy. path = cursor.name(); while (cursor.parent()) { cursor = cursor.parent(); string_t temp = cursor.name(); temp += delimiter; temp += path; path.swap(temp); } return path; } #endif xml_node xml_node::first_element_by_path(const char_t* path, char_t delimiter) const { xml_node found = *this; // Current search context. if (!_root || !path || !path[0]) return found; if (path[0] == delimiter) { // Absolute path; e.g. '/foo/bar' found = found.root(); ++path; } const char_t* path_segment = path; while (*path_segment == delimiter) ++path_segment; const char_t* path_segment_end = path_segment; while (*path_segment_end && *path_segment_end != delimiter) ++path_segment_end; if (path_segment == path_segment_end) return found; const char_t* next_segment = path_segment_end; while (*next_segment == delimiter) ++next_segment; if (*path_segment == '.' && path_segment + 1 == path_segment_end) return found.first_element_by_path(next_segment, delimiter); else if (*path_segment == '.' && *(path_segment+1) == '.' && path_segment + 2 == path_segment_end) return found.parent().first_element_by_path(next_segment, delimiter); else { for (xml_node_struct* j = found._root->first_child; j; j = j->next_sibling) { if (j->name && strequalrange(j->name, path_segment, static_cast<size_t>(path_segment_end - path_segment))) { xml_node subsearch = xml_node(j).first_element_by_path(next_segment, delimiter); if (subsearch) return subsearch; } } return xml_node(); } } bool xml_node::traverse(xml_tree_walker& walker) { walker._depth = -1; xml_node arg_begin = *this; if (!walker.begin(arg_begin)) return false; xml_node cur = first_child(); if (cur) { ++walker._depth; do { xml_node arg_for_each = cur; if (!walker.for_each(arg_for_each)) return false; if (cur.first_child()) { ++walker._depth; cur = cur.first_child(); } else if (cur.next_sibling()) cur = cur.next_sibling(); else { // Borland C++ workaround while (!cur.next_sibling() && cur != *this && (bool)cur.parent()) { --walker._depth; cur = cur.parent(); } if (cur != *this) cur = cur.next_sibling(); } } while (cur && cur != *this); } assert(walker._depth == -1); xml_node arg_end = *this; return walker.end(arg_end); } size_t xml_node::hash_value() const { return static_cast<size_t>(reinterpret_cast<uintptr_t>(_root) / sizeof(xml_node_struct)); } xml_node_struct* xml_node::internal_object() const { return _root; } void xml_node::print(xml_writer& writer, const char_t* indent, unsigned int flags, xml_encoding encoding, unsigned int depth) const { if (!_root) return; xml_buffered_writer buffered_writer(writer, encoding); node_output(buffered_writer, *this, indent, flags, depth); } #ifndef PUGIXML_NO_STL void xml_node::print(std::basic_ostream<char, std::char_traits<char> >& stream, const char_t* indent, unsigned int flags, xml_encoding encoding, unsigned int depth) const { xml_writer_stream writer(stream); print(writer, indent, flags, encoding, depth); } void xml_node::print(std::basic_ostream<wchar_t, std::char_traits<wchar_t> >& stream, const char_t* indent, unsigned int flags, unsigned int depth) const { xml_writer_stream writer(stream); print(writer, indent, flags, encoding_wchar, depth); } #endif ptrdiff_t xml_node::offset_debug() const { xml_node_struct* r = root()._root; if (!r) return -1; const char_t* buffer = static_cast<xml_document_struct*>(r)->buffer; if (!buffer) return -1; switch (type()) { case node_document: return 0; case node_element: case node_declaration: case node_pi: return (_root->header & xml_memory_page_name_allocated_mask) ? -1 : _root->name - buffer; case node_pcdata: case node_cdata: case node_comment: case node_doctype: return (_root->header & xml_memory_page_value_allocated_mask) ? -1 : _root->value - buffer; default: return -1; } } #ifdef __BORLANDC__ bool operator&&(const xml_node& lhs, bool rhs) { return (bool)lhs && rhs; } bool operator||(const xml_node& lhs, bool rhs) { return (bool)lhs || rhs; } #endif xml_node_iterator::xml_node_iterator() { } xml_node_iterator::xml_node_iterator(const xml_node& node): _wrap(node), _parent(node.parent()) { } xml_node_iterator::xml_node_iterator(xml_node_struct* ref, xml_node_struct* parent): _wrap(ref), _parent(parent) { } bool xml_node_iterator::operator==(const xml_node_iterator& rhs) const { return _wrap._root == rhs._wrap._root && _parent._root == rhs._parent._root; } bool xml_node_iterator::operator!=(const xml_node_iterator& rhs) const { return _wrap._root != rhs._wrap._root || _parent._root != rhs._parent._root; } xml_node& xml_node_iterator::operator*() { assert(_wrap._root); return _wrap; } xml_node* xml_node_iterator::operator->() { assert(_wrap._root); return &_wrap; } const xml_node_iterator& xml_node_iterator::operator++() { assert(_wrap._root); _wrap._root = _wrap._root->next_sibling; return *this; } xml_node_iterator xml_node_iterator::operator++(int) { xml_node_iterator temp = *this; ++*this; return temp; } const xml_node_iterator& xml_node_iterator::operator--() { _wrap = _wrap._root ? _wrap.previous_sibling() : _parent.last_child(); return *this; } xml_node_iterator xml_node_iterator::operator--(int) { xml_node_iterator temp = *this; --*this; return temp; } xml_attribute_iterator::xml_attribute_iterator() { } xml_attribute_iterator::xml_attribute_iterator(const xml_attribute& attr, const xml_node& parent): _wrap(attr), _parent(parent) { } xml_attribute_iterator::xml_attribute_iterator(xml_attribute_struct* ref, xml_node_struct* parent): _wrap(ref), _parent(parent) { } bool xml_attribute_iterator::operator==(const xml_attribute_iterator& rhs) const { return _wrap._attr == rhs._wrap._attr && _parent._root == rhs._parent._root; } bool xml_attribute_iterator::operator!=(const xml_attribute_iterator& rhs) const { return _wrap._attr != rhs._wrap._attr || _parent._root != rhs._parent._root; } xml_attribute& xml_attribute_iterator::operator*() { assert(_wrap._attr); return _wrap; } xml_attribute* xml_attribute_iterator::operator->() { assert(_wrap._attr); return &_wrap; } const xml_attribute_iterator& xml_attribute_iterator::operator++() { assert(_wrap._attr); _wrap._attr = _wrap._attr->next_attribute; return *this; } xml_attribute_iterator xml_attribute_iterator::operator++(int) { xml_attribute_iterator temp = *this; ++*this; return temp; } const xml_attribute_iterator& xml_attribute_iterator::operator--() { _wrap = _wrap._attr ? _wrap.previous_attribute() : _parent.last_attribute(); return *this; } xml_attribute_iterator xml_attribute_iterator::operator--(int) { xml_attribute_iterator temp = *this; --*this; return temp; } xml_parse_result::xml_parse_result(): status(status_internal_error), offset(0), encoding(encoding_auto) { } xml_parse_result::operator bool() const { return status == status_ok; } const char* xml_parse_result::description() const { switch (status) { case status_ok: return "No error"; case status_file_not_found: return "File was not found"; case status_io_error: return "Error reading from file/stream"; case status_out_of_memory: return "Could not allocate memory"; case status_internal_error: return "Internal error occurred"; case status_unrecognized_tag: return "Could not determine tag type"; case status_bad_pi: return "Error parsing document declaration/processing instruction"; case status_bad_comment: return "Error parsing comment"; case status_bad_cdata: return "Error parsing CDATA section"; case status_bad_doctype: return "Error parsing document type declaration"; case status_bad_pcdata: return "Error parsing PCDATA section"; case status_bad_start_element: return "Error parsing start element tag"; case status_bad_attribute: return "Error parsing element attribute"; case status_bad_end_element: return "Error parsing end element tag"; case status_end_element_mismatch: return "Start-end tags mismatch"; default: return "Unknown error"; } } xml_document::xml_document(): _buffer(0) { create(); } xml_document::~xml_document() { destroy(); } void xml_document::reset() { destroy(); create(); } void xml_document::reset(const xml_document& proto) { reset(); for (xml_node cur = proto.first_child(); cur; cur = cur.next_sibling()) append_copy(cur); } void xml_document::create() { // initialize sentinel page STATIC_ASSERT(offsetof(xml_memory_page, data) + sizeof(xml_document_struct) + xml_memory_page_alignment <= sizeof(_memory)); // align upwards to page boundary void* page_memory = reinterpret_cast<void*>((reinterpret_cast<uintptr_t>(_memory) + (xml_memory_page_alignment - 1)) & ~(xml_memory_page_alignment - 1)); // prepare page structure xml_memory_page* page = xml_memory_page::construct(page_memory); page->busy_size = xml_memory_page_size; // allocate new root _root = new (page->data) xml_document_struct(page); _root->prev_sibling_c = _root; // setup sentinel page page->allocator = static_cast<xml_document_struct*>(_root); } void xml_document::destroy() { // destroy static storage if (_buffer) { global_deallocate(_buffer); _buffer = 0; } // destroy dynamic storage, leave sentinel page (it's in static memory) if (_root) { xml_memory_page* root_page = reinterpret_cast<xml_memory_page*>(_root->header & xml_memory_page_pointer_mask); assert(root_page && !root_page->prev && !root_page->memory); // destroy all pages for (xml_memory_page* page = root_page->next; page; ) { xml_memory_page* next = page->next; xml_allocator::deallocate_page(page); page = next; } // cleanup root page root_page->allocator = 0; root_page->next = 0; root_page->busy_size = root_page->freed_size = 0; _root = 0; } } #ifndef PUGIXML_NO_STL xml_parse_result xml_document::load(std::basic_istream<char, std::char_traits<char> >& stream, unsigned int options, xml_encoding encoding) { reset(); return load_stream_impl(*this, stream, options, encoding); } xml_parse_result xml_document::load(std::basic_istream<wchar_t, std::char_traits<wchar_t> >& stream, unsigned int options) { reset(); return load_stream_impl(*this, stream, options, encoding_wchar); } #endif xml_parse_result xml_document::load(const char_t* contents, unsigned int options) { // Force native encoding (skip autodetection) #ifdef PUGIXML_WCHAR_MODE xml_encoding encoding = encoding_wchar; #else xml_encoding encoding = encoding_utf8; #endif return load_buffer(contents, strlength(contents) * sizeof(char_t), options, encoding); } xml_parse_result xml_document::load_file(const char* path, unsigned int options, xml_encoding encoding) { reset(); FILE* file = fopen(path, "rb"); return load_file_impl(*this, file, options, encoding); } xml_parse_result xml_document::load_file(const wchar_t* path, unsigned int options, xml_encoding encoding) { reset(); FILE* file = open_file_wide(path, L"rb"); return load_file_impl(*this, file, options, encoding); } xml_parse_result xml_document::load_buffer_impl(void* contents, size_t size, unsigned int options, xml_encoding encoding, bool is_mutable, bool own) { reset(); // check input buffer assert(contents || size == 0); // get actual encoding xml_encoding buffer_encoding = get_buffer_encoding(encoding, contents, size); // get private buffer char_t* buffer = 0; size_t length = 0; if (!convert_buffer(buffer, length, buffer_encoding, contents, size, is_mutable)) return make_parse_result(status_out_of_memory); // delete original buffer if we performed a conversion if (own && buffer != contents && contents) global_deallocate(contents); // parse xml_parse_result res = xml_parser::parse(buffer, length, _root, options); // remember encoding res.encoding = buffer_encoding; // grab onto buffer if it's our buffer, user is responsible for deallocating contens himself if (own || buffer != contents) _buffer = buffer; return res; } xml_parse_result xml_document::load_buffer(const void* contents, size_t size, unsigned int options, xml_encoding encoding) { return load_buffer_impl(const_cast<void*>(contents), size, options, encoding, false, false); } xml_parse_result xml_document::load_buffer_inplace(void* contents, size_t size, unsigned int options, xml_encoding encoding) { return load_buffer_impl(contents, size, options, encoding, true, false); } xml_parse_result xml_document::load_buffer_inplace_own(void* contents, size_t size, unsigned int options, xml_encoding encoding) { return load_buffer_impl(contents, size, options, encoding, true, true); } void xml_document::save(xml_writer& writer, const char_t* indent, unsigned int flags, xml_encoding encoding) const { if (flags & format_write_bom) write_bom(writer, get_write_encoding(encoding)); xml_buffered_writer buffered_writer(writer, encoding); if (!(flags & format_no_declaration) && !has_declaration(*this)) { buffered_writer.write(PUGIXML_TEXT("<?xml version=\"1.0\"?>")); if (!(flags & format_raw)) buffered_writer.write('\n'); } node_output(buffered_writer, *this, indent, flags, 0); } #ifndef PUGIXML_NO_STL void xml_document::save(std::basic_ostream<char, std::char_traits<char> >& stream, const char_t* indent, unsigned int flags, xml_encoding encoding) const { xml_writer_stream writer(stream); save(writer, indent, flags, encoding); } void xml_document::save(std::basic_ostream<wchar_t, std::char_traits<wchar_t> >& stream, const char_t* indent, unsigned int flags) const { xml_writer_stream writer(stream); save(writer, indent, flags, encoding_wchar); } #endif bool xml_document::save_file(const char* path, const char_t* indent, unsigned int flags, xml_encoding encoding) const { FILE* file = fopen(path, "wb"); if (!file) return false; xml_writer_file writer(file); save(writer, indent, flags, encoding); fclose(file); return true; } bool xml_document::save_file(const wchar_t* path, const char_t* indent, unsigned int flags, xml_encoding encoding) const { FILE* file = open_file_wide(path, L"wb"); if (!file) return false; xml_writer_file writer(file); save(writer, indent, flags, encoding); fclose(file); return true; } xml_node xml_document::document_element() const { for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling) if ((i->header & xml_memory_page_type_mask) + 1 == node_element) return xml_node(i); return xml_node(); } #ifndef PUGIXML_NO_STL std::string PUGIXML_FUNCTION as_utf8(const wchar_t* str) { assert(str); return as_utf8_impl(str, wcslen(str)); } std::string PUGIXML_FUNCTION as_utf8(const std::wstring& str) { return as_utf8_impl(str.c_str(), str.size()); } std::wstring PUGIXML_FUNCTION as_wide(const char* str) { assert(str); return as_wide_impl(str, strlen(str)); } std::wstring PUGIXML_FUNCTION as_wide(const std::string& str) { return as_wide_impl(str.c_str(), str.size()); } #endif void PUGIXML_FUNCTION set_memory_management_functions(allocation_function allocate, deallocation_function deallocate) { global_allocate = allocate; global_deallocate = deallocate; } allocation_function PUGIXML_FUNCTION get_memory_allocation_function() { return global_allocate; } deallocation_function PUGIXML_FUNCTION get_memory_deallocation_function() { return global_deallocate; } } #if !defined(PUGIXML_NO_STL) && (defined(_MSC_VER) || defined(__ICC)) namespace std { // Workarounds for (non-standard) iterator category detection for older versions (MSVC7/IC8 and earlier) std::bidirectional_iterator_tag _Iter_cat(const xml_node_iterator&) { return std::bidirectional_iterator_tag(); } std::bidirectional_iterator_tag _Iter_cat(const xml_attribute_iterator&) { return std::bidirectional_iterator_tag(); } } #endif #if !defined(PUGIXML_NO_STL) && defined(__SUNPRO_CC) namespace std { // Workarounds for (non-standard) iterator category detection std::bidirectional_iterator_tag __iterator_category(const xml_node_iterator&) { return std::bidirectional_iterator_tag(); } std::bidirectional_iterator_tag __iterator_category(const xml_attribute_iterator&) { return std::bidirectional_iterator_tag(); } } #endif #ifndef PUGIXML_NO_XPATH // STL replacements namespace { struct equal_to { template <typename T> bool operator()(const T& lhs, const T& rhs) const { return lhs == rhs; } }; struct not_equal_to { template <typename T> bool operator()(const T& lhs, const T& rhs) const { return lhs != rhs; } }; struct less { template <typename T> bool operator()(const T& lhs, const T& rhs) const { return lhs < rhs; } }; struct less_equal { template <typename T> bool operator()(const T& lhs, const T& rhs) const { return lhs <= rhs; } }; template <typename T> void swap(T& lhs, T& rhs) { T temp = lhs; lhs = rhs; rhs = temp; } template <typename I, typename Pred> I min_element(I begin, I end, const Pred& pred) { I result = begin; for (I it = begin + 1; it != end; ++it) if (pred(*it, *result)) result = it; return result; } template <typename I> void reverse(I begin, I end) { while (begin + 1 < end) swap(*begin++, *--end); } template <typename I> I unique(I begin, I end) { // fast skip head while (begin + 1 < end && *begin != *(begin + 1)) begin++; if (begin == end) return begin; // last written element I write = begin++; // merge unique elements while (begin != end) { if (*begin != *write) *++write = *begin++; else begin++; } // past-the-end (write points to live element) return write + 1; } template <typename I> void copy_backwards(I begin, I end, I target) { while (begin != end) *--target = *--end; } template <typename I, typename Pred, typename T> void insertion_sort(I begin, I end, const Pred& pred, T*) { assert(begin != end); for (I it = begin + 1; it != end; ++it) { T val = *it; if (pred(val, *begin)) { // move to front copy_backwards(begin, it, it + 1); *begin = val; } else { I hole = it; // move hole backwards while (pred(val, *(hole - 1))) { *hole = *(hole - 1); hole--; } // fill hole with element *hole = val; } } } // std variant for elements with == template <typename I, typename Pred> void partition(I begin, I middle, I end, const Pred& pred, I* out_eqbeg, I* out_eqend) { I eqbeg = middle, eqend = middle + 1; // expand equal range while (eqbeg != begin && *(eqbeg - 1) == *eqbeg) --eqbeg; while (eqend != end && *eqend == *eqbeg) ++eqend; // process outer elements I ltend = eqbeg, gtbeg = eqend; for (;;) { // find the element from the right side that belongs to the left one for (; gtbeg != end; ++gtbeg) if (!pred(*eqbeg, *gtbeg)) { if (*gtbeg == *eqbeg) swap(*gtbeg, *eqend++); else break; } // find the element from the left side that belongs to the right one for (; ltend != begin; --ltend) if (!pred(*(ltend - 1), *eqbeg)) { if (*eqbeg == *(ltend - 1)) swap(*(ltend - 1), *--eqbeg); else break; } // scanned all elements if (gtbeg == end && ltend == begin) { *out_eqbeg = eqbeg; *out_eqend = eqend; return; } // make room for elements by moving equal area if (gtbeg == end) { if (--ltend != --eqbeg) swap(*ltend, *eqbeg); swap(*eqbeg, *--eqend); } else if (ltend == begin) { if (eqend != gtbeg) swap(*eqbeg, *eqend); ++eqend; swap(*gtbeg++, *eqbeg++); } else swap(*gtbeg++, *--ltend); } } template <typename I, typename Pred> void median3(I first, I middle, I last, const Pred& pred) { if (pred(*middle, *first)) swap(*middle, *first); if (pred(*last, *middle)) swap(*last, *middle); if (pred(*middle, *first)) swap(*middle, *first); } template <typename I, typename Pred> void median(I first, I middle, I last, const Pred& pred) { if (last - first <= 40) { // median of three for small chunks median3(first, middle, last, pred); } else { // median of nine size_t step = (last - first + 1) / 8; median3(first, first + step, first + 2 * step, pred); median3(middle - step, middle, middle + step, pred); median3(last - 2 * step, last - step, last, pred); median3(first + step, middle, last - step, pred); } } template <typename I, typename Pred> void sort(I begin, I end, const Pred& pred) { // sort large chunks while (end - begin > 32) { // find median element I middle = begin + (end - begin) / 2; median(begin, middle, end - 1, pred); // partition in three chunks (< = >) I eqbeg, eqend; partition(begin, middle, end, pred, &eqbeg, &eqend); // loop on larger half if (eqbeg - begin > end - eqend) { sort(eqend, end, pred); end = eqbeg; } else { sort(begin, eqbeg, pred); begin = eqend; } } // insertion sort small chunk if (begin != end) insertion_sort(begin, end, pred, &*begin); } } // Allocator used for AST and evaluation stacks namespace { struct xpath_memory_block { xpath_memory_block* next; char data[4096]; }; class xpath_allocator { xpath_memory_block* _root; size_t _root_size; public: #ifdef PUGIXML_NO_EXCEPTIONS jmp_buf* error_handler; #endif xpath_allocator(xpath_memory_block* root, size_t root_size = 0): _root(root), _root_size(root_size) { #ifdef PUGIXML_NO_EXCEPTIONS error_handler = 0; #endif } void* allocate_nothrow(size_t size) { const size_t block_capacity = sizeof(_root->data); // align size so that we're able to store pointers in subsequent blocks size = (size + sizeof(void*) - 1) & ~(sizeof(void*) - 1); if (_root_size + size <= block_capacity) { void* buf = _root->data + _root_size; _root_size += size; return buf; } else { size_t block_data_size = (size > block_capacity) ? size : block_capacity; size_t block_size = block_data_size + offsetof(xpath_memory_block, data); xpath_memory_block* block = static_cast<xpath_memory_block*>(global_allocate(block_size)); if (!block) return 0; block->next = _root; _root = block; _root_size = size; return block->data; } } void* allocate(size_t size) { void* result = allocate_nothrow(size); if (!result) { #ifdef PUGIXML_NO_EXCEPTIONS assert(error_handler); longjmp(*error_handler, 1); #else throw std::bad_alloc(); #endif } return result; } void* reallocate(void* ptr, size_t old_size, size_t new_size) { // align size so that we're able to store pointers in subsequent blocks old_size = (old_size + sizeof(void*) - 1) & ~(sizeof(void*) - 1); new_size = (new_size + sizeof(void*) - 1) & ~(sizeof(void*) - 1); // we can only reallocate the last object assert(ptr == 0 || static_cast<char*>(ptr) + old_size == _root->data + _root_size); // adjust root size so that we have not allocated the object at all bool only_object = (_root_size == old_size); if (ptr) _root_size -= old_size; // allocate a new version (this will obviously reuse the memory if possible) void* result = allocate(new_size); assert(result); // we have a new block if (result != ptr && ptr) { // copy old data assert(new_size > old_size); memcpy(result, ptr, old_size); // free the previous page if it had no other objects if (only_object) { assert(_root->data == result); assert(_root->next); xpath_memory_block* next = _root->next->next; if (next) { // deallocate the whole page, unless it was the first one global_deallocate(_root->next); _root->next = next; } } } return result; } void revert(const xpath_allocator& state) { // free all new pages xpath_memory_block* cur = _root; while (cur != state._root) { xpath_memory_block* next = cur->next; global_deallocate(cur); cur = next; } // restore state _root = state._root; _root_size = state._root_size; } void release() { xpath_memory_block* cur = _root; assert(cur); while (cur->next) { xpath_memory_block* next = cur->next; global_deallocate(cur); cur = next; } } }; struct xpath_allocator_capture { xpath_allocator_capture(xpath_allocator* alloc): _target(alloc), _state(*alloc) { } ~xpath_allocator_capture() { _target->revert(_state); } xpath_allocator* _target; xpath_allocator _state; }; struct xpath_stack { xpath_allocator* result; xpath_allocator* temp; }; struct xpath_stack_data { xpath_memory_block blocks[2]; xpath_allocator result; xpath_allocator temp; xpath_stack stack; #ifdef PUGIXML_NO_EXCEPTIONS jmp_buf error_handler; #endif xpath_stack_data(): result(blocks + 0), temp(blocks + 1) { blocks[0].next = blocks[1].next = 0; stack.result = &result; stack.temp = &temp; #ifdef PUGIXML_NO_EXCEPTIONS result.error_handler = temp.error_handler = &error_handler; #endif } ~xpath_stack_data() { result.release(); temp.release(); } }; } // String class namespace { class xpath_string { const char_t* _buffer; bool _uses_heap; static char_t* duplicate_string(const char_t* string, size_t length, xpath_allocator* alloc) { char_t* result = static_cast<char_t*>(alloc->allocate((length + 1) * sizeof(char_t))); assert(result); memcpy(result, string, length * sizeof(char_t)); result[length] = 0; return result; } static char_t* duplicate_string(const char_t* string, xpath_allocator* alloc) { return duplicate_string(string, strlength(string), alloc); } public: xpath_string(): _buffer(PUGIXML_TEXT("")), _uses_heap(false) { } explicit xpath_string(const char_t* str, xpath_allocator* alloc) { bool empty = (*str == 0); _buffer = empty ? PUGIXML_TEXT("") : duplicate_string(str, alloc); _uses_heap = !empty; } explicit xpath_string(const char_t* str, bool use_heap): _buffer(str), _uses_heap(use_heap) { } xpath_string(const char_t* begin, const char_t* end, xpath_allocator* alloc) { assert(begin <= end); bool empty = (begin == end); _buffer = empty ? PUGIXML_TEXT("") : duplicate_string(begin, static_cast<size_t>(end - begin), alloc); _uses_heap = !empty; } void append(const xpath_string& o, xpath_allocator* alloc) { // skip empty sources if (!*o._buffer) return; // fast append for constant empty target and constant source if (!*_buffer && !_uses_heap && !o._uses_heap) { _buffer = o._buffer; } else { // need to make heap copy size_t target_length = strlength(_buffer); size_t source_length = strlength(o._buffer); size_t length = target_length + source_length; // allocate new buffer char_t* result = static_cast<char_t*>(alloc->reallocate(_uses_heap ? const_cast<char_t*>(_buffer) : 0, (target_length + 1) * sizeof(char_t), (length + 1) * sizeof(char_t))); assert(result); // append first string to the new buffer in case there was no reallocation if (!_uses_heap) memcpy(result, _buffer, target_length * sizeof(char_t)); // append second string to the new buffer memcpy(result + target_length, o._buffer, source_length * sizeof(char_t)); result[length] = 0; // finalize _buffer = result; _uses_heap = true; } } const char_t* c_str() const { return _buffer; } size_t length() const { return strlength(_buffer); } char_t* data(xpath_allocator* alloc) { // make private heap copy if (!_uses_heap) { _buffer = duplicate_string(_buffer, alloc); _uses_heap = true; } return const_cast<char_t*>(_buffer); } bool empty() const { return *_buffer == 0; } bool operator==(const xpath_string& o) const { return strequal(_buffer, o._buffer); } bool operator!=(const xpath_string& o) const { return !strequal(_buffer, o._buffer); } bool uses_heap() const { return _uses_heap; } }; xpath_string xpath_string_const(const char_t* str) { return xpath_string(str, false); } } namespace { bool starts_with(const char_t* string, const char_t* pattern) { while (*pattern && *string == *pattern) { string++; pattern++; } return *pattern == 0; } const char_t* find_char(const char_t* s, char_t c) { #ifdef PUGIXML_WCHAR_MODE return wcschr(s, c); #else return strchr(s, c); #endif } const char_t* find_substring(const char_t* s, const char_t* p) { #ifdef PUGIXML_WCHAR_MODE // MSVC6 wcsstr bug workaround (if s is empty it always returns 0) return (*p == 0) ? s : wcsstr(s, p); #else return strstr(s, p); #endif } // Converts symbol to lower case, if it is an ASCII one char_t tolower_ascii(char_t ch) { return static_cast<unsigned int>(ch - 'A') < 26 ? static_cast<char_t>(ch | ' ') : ch; } xpath_string string_value(const xpath_node& na, xpath_allocator* alloc) { if (na.attribute()) return xpath_string_const(na.attribute().value()); else { const xml_node& n = na.node(); switch (n.type()) { case node_pcdata: case node_cdata: case node_comment: case node_pi: return xpath_string_const(n.value()); case node_document: case node_element: { xpath_string result; xml_node cur = n.first_child(); while (cur && cur != n) { if (cur.type() == node_pcdata || cur.type() == node_cdata) result.append(xpath_string_const(cur.value()), alloc); if (cur.first_child()) cur = cur.first_child(); else if (cur.next_sibling()) cur = cur.next_sibling(); else { while (!cur.next_sibling() && cur != n) cur = cur.parent(); if (cur != n) cur = cur.next_sibling(); } } return result; } default: return xpath_string(); } } } unsigned int node_height(xml_node n) { unsigned int result = 0; while (n) { ++result; n = n.parent(); } return result; } bool node_is_before(xml_node ln, unsigned int lh, xml_node rn, unsigned int rh) { // normalize heights for (unsigned int i = rh; i < lh; i++) ln = ln.parent(); for (unsigned int j = lh; j < rh; j++) rn = rn.parent(); // one node is the ancestor of the other if (ln == rn) return lh < rh; // find common ancestor while (ln.parent() != rn.parent()) { ln = ln.parent(); rn = rn.parent(); } // there is no common ancestor (the shared parent is null), nodes are from different documents if (!ln.parent()) return ln < rn; // determine sibling order for (; ln; ln = ln.next_sibling()) if (ln == rn) return true; return false; } bool node_is_ancestor(xml_node parent, xml_node node) { while (node && node != parent) node = node.parent(); return parent && node == parent; } const void* document_order(const xpath_node& xnode) { xml_node_struct* node = xnode.node().internal_object(); if (node) { if (node->name && (node->header & xml_memory_page_name_allocated_mask) == 0) return node->name; if (node->value && (node->header & xml_memory_page_value_allocated_mask) == 0) return node->value; return 0; } xml_attribute_struct* attr = xnode.attribute().internal_object(); if (attr) { if ((attr->header & xml_memory_page_name_allocated_mask) == 0) return attr->name; if ((attr->header & xml_memory_page_value_allocated_mask) == 0) return attr->value; return 0; } return 0; } struct document_order_comparator { bool operator()(const xpath_node& lhs, const xpath_node& rhs) const { // optimized document order based check const void* lo = document_order(lhs); const void* ro = document_order(rhs); if (lo && ro) return lo < ro; // slow comparison xml_node ln = lhs.node(), rn = rhs.node(); // compare attributes if (lhs.attribute() && rhs.attribute()) { // shared parent if (lhs.parent() == rhs.parent()) { // determine sibling order for (xml_attribute a = lhs.attribute(); a; a = a.next_attribute()) if (a == rhs.attribute()) return true; return false; } // compare attribute parents ln = lhs.parent(); rn = rhs.parent(); } else if (lhs.attribute()) { // attributes go after the parent element if (lhs.parent() == rhs.node()) return false; ln = lhs.parent(); } else if (rhs.attribute()) { // attributes go after the parent element if (rhs.parent() == lhs.node()) return true; rn = rhs.parent(); } if (ln == rn) return false; unsigned int lh = node_height(ln); unsigned int rh = node_height(rn); return node_is_before(ln, lh, rn, rh); } }; struct duplicate_comparator { bool operator()(const xpath_node& lhs, const xpath_node& rhs) const { if (lhs.attribute()) return rhs.attribute() ? lhs.attribute() < rhs.attribute() : true; else return rhs.attribute() ? false : lhs.node() < rhs.node(); } }; double gen_nan() { #if defined(__STDC_IEC_559__) || ((FLT_RADIX - 0 == 2) && (FLT_MAX_EXP - 0 == 128) && (FLT_MANT_DIG - 0 == 24)) union { float f; int32_t i; } u[sizeof(float) == sizeof(int32_t) ? 1 : -1]; u[0].i = 0x7fc00000; return u[0].f; #else // fallback const volatile double zero = 0.0; return zero / zero; #endif } bool is_nan(double value) { #if defined(_MSC_VER) || defined(__BORLANDC__) return !!_isnan(value); #elif defined(fpclassify) && defined(FP_NAN) return fpclassify(value) == FP_NAN; #else // fallback const volatile double v = value; return v != v; #endif } const char_t* convert_number_to_string_special(double value) { #if defined(_MSC_VER) || defined(__BORLANDC__) if (_finite(value)) return (value == 0) ? PUGIXML_TEXT("0") : 0; if (_isnan(value)) return PUGIXML_TEXT("NaN"); return PUGIXML_TEXT("-Infinity") + (value > 0); #elif defined(fpclassify) && defined(FP_NAN) && defined(FP_INFINITE) && defined(FP_ZERO) switch (fpclassify(value)) { case FP_NAN: return PUGIXML_TEXT("NaN"); case FP_INFINITE: return PUGIXML_TEXT("-Infinity") + (value > 0); case FP_ZERO: return PUGIXML_TEXT("0"); default: return 0; } #else // fallback const volatile double v = value; if (v == 0) return PUGIXML_TEXT("0"); if (v != v) return PUGIXML_TEXT("NaN"); if (v * 2 == v) return PUGIXML_TEXT("-Infinity") + (value > 0); return 0; #endif } bool convert_number_to_boolean(double value) { return (value != 0 && !is_nan(value)); } void truncate_zeros(char* begin, char* end) { while (begin != end && end[-1] == '0') end--; *end = 0; } // gets mantissa digits in the form of 0.xxxxx with 0. implied and the exponent #if defined(_MSC_VER) && _MSC_VER >= 1400 void convert_number_to_mantissa_exponent(double value, char* buffer, size_t buffer_size, char** out_mantissa, int* out_exponent) { // get base values int sign, exponent; _ecvt_s(buffer, buffer_size, value, DBL_DIG + 1, &exponent, &sign); // truncate redundant zeros truncate_zeros(buffer, buffer + strlen(buffer)); // fill results *out_mantissa = buffer; *out_exponent = exponent; } #else void convert_number_to_mantissa_exponent(double value, char* buffer, size_t buffer_size, char** out_mantissa, int* out_exponent) { // get a scientific notation value with IEEE DBL_DIG decimals sprintf(buffer, "%.*e", DBL_DIG, value); assert(strlen(buffer) < buffer_size); (void)!buffer_size; // get the exponent (possibly negative) char* exponent_string = strchr(buffer, 'e'); assert(exponent_string); int exponent = atoi(exponent_string + 1); // extract mantissa string: skip sign char* mantissa = buffer[0] == '-' ? buffer + 1 : buffer; assert(mantissa[0] != '0' && mantissa[1] == '.'); // divide mantissa by 10 to eliminate integer part mantissa[1] = mantissa[0]; mantissa++; exponent++; // remove extra mantissa digits and zero-terminate mantissa truncate_zeros(mantissa, exponent_string); // fill results *out_mantissa = mantissa; *out_exponent = exponent; } #endif xpath_string convert_number_to_string(double value, xpath_allocator* alloc) { // try special number conversion const char_t* special = convert_number_to_string_special(value); if (special) return xpath_string_const(special); // get mantissa + exponent form char mantissa_buffer[64]; char* mantissa; int exponent; convert_number_to_mantissa_exponent(value, mantissa_buffer, sizeof(mantissa_buffer), &mantissa, &exponent); // make the number! char_t result[512]; char_t* s = result; // sign if (value < 0) *s++ = '-'; // integer part if (exponent <= 0) { *s++ = '0'; } else { while (exponent > 0) { assert(*mantissa == 0 || (unsigned)(*mantissa - '0') <= 9); *s++ = *mantissa ? *mantissa++ : '0'; exponent--; } } // fractional part if (*mantissa) { // decimal point *s++ = '.'; // extra zeroes from negative exponent while (exponent < 0) { *s++ = '0'; exponent++; } // extra mantissa digits while (*mantissa) { assert((unsigned)(*mantissa - '0') <= 9); *s++ = *mantissa++; } } // zero-terminate assert(s < result + sizeof(result) / sizeof(result[0])); *s = 0; return xpath_string(result, alloc); } bool check_string_to_number_format(const char_t* string) { // parse leading whitespace while (IS_CHARTYPE(*string, ct_space)) ++string; // parse sign if (*string == '-') ++string; if (!*string) return false; // if there is no integer part, there should be a decimal part with at least one digit if (!IS_CHARTYPEX(string[0], ctx_digit) && (string[0] != '.' || !IS_CHARTYPEX(string[1], ctx_digit))) return false; // parse integer part while (IS_CHARTYPEX(*string, ctx_digit)) ++string; // parse decimal part if (*string == '.') { ++string; while (IS_CHARTYPEX(*string, ctx_digit)) ++string; } // parse trailing whitespace while (IS_CHARTYPE(*string, ct_space)) ++string; return *string == 0; } double convert_string_to_number(const char_t* string) { // check string format if (!check_string_to_number_format(string)) return gen_nan(); // parse string #ifdef PUGIXML_WCHAR_MODE return wcstod(string, 0); #else return atof(string); #endif } bool convert_string_to_number(const char_t* begin, const char_t* end, double* out_result) { char_t buffer[32]; size_t length = static_cast<size_t>(end - begin); char_t* scratch = buffer; if (length >= sizeof(buffer) / sizeof(buffer[0])) { // need to make dummy on-heap copy scratch = static_cast<char_t*>(global_allocate((length + 1) * sizeof(char_t))); if (!scratch) return false; } // copy string to zero-terminated buffer and perform conversion memcpy(scratch, begin, length * sizeof(char_t)); scratch[length] = 0; *out_result = convert_string_to_number(scratch); // free dummy buffer if (scratch != buffer) global_deallocate(scratch); return true; } double round_nearest(double value) { return floor(value + 0.5); } double round_nearest_nzero(double value) { // same as round_nearest, but returns -0 for [-0.5, -0] // ceil is used to differentiate between +0 and -0 (we return -0 for [-0.5, -0] and +0 for +0) return (value >= -0.5 && value <= 0) ? ceil(value) : floor(value + 0.5); } const char_t* qualified_name(const xpath_node& node) { return node.attribute() ? node.attribute().name() : node.node().name(); } const char_t* local_name(const xpath_node& node) { const char_t* name = qualified_name(node); const char_t* p = find_char(name, ':'); return p ? p + 1 : name; } struct namespace_uri_predicate { const char_t* prefix; size_t prefix_length; namespace_uri_predicate(const char_t* name) { const char_t* pos = find_char(name, ':'); prefix = pos ? name : 0; prefix_length = pos ? static_cast<size_t>(pos - name) : 0; } bool operator()(const xml_attribute& a) const { const char_t* name = a.name(); if (!starts_with(name, PUGIXML_TEXT("xmlns"))) return false; return prefix ? name[5] == ':' && strequalrange(name + 6, prefix, prefix_length) : name[5] == 0; } }; const char_t* namespace_uri(const xml_node& node) { namespace_uri_predicate pred = node.name(); xml_node p = node; while (p) { xml_attribute a = p.find_attribute(pred); if (a) return a.value(); p = p.parent(); } return PUGIXML_TEXT(""); } const char_t* namespace_uri(const xml_attribute& attr, const xml_node& parent) { namespace_uri_predicate pred = attr.name(); // Default namespace does not apply to attributes if (!pred.prefix) return PUGIXML_TEXT(""); xml_node p = parent; while (p) { xml_attribute a = p.find_attribute(pred); if (a) return a.value(); p = p.parent(); } return PUGIXML_TEXT(""); } const char_t* namespace_uri(const xpath_node& node) { return node.attribute() ? namespace_uri(node.attribute(), node.parent()) : namespace_uri(node.node()); } void normalize_space(char_t* buffer) { char_t* write = buffer; for (char_t* it = buffer; *it; ) { char_t ch = *it++; if (IS_CHARTYPE(ch, ct_space)) { // replace whitespace sequence with single space while (IS_CHARTYPE(*it, ct_space)) it++; // avoid leading spaces if (write != buffer) *write++ = ' '; } else *write++ = ch; } // remove trailing space if (write != buffer && IS_CHARTYPE(write[-1], ct_space)) write--; // zero-terminate *write = 0; } void translate(char_t* buffer, const char_t* from, const char_t* to) { size_t to_length = strlength(to); char_t* write = buffer; while (*buffer) { DMC_VOLATILE char_t ch = *buffer++; const char_t* pos = find_char(from, ch); if (!pos) *write++ = ch; // do not process else if (static_cast<size_t>(pos - from) < to_length) *write++ = to[pos - from]; // replace } // zero-terminate *write = 0; } struct xpath_variable_boolean: xpath_variable { xpath_variable_boolean(): value(false) { } bool value; char_t name[1]; }; struct xpath_variable_number: xpath_variable { xpath_variable_number(): value(0) { } double value; char_t name[1]; }; struct xpath_variable_string: xpath_variable { xpath_variable_string(): value(0) { } ~xpath_variable_string() { if (value) global_deallocate(value); } char_t* value; char_t name[1]; }; struct xpath_variable_node_set: xpath_variable { xpath_node_set value; char_t name[1]; }; const xpath_node_set dummy_node_set; unsigned int hash_string(const char_t* str) { // Jenkins one-at-a-time hash (http://en.wikipedia.org/wiki/Jenkins_hash_function#one-at-a-time) unsigned int result = 0; while (*str) { result += static_cast<unsigned int>(*str++); result += result << 10; result ^= result >> 6; } result += result << 3; result ^= result >> 11; result += result << 15; return result; } template <typename T> T* new_xpath_variable(const char_t* name) { size_t length = strlength(name); if (length == 0) return 0; // empty variable names are invalid // $$ we can't use offsetof(T, name) because T is non-POD, so we just allocate additional length characters void* memory = global_allocate(sizeof(T) + length * sizeof(char_t)); if (!memory) return 0; T* result = new (memory) T(); memcpy(result->name, name, (length + 1) * sizeof(char_t)); return result; } xpath_variable* new_xpath_variable(xpath_value_type type, const char_t* name) { switch (type) { case xpath_type_node_set: return new_xpath_variable<xpath_variable_node_set>(name); case xpath_type_number: return new_xpath_variable<xpath_variable_number>(name); case xpath_type_string: return new_xpath_variable<xpath_variable_string>(name); case xpath_type_boolean: return new_xpath_variable<xpath_variable_boolean>(name); default: return 0; } } template <typename T> void delete_xpath_variable(T* var) { var->~T(); global_deallocate(var); } void delete_xpath_variable(xpath_value_type type, xpath_variable* var) { switch (type) { case xpath_type_node_set: delete_xpath_variable(static_cast<xpath_variable_node_set*>(var)); break; case xpath_type_number: delete_xpath_variable(static_cast<xpath_variable_number*>(var)); break; case xpath_type_string: delete_xpath_variable(static_cast<xpath_variable_string*>(var)); break; case xpath_type_boolean: delete_xpath_variable(static_cast<xpath_variable_boolean*>(var)); break; default: assert(!"Invalid variable type"); } } xpath_variable* get_variable(xpath_variable_set* set, const char_t* begin, const char_t* end) { char_t buffer[32]; size_t length = static_cast<size_t>(end - begin); char_t* scratch = buffer; if (length >= sizeof(buffer) / sizeof(buffer[0])) { // need to make dummy on-heap copy scratch = static_cast<char_t*>(global_allocate((length + 1) * sizeof(char_t))); if (!scratch) return 0; } // copy string to zero-terminated buffer and perform lookup memcpy(scratch, begin, length * sizeof(char_t)); scratch[length] = 0; xpath_variable* result = set->get(scratch); // free dummy buffer if (scratch != buffer) global_deallocate(scratch); return result; } } // Internal node set class namespace { xpath_node_set::type_t xpath_sort(xpath_node* begin, xpath_node* end, xpath_node_set::type_t type, bool rev) { xpath_node_set::type_t order = rev ? xpath_node_set::type_sorted_reverse : xpath_node_set::type_sorted; if (type == xpath_node_set::type_unsorted) { sort(begin, end, document_order_comparator()); type = xpath_node_set::type_sorted; } if (type != order) reverse(begin, end); return order; } xpath_node xpath_first(const xpath_node* begin, const xpath_node* end, xpath_node_set::type_t type) { if (begin == end) return xpath_node(); switch (type) { case xpath_node_set::type_sorted: return *begin; case xpath_node_set::type_sorted_reverse: return *(end - 1); case xpath_node_set::type_unsorted: return *min_element(begin, end, document_order_comparator()); default: assert(!"Invalid node set type"); return xpath_node(); } } class xpath_node_set_raw { xpath_node_set::type_t _type; xpath_node* _begin; xpath_node* _end; xpath_node* _eos; public: xpath_node_set_raw(): _type(xpath_node_set::type_unsorted), _begin(0), _end(0), _eos(0) { } xpath_node* begin() const { return _begin; } xpath_node* end() const { return _end; } bool empty() const { return _begin == _end; } size_t size() const { return static_cast<size_t>(_end - _begin); } xpath_node first() const { return xpath_first(_begin, _end, _type); } void push_back(const xpath_node& node, xpath_allocator* alloc) { if (_end == _eos) { size_t capacity = static_cast<size_t>(_eos - _begin); // get new capacity (1.5x rule) size_t new_capacity = capacity + capacity / 2 + 1; // reallocate the old array or allocate a new one xpath_node* data = static_cast<xpath_node*>(alloc->reallocate(_begin, capacity * sizeof(xpath_node), new_capacity * sizeof(xpath_node))); assert(data); // finalize _begin = data; _end = data + capacity; _eos = data + new_capacity; } *_end++ = node; } void append(const xpath_node* begin, const xpath_node* end, xpath_allocator* alloc) { size_t size = static_cast<size_t>(_end - _begin); size_t capacity = static_cast<size_t>(_eos - _begin); size_t count = static_cast<size_t>(end - begin); if (size + count > capacity) { // reallocate the old array or allocate a new one xpath_node* data = static_cast<xpath_node*>(alloc->reallocate(_begin, capacity * sizeof(xpath_node), (size + count) * sizeof(xpath_node))); assert(data); // finalize _begin = data; _end = data + size; _eos = data + size + count; } memcpy(_end, begin, count * sizeof(xpath_node)); _end += count; } void sort_do() { _type = xpath_sort(_begin, _end, _type, false); } void truncate(xpath_node* pos) { assert(_begin <= pos && pos <= _end); _end = pos; } void remove_duplicates() { if (_type == xpath_node_set::type_unsorted) sort(_begin, _end, duplicate_comparator()); _end = unique(_begin, _end); } xpath_node_set::type_t type() const { return _type; } void set_type(xpath_node_set::type_t type) { _type = type; } }; } namespace { struct xpath_context { xpath_node n; size_t position, size; xpath_context(const xpath_node& n, size_t position, size_t size): n(n), position(position), size(size) { } }; enum lexeme_t { lex_none = 0, lex_equal, lex_not_equal, lex_less, lex_greater, lex_less_or_equal, lex_greater_or_equal, lex_plus, lex_minus, lex_multiply, lex_union, lex_var_ref, lex_open_brace, lex_close_brace, lex_quoted_string, lex_number, lex_slash, lex_double_slash, lex_open_square_brace, lex_close_square_brace, lex_string, lex_comma, lex_axis_attribute, lex_dot, lex_double_dot, lex_double_colon, lex_eof }; struct xpath_lexer_string { const char_t* begin; const char_t* end; xpath_lexer_string(): begin(0), end(0) { } bool operator==(const char_t* other) const { size_t length = static_cast<size_t>(end - begin); return strequalrange(other, begin, length); } }; class xpath_lexer { const char_t* _cur; const char_t* _cur_lexeme_pos; xpath_lexer_string _cur_lexeme_contents; lexeme_t _cur_lexeme; public: explicit xpath_lexer(const char_t* query): _cur(query) { next(); } const char_t* state() const { return _cur; } void next() { const char_t* cur = _cur; while (IS_CHARTYPE(*cur, ct_space)) ++cur; // save lexeme position for error reporting _cur_lexeme_pos = cur; switch (*cur) { case 0: _cur_lexeme = lex_eof; break; case '>': if (*(cur+1) == '=') { cur += 2; _cur_lexeme = lex_greater_or_equal; } else { cur += 1; _cur_lexeme = lex_greater; } break; case '<': if (*(cur+1) == '=') { cur += 2; _cur_lexeme = lex_less_or_equal; } else { cur += 1; _cur_lexeme = lex_less; } break; case '!': if (*(cur+1) == '=') { cur += 2; _cur_lexeme = lex_not_equal; } else { _cur_lexeme = lex_none; } break; case '=': cur += 1; _cur_lexeme = lex_equal; break; case '+': cur += 1; _cur_lexeme = lex_plus; break; case '-': cur += 1; _cur_lexeme = lex_minus; break; case '*': cur += 1; _cur_lexeme = lex_multiply; break; case '|': cur += 1; _cur_lexeme = lex_union; break; case '$': cur += 1; if (IS_CHARTYPEX(*cur, ctx_start_symbol)) { _cur_lexeme_contents.begin = cur; while (IS_CHARTYPEX(*cur, ctx_symbol)) cur++; if (cur[0] == ':' && IS_CHARTYPEX(cur[1], ctx_symbol)) // qname { cur++; // : while (IS_CHARTYPEX(*cur, ctx_symbol)) cur++; } _cur_lexeme_contents.end = cur; _cur_lexeme = lex_var_ref; } else { _cur_lexeme = lex_none; } break; case '(': cur += 1; _cur_lexeme = lex_open_brace; break; case ')': cur += 1; _cur_lexeme = lex_close_brace; break; case '[': cur += 1; _cur_lexeme = lex_open_square_brace; break; case ']': cur += 1; _cur_lexeme = lex_close_square_brace; break; case ',': cur += 1; _cur_lexeme = lex_comma; break; case '/': if (*(cur+1) == '/') { cur += 2; _cur_lexeme = lex_double_slash; } else { cur += 1; _cur_lexeme = lex_slash; } break; case '.': if (*(cur+1) == '.') { cur += 2; _cur_lexeme = lex_double_dot; } else if (IS_CHARTYPEX(*(cur+1), ctx_digit)) { _cur_lexeme_contents.begin = cur; // . ++cur; while (IS_CHARTYPEX(*cur, ctx_digit)) cur++; _cur_lexeme_contents.end = cur; _cur_lexeme = lex_number; } else { cur += 1; _cur_lexeme = lex_dot; } break; case '@': cur += 1; _cur_lexeme = lex_axis_attribute; break; case '"': case '\'': { char_t terminator = *cur; ++cur; _cur_lexeme_contents.begin = cur; while (*cur && *cur != terminator) cur++; _cur_lexeme_contents.end = cur; if (!*cur) _cur_lexeme = lex_none; else { cur += 1; _cur_lexeme = lex_quoted_string; } break; } case ':': if (*(cur+1) == ':') { cur += 2; _cur_lexeme = lex_double_colon; } else { _cur_lexeme = lex_none; } break; default: if (IS_CHARTYPEX(*cur, ctx_digit)) { _cur_lexeme_contents.begin = cur; while (IS_CHARTYPEX(*cur, ctx_digit)) cur++; if (*cur == '.') { cur++; while (IS_CHARTYPEX(*cur, ctx_digit)) cur++; } _cur_lexeme_contents.end = cur; _cur_lexeme = lex_number; } else if (IS_CHARTYPEX(*cur, ctx_start_symbol)) { _cur_lexeme_contents.begin = cur; while (IS_CHARTYPEX(*cur, ctx_symbol)) cur++; if (cur[0] == ':') { if (cur[1] == '*') // namespace test ncname:* { cur += 2; // :* } else if (IS_CHARTYPEX(cur[1], ctx_symbol)) // namespace test qname { cur++; // : while (IS_CHARTYPEX(*cur, ctx_symbol)) cur++; } } _cur_lexeme_contents.end = cur; _cur_lexeme = lex_string; } else { _cur_lexeme = lex_none; } } _cur = cur; } lexeme_t current() const { return _cur_lexeme; } const char_t* current_pos() const { return _cur_lexeme_pos; } const xpath_lexer_string& contents() const { assert(_cur_lexeme == lex_var_ref || _cur_lexeme == lex_number || _cur_lexeme == lex_string || _cur_lexeme == lex_quoted_string); return _cur_lexeme_contents; } }; enum ast_type_t { ast_op_or, // left or right ast_op_and, // left and right ast_op_equal, // left = right ast_op_not_equal, // left != right ast_op_less, // left < right ast_op_greater, // left > right ast_op_less_or_equal, // left <= right ast_op_greater_or_equal, // left >= right ast_op_add, // left + right ast_op_subtract, // left - right ast_op_multiply, // left * right ast_op_divide, // left / right ast_op_mod, // left % right ast_op_negate, // left - right ast_op_union, // left | right ast_predicate, // apply predicate to set; next points to next predicate ast_filter, // select * from left where right ast_filter_posinv, // select * from left where right; proximity position invariant ast_string_constant, // string constant ast_number_constant, // number constant ast_variable, // variable ast_func_last, // last() ast_func_position, // position() ast_func_count, // count(left) ast_func_id, // id(left) ast_func_local_name_0, // local-name() ast_func_local_name_1, // local-name(left) ast_func_namespace_uri_0, // namespace-uri() ast_func_namespace_uri_1, // namespace-uri(left) ast_func_name_0, // name() ast_func_name_1, // name(left) ast_func_string_0, // string() ast_func_string_1, // string(left) ast_func_concat, // concat(left, right, siblings) ast_func_starts_with, // starts_with(left, right) ast_func_contains, // contains(left, right) ast_func_substring_before, // substring-before(left, right) ast_func_substring_after, // substring-after(left, right) ast_func_substring_2, // substring(left, right) ast_func_substring_3, // substring(left, right, third) ast_func_string_length_0, // string-length() ast_func_string_length_1, // string-length(left) ast_func_normalize_space_0, // normalize-space() ast_func_normalize_space_1, // normalize-space(left) ast_func_translate, // translate(left, right, third) ast_func_boolean, // boolean(left) ast_func_not, // not(left) ast_func_true, // true() ast_func_false, // false() ast_func_lang, // lang(left) ast_func_number_0, // number() ast_func_number_1, // number(left) ast_func_sum, // sum(left) ast_func_floor, // floor(left) ast_func_ceiling, // ceiling(left) ast_func_round, // round(left) ast_step, // process set left with step ast_step_root // select root node }; enum axis_t { axis_ancestor, axis_ancestor_or_self, axis_attribute, axis_child, axis_descendant, axis_descendant_or_self, axis_following, axis_following_sibling, axis_namespace, axis_parent, axis_preceding, axis_preceding_sibling, axis_self }; enum nodetest_t { nodetest_none, nodetest_name, nodetest_type_node, nodetest_type_comment, nodetest_type_pi, nodetest_type_text, nodetest_pi, nodetest_all, nodetest_all_in_namespace }; template <axis_t N> struct axis_to_type { static const axis_t axis; }; template <axis_t N> const axis_t axis_to_type<N>::axis = N; class xpath_ast_node { private: // node type char _type; char _rettype; // for ast_step / ast_predicate char _axis; char _test; // tree node structure xpath_ast_node* _left; xpath_ast_node* _right; xpath_ast_node* _next; union { // value for ast_string_constant const char_t* string; // value for ast_number_constant double number; // variable for ast_variable xpath_variable* variable; // node test for ast_step (node name/namespace/node type/pi target) const char_t* nodetest; } _data; xpath_ast_node(const xpath_ast_node&); xpath_ast_node& operator=(const xpath_ast_node&); template <class Comp> static bool compare_eq(xpath_ast_node* lhs, xpath_ast_node* rhs, const xpath_context& c, const xpath_stack& stack, const Comp& comp) { xpath_value_type lt = lhs->rettype(), rt = rhs->rettype(); if (lt != xpath_type_node_set && rt != xpath_type_node_set) { if (lt == xpath_type_boolean || rt == xpath_type_boolean) return comp(lhs->eval_boolean(c, stack), rhs->eval_boolean(c, stack)); else if (lt == xpath_type_number || rt == xpath_type_number) return comp(lhs->eval_number(c, stack), rhs->eval_number(c, stack)); else if (lt == xpath_type_string || rt == xpath_type_string) { xpath_allocator_capture cr(stack.result); xpath_string ls = lhs->eval_string(c, stack); xpath_string rs = rhs->eval_string(c, stack); return comp(ls, rs); } } else if (lt == xpath_type_node_set && rt == xpath_type_node_set) { xpath_allocator_capture cr(stack.result); xpath_node_set_raw ls = lhs->eval_node_set(c, stack); xpath_node_set_raw rs = rhs->eval_node_set(c, stack); for (const xpath_node* li = ls.begin(); li != ls.end(); ++li) for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri) { xpath_allocator_capture cri(stack.result); if (comp(string_value(*li, stack.result), string_value(*ri, stack.result))) return true; } return false; } else { if (lt == xpath_type_node_set) { swap(lhs, rhs); swap(lt, rt); } if (lt == xpath_type_boolean) return comp(lhs->eval_boolean(c, stack), rhs->eval_boolean(c, stack)); else if (lt == xpath_type_number) { xpath_allocator_capture cr(stack.result); double l = lhs->eval_number(c, stack); xpath_node_set_raw rs = rhs->eval_node_set(c, stack); for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri) { xpath_allocator_capture cri(stack.result); if (comp(l, convert_string_to_number(string_value(*ri, stack.result).c_str()))) return true; } return false; } else if (lt == xpath_type_string) { xpath_allocator_capture cr(stack.result); xpath_string l = lhs->eval_string(c, stack); xpath_node_set_raw rs = rhs->eval_node_set(c, stack); for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri) { xpath_allocator_capture cri(stack.result); if (comp(l, string_value(*ri, stack.result))) return true; } return false; } } assert(!"Wrong types"); return false; } template <class Comp> static bool compare_rel(xpath_ast_node* lhs, xpath_ast_node* rhs, const xpath_context& c, const xpath_stack& stack, const Comp& comp) { xpath_value_type lt = lhs->rettype(), rt = rhs->rettype(); if (lt != xpath_type_node_set && rt != xpath_type_node_set) return comp(lhs->eval_number(c, stack), rhs->eval_number(c, stack)); else if (lt == xpath_type_node_set && rt == xpath_type_node_set) { xpath_allocator_capture cr(stack.result); xpath_node_set_raw ls = lhs->eval_node_set(c, stack); xpath_node_set_raw rs = rhs->eval_node_set(c, stack); for (const xpath_node* li = ls.begin(); li != ls.end(); ++li) { xpath_allocator_capture cri(stack.result); double l = convert_string_to_number(string_value(*li, stack.result).c_str()); for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri) { xpath_allocator_capture crii(stack.result); if (comp(l, convert_string_to_number(string_value(*ri, stack.result).c_str()))) return true; } } return false; } else if (lt != xpath_type_node_set && rt == xpath_type_node_set) { xpath_allocator_capture cr(stack.result); double l = lhs->eval_number(c, stack); xpath_node_set_raw rs = rhs->eval_node_set(c, stack); for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri) { xpath_allocator_capture cri(stack.result); if (comp(l, convert_string_to_number(string_value(*ri, stack.result).c_str()))) return true; } return false; } else if (lt == xpath_type_node_set && rt != xpath_type_node_set) { xpath_allocator_capture cr(stack.result); xpath_node_set_raw ls = lhs->eval_node_set(c, stack); double r = rhs->eval_number(c, stack); for (const xpath_node* li = ls.begin(); li != ls.end(); ++li) { xpath_allocator_capture cri(stack.result); if (comp(convert_string_to_number(string_value(*li, stack.result).c_str()), r)) return true; } return false; } else { assert(!"Wrong types"); return false; } } void apply_predicate(xpath_node_set_raw& ns, size_t first, xpath_ast_node* expr, const xpath_stack& stack) { assert(ns.size() >= first); size_t i = 1; size_t size = ns.size() - first; xpath_node* last = ns.begin() + first; // remove_if... or well, sort of for (xpath_node* it = last; it != ns.end(); ++it, ++i) { xpath_context c(*it, i, size); if (expr->rettype() == xpath_type_number) { if (expr->eval_number(c, stack) == i) *last++ = *it; } else if (expr->eval_boolean(c, stack)) *last++ = *it; } ns.truncate(last); } void apply_predicates(xpath_node_set_raw& ns, size_t first, const xpath_stack& stack) { if (ns.size() == first) return; for (xpath_ast_node* pred = _right; pred; pred = pred->_next) { apply_predicate(ns, first, pred->_left, stack); } } void step_push(xpath_node_set_raw& ns, const xml_attribute& a, const xml_node& parent, xpath_allocator* alloc) { if (!a) return; const char_t* name = a.name(); // There are no attribute nodes corresponding to attributes that declare namespaces // That is, "xmlns:..." or "xmlns" if (starts_with(name, PUGIXML_TEXT("xmlns")) && (name[5] == 0 || name[5] == ':')) return; switch (_test) { case nodetest_name: if (strequal(name, _data.nodetest)) ns.push_back(xpath_node(a, parent), alloc); break; case nodetest_type_node: case nodetest_all: ns.push_back(xpath_node(a, parent), alloc); break; case nodetest_all_in_namespace: if (starts_with(name, _data.nodetest)) ns.push_back(xpath_node(a, parent), alloc); break; default: ; } } void step_push(xpath_node_set_raw& ns, const xml_node& n, xpath_allocator* alloc) { if (!n) return; switch (_test) { case nodetest_name: if (n.type() == node_element && strequal(n.name(), _data.nodetest)) ns.push_back(n, alloc); break; case nodetest_type_node: ns.push_back(n, alloc); break; case nodetest_type_comment: if (n.type() == node_comment) ns.push_back(n, alloc); break; case nodetest_type_text: if (n.type() == node_pcdata || n.type() == node_cdata) ns.push_back(n, alloc); break; case nodetest_type_pi: if (n.type() == node_pi) ns.push_back(n, alloc); break; case nodetest_pi: if (n.type() == node_pi && strequal(n.name(), _data.nodetest)) ns.push_back(n, alloc); break; case nodetest_all: if (n.type() == node_element) ns.push_back(n, alloc); break; case nodetest_all_in_namespace: if (n.type() == node_element && starts_with(n.name(), _data.nodetest)) ns.push_back(n, alloc); break; default: assert(!"Unknown axis"); } } template <class T> void step_fill(xpath_node_set_raw& ns, const xml_node& n, xpath_allocator* alloc, T) { const axis_t axis = T::axis; switch (axis) { case axis_attribute: { for (xml_attribute a = n.first_attribute(); a; a = a.next_attribute()) step_push(ns, a, n, alloc); break; } case axis_child: { for (xml_node c = n.first_child(); c; c = c.next_sibling()) step_push(ns, c, alloc); break; } case axis_descendant: case axis_descendant_or_self: { if (axis == axis_descendant_or_self) step_push(ns, n, alloc); xml_node cur = n.first_child(); while (cur && cur != n) { step_push(ns, cur, alloc); if (cur.first_child()) cur = cur.first_child(); else if (cur.next_sibling()) cur = cur.next_sibling(); else { while (!cur.next_sibling() && cur != n) cur = cur.parent(); if (cur != n) cur = cur.next_sibling(); } } break; } case axis_following_sibling: { for (xml_node c = n.next_sibling(); c; c = c.next_sibling()) step_push(ns, c, alloc); break; } case axis_preceding_sibling: { for (xml_node c = n.previous_sibling(); c; c = c.previous_sibling()) step_push(ns, c, alloc); break; } case axis_following: { xml_node cur = n; // exit from this node so that we don't include descendants while (cur && !cur.next_sibling()) cur = cur.parent(); cur = cur.next_sibling(); for (;;) { step_push(ns, cur, alloc); if (cur.first_child()) cur = cur.first_child(); else if (cur.next_sibling()) cur = cur.next_sibling(); else { while (cur && !cur.next_sibling()) cur = cur.parent(); cur = cur.next_sibling(); if (!cur) break; } } break; } case axis_preceding: { xml_node cur = n; while (cur && !cur.previous_sibling()) cur = cur.parent(); cur = cur.previous_sibling(); for (;;) { if (cur.last_child()) cur = cur.last_child(); else { // leaf node, can't be ancestor step_push(ns, cur, alloc); if (cur.previous_sibling()) cur = cur.previous_sibling(); else { do { cur = cur.parent(); if (!cur) break; if (!node_is_ancestor(cur, n)) step_push(ns, cur, alloc); } while (!cur.previous_sibling()); cur = cur.previous_sibling(); if (!cur) break; } } } break; } case axis_ancestor: case axis_ancestor_or_self: { if (axis == axis_ancestor_or_self) step_push(ns, n, alloc); xml_node cur = n.parent(); while (cur) { step_push(ns, cur, alloc); cur = cur.parent(); } break; } case axis_self: { step_push(ns, n, alloc); break; } case axis_parent: { if (n.parent()) step_push(ns, n.parent(), alloc); break; } default: assert(!"Unimplemented axis"); } } template <class T> void step_fill(xpath_node_set_raw& ns, const xml_attribute& a, const xml_node& p, xpath_allocator* alloc, T v) { const axis_t axis = T::axis; switch (axis) { case axis_ancestor: case axis_ancestor_or_self: { if (axis == axis_ancestor_or_self && _test == nodetest_type_node) // reject attributes based on principal node type test step_push(ns, a, p, alloc); xml_node cur = p; while (cur) { step_push(ns, cur, alloc); cur = cur.parent(); } break; } case axis_descendant_or_self: case axis_self: { if (_test == nodetest_type_node) // reject attributes based on principal node type test step_push(ns, a, p, alloc); break; } case axis_following: { xml_node cur = p; for (;;) { if (cur.first_child()) cur = cur.first_child(); else if (cur.next_sibling()) cur = cur.next_sibling(); else { while (cur && !cur.next_sibling()) cur = cur.parent(); cur = cur.next_sibling(); if (!cur) break; } step_push(ns, cur, alloc); } break; } case axis_parent: { step_push(ns, p, alloc); break; } case axis_preceding: { // preceding:: axis does not include attribute nodes and attribute ancestors (they are the same as parent's ancestors), so we can reuse node preceding step_fill(ns, p, alloc, v); break; } default: assert(!"Unimplemented axis"); } } template <class T> xpath_node_set_raw step_do(const xpath_context& c, const xpath_stack& stack, T v) { const axis_t axis = T::axis; bool attributes = (axis == axis_ancestor || axis == axis_ancestor_or_self || axis == axis_descendant_or_self || axis == axis_following || axis == axis_parent || axis == axis_preceding || axis == axis_self); xpath_node_set_raw ns; ns.set_type((axis == axis_ancestor || axis == axis_ancestor_or_self || axis == axis_preceding || axis == axis_preceding_sibling) ? xpath_node_set::type_sorted_reverse : xpath_node_set::type_sorted); if (_left) { xpath_node_set_raw s = _left->eval_node_set(c, stack); // self axis preserves the original order if (axis == axis_self) ns.set_type(s.type()); for (const xpath_node* it = s.begin(); it != s.end(); ++it) { size_t size = ns.size(); // in general, all axes generate elements in a particular order, but there is no order guarantee if axis is applied to two nodes if (axis != axis_self && size != 0) ns.set_type(xpath_node_set::type_unsorted); if (it->node()) step_fill(ns, it->node(), stack.result, v); else if (attributes) step_fill(ns, it->attribute(), it->parent(), stack.result, v); apply_predicates(ns, size, stack); } } else { if (c.n.node()) step_fill(ns, c.n.node(), stack.result, v); else if (attributes) step_fill(ns, c.n.attribute(), c.n.parent(), stack.result, v); apply_predicates(ns, 0, stack); } // child, attribute and self axes always generate unique set of nodes // for other axis, if the set stayed sorted, it stayed unique because the traversal algorithms do not visit the same node twice if (axis != axis_child && axis != axis_attribute && axis != axis_self && ns.type() == xpath_node_set::type_unsorted) ns.remove_duplicates(); return ns; } public: xpath_ast_node(ast_type_t type, xpath_value_type rettype, const char_t* value): _type((char)type), _rettype((char)rettype), _axis(0), _test(0), _left(0), _right(0), _next(0) { assert(type == ast_string_constant); _data.string = value; } xpath_ast_node(ast_type_t type, xpath_value_type rettype, double value): _type((char)type), _rettype((char)rettype), _axis(0), _test(0), _left(0), _right(0), _next(0) { assert(type == ast_number_constant); _data.number = value; } xpath_ast_node(ast_type_t type, xpath_value_type rettype, xpath_variable* value): _type((char)type), _rettype((char)rettype), _axis(0), _test(0), _left(0), _right(0), _next(0) { assert(type == ast_variable); _data.variable = value; } xpath_ast_node(ast_type_t type, xpath_value_type rettype, xpath_ast_node* left = 0, xpath_ast_node* right = 0): _type((char)type), _rettype((char)rettype), _axis(0), _test(0), _left(left), _right(right), _next(0) { } xpath_ast_node(ast_type_t type, xpath_ast_node* left, axis_t axis, nodetest_t test, const char_t* contents): _type((char)type), _rettype(xpath_type_node_set), _axis((char)axis), _test((char)test), _left(left), _right(0), _next(0) { _data.nodetest = contents; } void set_next(xpath_ast_node* value) { _next = value; } void set_right(xpath_ast_node* value) { _right = value; } bool eval_boolean(const xpath_context& c, const xpath_stack& stack) { switch (_type) { case ast_op_or: return _left->eval_boolean(c, stack) || _right->eval_boolean(c, stack); case ast_op_and: return _left->eval_boolean(c, stack) && _right->eval_boolean(c, stack); case ast_op_equal: return compare_eq(_left, _right, c, stack, equal_to()); case ast_op_not_equal: return compare_eq(_left, _right, c, stack, not_equal_to()); case ast_op_less: return compare_rel(_left, _right, c, stack, less()); case ast_op_greater: return compare_rel(_right, _left, c, stack, less()); case ast_op_less_or_equal: return compare_rel(_left, _right, c, stack, less_equal()); case ast_op_greater_or_equal: return compare_rel(_right, _left, c, stack, less_equal()); case ast_func_starts_with: { xpath_allocator_capture cr(stack.result); xpath_string lr = _left->eval_string(c, stack); xpath_string rr = _right->eval_string(c, stack); return starts_with(lr.c_str(), rr.c_str()); } case ast_func_contains: { xpath_allocator_capture cr(stack.result); xpath_string lr = _left->eval_string(c, stack); xpath_string rr = _right->eval_string(c, stack); return find_substring(lr.c_str(), rr.c_str()) != 0; } case ast_func_boolean: return _left->eval_boolean(c, stack); case ast_func_not: return !_left->eval_boolean(c, stack); case ast_func_true: return true; case ast_func_false: return false; case ast_func_lang: { if (c.n.attribute()) return false; xpath_allocator_capture cr(stack.result); xpath_string lang = _left->eval_string(c, stack); for (xml_node n = c.n.node(); n; n = n.parent()) { xml_attribute a = n.attribute(PUGIXML_TEXT("xml:lang")); if (a) { const char_t* value = a.value(); // strnicmp / strncasecmp is not portable for (const char_t* lit = lang.c_str(); *lit; ++lit) { if (tolower_ascii(*lit) != tolower_ascii(*value)) return false; ++value; } return *value == 0 || *value == '-'; } } return false; } case ast_variable: { assert(_rettype == _data.variable->type()); if (_rettype == xpath_type_boolean) return _data.variable->get_boolean(); // fallthrough to type conversion } default: { switch (_rettype) { case xpath_type_number: return convert_number_to_boolean(eval_number(c, stack)); case xpath_type_string: { xpath_allocator_capture cr(stack.result); return !eval_string(c, stack).empty(); } case xpath_type_node_set: { xpath_allocator_capture cr(stack.result); return !eval_node_set(c, stack).empty(); } default: assert(!"Wrong expression for return type boolean"); return false; } } } } double eval_number(const xpath_context& c, const xpath_stack& stack) { switch (_type) { case ast_op_add: return _left->eval_number(c, stack) + _right->eval_number(c, stack); case ast_op_subtract: return _left->eval_number(c, stack) - _right->eval_number(c, stack); case ast_op_multiply: return _left->eval_number(c, stack) * _right->eval_number(c, stack); case ast_op_divide: return _left->eval_number(c, stack) / _right->eval_number(c, stack); case ast_op_mod: return fmod(_left->eval_number(c, stack), _right->eval_number(c, stack)); case ast_op_negate: return -_left->eval_number(c, stack); case ast_number_constant: return _data.number; case ast_func_last: return (double)c.size; case ast_func_position: return (double)c.position; case ast_func_count: { xpath_allocator_capture cr(stack.result); return (double)_left->eval_node_set(c, stack).size(); } case ast_func_string_length_0: { xpath_allocator_capture cr(stack.result); return (double)string_value(c.n, stack.result).length(); } case ast_func_string_length_1: { xpath_allocator_capture cr(stack.result); return (double)_left->eval_string(c, stack).length(); } case ast_func_number_0: { xpath_allocator_capture cr(stack.result); return convert_string_to_number(string_value(c.n, stack.result).c_str()); } case ast_func_number_1: return _left->eval_number(c, stack); case ast_func_sum: { xpath_allocator_capture cr(stack.result); double r = 0; xpath_node_set_raw ns = _left->eval_node_set(c, stack); for (const xpath_node* it = ns.begin(); it != ns.end(); ++it) { xpath_allocator_capture cri(stack.result); r += convert_string_to_number(string_value(*it, stack.result).c_str()); } return r; } case ast_func_floor: { double r = _left->eval_number(c, stack); return r == r ? floor(r) : r; } case ast_func_ceiling: { double r = _left->eval_number(c, stack); return r == r ? ceil(r) : r; } case ast_func_round: return round_nearest_nzero(_left->eval_number(c, stack)); case ast_variable: { assert(_rettype == _data.variable->type()); if (_rettype == xpath_type_number) return _data.variable->get_number(); // fallthrough to type conversion } default: { switch (_rettype) { case xpath_type_boolean: return eval_boolean(c, stack) ? 1 : 0; case xpath_type_string: { xpath_allocator_capture cr(stack.result); return convert_string_to_number(eval_string(c, stack).c_str()); } case xpath_type_node_set: { xpath_allocator_capture cr(stack.result); return convert_string_to_number(eval_string(c, stack).c_str()); } default: assert(!"Wrong expression for return type number"); return 0; } } } } xpath_string eval_string_concat(const xpath_context& c, const xpath_stack& stack) { assert(_type == ast_func_concat); xpath_allocator_capture ct(stack.temp); // count the string number size_t count = 1; for (xpath_ast_node* nc = _right; nc; nc = nc->_next) count++; // gather all strings xpath_string static_buffer[4]; xpath_string* buffer = static_buffer; // allocate on-heap for large concats if (count > sizeof(static_buffer) / sizeof(static_buffer[0])) { buffer = static_cast<xpath_string*>(stack.temp->allocate(count * sizeof(xpath_string))); assert(buffer); } // evaluate all strings to temporary stack xpath_stack swapped_stack = {stack.temp, stack.result}; buffer[0] = _left->eval_string(c, swapped_stack); size_t pos = 1; for (xpath_ast_node* n = _right; n; n = n->_next, ++pos) buffer[pos] = n->eval_string(c, swapped_stack); assert(pos == count); // get total length size_t length = 0; for (size_t i = 0; i < count; ++i) length += buffer[i].length(); // create final string char_t* result = static_cast<char_t*>(stack.result->allocate((length + 1) * sizeof(char_t))); assert(result); char_t* ri = result; for (size_t j = 0; j < count; ++j) for (const char_t* bi = buffer[j].c_str(); *bi; ++bi) *ri++ = *bi; *ri = 0; return xpath_string(result, true); } xpath_string eval_string(const xpath_context& c, const xpath_stack& stack) { switch (_type) { case ast_string_constant: return xpath_string_const(_data.string); case ast_func_local_name_0: { xpath_node na = c.n; return xpath_string_const(local_name(na)); } case ast_func_local_name_1: { xpath_allocator_capture cr(stack.result); xpath_node_set_raw ns = _left->eval_node_set(c, stack); xpath_node na = ns.first(); return xpath_string_const(local_name(na)); } case ast_func_name_0: { xpath_node na = c.n; return xpath_string_const(qualified_name(na)); } case ast_func_name_1: { xpath_allocator_capture cr(stack.result); xpath_node_set_raw ns = _left->eval_node_set(c, stack); xpath_node na = ns.first(); return xpath_string_const(qualified_name(na)); } case ast_func_namespace_uri_0: { xpath_node na = c.n; return xpath_string_const(namespace_uri(na)); } case ast_func_namespace_uri_1: { xpath_allocator_capture cr(stack.result); xpath_node_set_raw ns = _left->eval_node_set(c, stack); xpath_node na = ns.first(); return xpath_string_const(namespace_uri(na)); } case ast_func_string_0: return string_value(c.n, stack.result); case ast_func_string_1: return _left->eval_string(c, stack); case ast_func_concat: return eval_string_concat(c, stack); case ast_func_substring_before: { xpath_allocator_capture cr(stack.temp); xpath_stack swapped_stack = {stack.temp, stack.result}; xpath_string s = _left->eval_string(c, swapped_stack); xpath_string p = _right->eval_string(c, swapped_stack); const char_t* pos = find_substring(s.c_str(), p.c_str()); return pos ? xpath_string(s.c_str(), pos, stack.result) : xpath_string(); } case ast_func_substring_after: { xpath_allocator_capture cr(stack.temp); xpath_stack swapped_stack = {stack.temp, stack.result}; xpath_string s = _left->eval_string(c, swapped_stack); xpath_string p = _right->eval_string(c, swapped_stack); const char_t* pos = find_substring(s.c_str(), p.c_str()); if (!pos) return xpath_string(); const char_t* result = pos + p.length(); return s.uses_heap() ? xpath_string(result, stack.result) : xpath_string_const(result); } case ast_func_substring_2: { xpath_allocator_capture cr(stack.temp); xpath_stack swapped_stack = {stack.temp, stack.result}; xpath_string s = _left->eval_string(c, swapped_stack); size_t s_length = s.length(); double first = round_nearest(_right->eval_number(c, stack)); if (is_nan(first)) return xpath_string(); // NaN else if (first >= s_length + 1) return xpath_string(); size_t pos = first < 1 ? 1 : (size_t)first; assert(1 <= pos && pos <= s_length + 1); const char_t* rbegin = s.c_str() + (pos - 1); return s.uses_heap() ? xpath_string(rbegin, stack.result) : xpath_string_const(rbegin); } case ast_func_substring_3: { xpath_allocator_capture cr(stack.temp); xpath_stack swapped_stack = {stack.temp, stack.result}; xpath_string s = _left->eval_string(c, swapped_stack); size_t s_length = s.length(); double first = round_nearest(_right->eval_number(c, stack)); double last = first + round_nearest(_right->_next->eval_number(c, stack)); if (is_nan(first) || is_nan(last)) return xpath_string(); else if (first >= s_length + 1) return xpath_string(); else if (first >= last) return xpath_string(); else if (last < 1) return xpath_string(); size_t pos = first < 1 ? 1 : (size_t)first; size_t end = last >= s_length + 1 ? s_length + 1 : (size_t)last; assert(1 <= pos && pos <= end && end <= s_length + 1); const char_t* rbegin = s.c_str() + (pos - 1); const char_t* rend = s.c_str() + (end - 1); return (end == s_length + 1 && !s.uses_heap()) ? xpath_string_const(rbegin) : xpath_string(rbegin, rend, stack.result); } case ast_func_normalize_space_0: { xpath_string s = string_value(c.n, stack.result); normalize_space(s.data(stack.result)); return s; } case ast_func_normalize_space_1: { xpath_string s = _left->eval_string(c, stack); normalize_space(s.data(stack.result)); return s; } case ast_func_translate: { xpath_allocator_capture cr(stack.temp); xpath_stack swapped_stack = {stack.temp, stack.result}; xpath_string s = _left->eval_string(c, stack); xpath_string from = _right->eval_string(c, swapped_stack); xpath_string to = _right->_next->eval_string(c, swapped_stack); translate(s.data(stack.result), from.c_str(), to.c_str()); return s; } case ast_variable: { assert(_rettype == _data.variable->type()); if (_rettype == xpath_type_string) return xpath_string_const(_data.variable->get_string()); // fallthrough to type conversion } default: { switch (_rettype) { case xpath_type_boolean: return xpath_string_const(eval_boolean(c, stack) ? PUGIXML_TEXT("true") : PUGIXML_TEXT("false")); case xpath_type_number: return convert_number_to_string(eval_number(c, stack), stack.result); case xpath_type_node_set: { xpath_allocator_capture cr(stack.temp); xpath_stack swapped_stack = {stack.temp, stack.result}; xpath_node_set_raw ns = eval_node_set(c, swapped_stack); return ns.empty() ? xpath_string() : string_value(ns.first(), stack.result); } default: assert(!"Wrong expression for return type string"); return xpath_string(); } } } } xpath_node_set_raw eval_node_set(const xpath_context& c, const xpath_stack& stack) { switch (_type) { case ast_op_union: { xpath_allocator_capture cr(stack.temp); xpath_stack swapped_stack = {stack.temp, stack.result}; xpath_node_set_raw ls = _left->eval_node_set(c, swapped_stack); xpath_node_set_raw rs = _right->eval_node_set(c, stack); // we can optimize merging two sorted sets, but this is a very rare operation, so don't bother rs.set_type(xpath_node_set::type_unsorted); rs.append(ls.begin(), ls.end(), stack.result); rs.remove_duplicates(); return rs; } case ast_filter: case ast_filter_posinv: { xpath_node_set_raw set = _left->eval_node_set(c, stack); // either expression is a number or it contains position() call; sort by document order if (_type == ast_filter) set.sort_do(); apply_predicate(set, 0, _right, stack); return set; } case ast_func_id: return xpath_node_set_raw(); case ast_step: { switch (_axis) { case axis_ancestor: return step_do(c, stack, axis_to_type<axis_ancestor>()); case axis_ancestor_or_self: return step_do(c, stack, axis_to_type<axis_ancestor_or_self>()); case axis_attribute: return step_do(c, stack, axis_to_type<axis_attribute>()); case axis_child: return step_do(c, stack, axis_to_type<axis_child>()); case axis_descendant: return step_do(c, stack, axis_to_type<axis_descendant>()); case axis_descendant_or_self: return step_do(c, stack, axis_to_type<axis_descendant_or_self>()); case axis_following: return step_do(c, stack, axis_to_type<axis_following>()); case axis_following_sibling: return step_do(c, stack, axis_to_type<axis_following_sibling>()); case axis_namespace: // namespaced axis is not supported return xpath_node_set_raw(); case axis_parent: return step_do(c, stack, axis_to_type<axis_parent>()); case axis_preceding: return step_do(c, stack, axis_to_type<axis_preceding>()); case axis_preceding_sibling: return step_do(c, stack, axis_to_type<axis_preceding_sibling>()); case axis_self: return step_do(c, stack, axis_to_type<axis_self>()); } } case ast_step_root: { assert(!_right); // root step can't have any predicates xpath_node_set_raw ns; ns.set_type(xpath_node_set::type_sorted); if (c.n.node()) ns.push_back(c.n.node().root(), stack.result); else if (c.n.attribute()) ns.push_back(c.n.parent().root(), stack.result); return ns; } case ast_variable: { assert(_rettype == _data.variable->type()); if (_rettype == xpath_type_node_set) { const xpath_node_set& s = _data.variable->get_node_set(); xpath_node_set_raw ns; ns.set_type(s.type()); ns.append(s.begin(), s.end(), stack.result); return ns; } // fallthrough to type conversion } default: assert(!"Wrong expression for return type node set"); return xpath_node_set_raw(); } } bool is_posinv() { switch (_type) { case ast_func_position: return false; case ast_string_constant: case ast_number_constant: case ast_variable: return true; case ast_step: case ast_step_root: return true; case ast_predicate: case ast_filter: case ast_filter_posinv: return true; default: if (_left && !_left->is_posinv()) return false; for (xpath_ast_node* n = _right; n; n = n->_next) if (!n->is_posinv()) return false; return true; } } xpath_value_type rettype() const { return static_cast<xpath_value_type>(_rettype); } }; struct xpath_parser { xpath_allocator* _alloc; xpath_lexer _lexer; const char_t* _query; xpath_variable_set* _variables; xpath_parse_result* _result; #ifdef PUGIXML_NO_EXCEPTIONS jmp_buf _error_handler; #endif void throw_error(const char* message) { _result->error = message; _result->offset = _lexer.current_pos() - _query; #ifdef PUGIXML_NO_EXCEPTIONS longjmp(_error_handler, 1); #else throw xpath_exception(*_result); #endif } void throw_error_oom() { #ifdef PUGIXML_NO_EXCEPTIONS throw_error("Out of memory"); #else throw std::bad_alloc(); #endif } void* alloc_node() { void* result = _alloc->allocate_nothrow(sizeof(xpath_ast_node)); if (!result) throw_error_oom(); return result; } const char_t* alloc_string(const xpath_lexer_string& value) { if (value.begin) { size_t length = static_cast<size_t>(value.end - value.begin); char_t* c = static_cast<char_t*>(_alloc->allocate_nothrow((length + 1) * sizeof(char_t))); if (!c) throw_error_oom(); memcpy(c, value.begin, length * sizeof(char_t)); c[length] = 0; return c; } else return 0; } xpath_ast_node* parse_function_helper(ast_type_t type0, ast_type_t type1, size_t argc, xpath_ast_node* args[2]) { assert(argc <= 1); if (argc == 1 && args[0]->rettype() != xpath_type_node_set) throw_error("Function has to be applied to node set"); return new (alloc_node()) xpath_ast_node(argc == 0 ? type0 : type1, xpath_type_string, args[0]); } xpath_ast_node* parse_function(const xpath_lexer_string& name, size_t argc, xpath_ast_node* args[2]) { switch (name.begin[0]) { case 'b': if (name == PUGIXML_TEXT("boolean") && argc == 1) return new (alloc_node()) xpath_ast_node(ast_func_boolean, xpath_type_boolean, args[0]); break; case 'c': if (name == PUGIXML_TEXT("count") && argc == 1) { if (args[0]->rettype() != xpath_type_node_set) throw_error("Function has to be applied to node set"); return new (alloc_node()) xpath_ast_node(ast_func_count, xpath_type_number, args[0]); } else if (name == PUGIXML_TEXT("contains") && argc == 2) return new (alloc_node()) xpath_ast_node(ast_func_contains, xpath_type_string, args[0], args[1]); else if (name == PUGIXML_TEXT("concat") && argc >= 2) return new (alloc_node()) xpath_ast_node(ast_func_concat, xpath_type_string, args[0], args[1]); else if (name == PUGIXML_TEXT("ceiling") && argc == 1) return new (alloc_node()) xpath_ast_node(ast_func_ceiling, xpath_type_number, args[0]); break; case 'f': if (name == PUGIXML_TEXT("false") && argc == 0) return new (alloc_node()) xpath_ast_node(ast_func_false, xpath_type_boolean); else if (name == PUGIXML_TEXT("floor") && argc == 1) return new (alloc_node()) xpath_ast_node(ast_func_floor, xpath_type_number, args[0]); break; case 'i': if (name == PUGIXML_TEXT("id") && argc == 1) return new (alloc_node()) xpath_ast_node(ast_func_id, xpath_type_node_set, args[0]); break; case 'l': if (name == PUGIXML_TEXT("last") && argc == 0) return new (alloc_node()) xpath_ast_node(ast_func_last, xpath_type_number); else if (name == PUGIXML_TEXT("lang") && argc == 1) return new (alloc_node()) xpath_ast_node(ast_func_lang, xpath_type_boolean, args[0]); else if (name == PUGIXML_TEXT("local-name") && argc <= 1) return parse_function_helper(ast_func_local_name_0, ast_func_local_name_1, argc, args); break; case 'n': if (name == PUGIXML_TEXT("name") && argc <= 1) return parse_function_helper(ast_func_name_0, ast_func_name_1, argc, args); else if (name == PUGIXML_TEXT("namespace-uri") && argc <= 1) return parse_function_helper(ast_func_namespace_uri_0, ast_func_namespace_uri_1, argc, args); else if (name == PUGIXML_TEXT("normalize-space") && argc <= 1) return new (alloc_node()) xpath_ast_node(argc == 0 ? ast_func_normalize_space_0 : ast_func_normalize_space_1, xpath_type_string, args[0], args[1]); else if (name == PUGIXML_TEXT("not") && argc == 1) return new (alloc_node()) xpath_ast_node(ast_func_not, xpath_type_boolean, args[0]); else if (name == PUGIXML_TEXT("number") && argc <= 1) return new (alloc_node()) xpath_ast_node(argc == 0 ? ast_func_number_0 : ast_func_number_1, xpath_type_number, args[0]); break; case 'p': if (name == PUGIXML_TEXT("position") && argc == 0) return new (alloc_node()) xpath_ast_node(ast_func_position, xpath_type_number); break; case 'r': if (name == PUGIXML_TEXT("round") && argc == 1) return new (alloc_node()) xpath_ast_node(ast_func_round, xpath_type_number, args[0]); break; case 's': if (name == PUGIXML_TEXT("string") && argc <= 1) return new (alloc_node()) xpath_ast_node(argc == 0 ? ast_func_string_0 : ast_func_string_1, xpath_type_string, args[0]); else if (name == PUGIXML_TEXT("string-length") && argc <= 1) return new (alloc_node()) xpath_ast_node(argc == 0 ? ast_func_string_length_0 : ast_func_string_length_1, xpath_type_string, args[0]); else if (name == PUGIXML_TEXT("starts-with") && argc == 2) return new (alloc_node()) xpath_ast_node(ast_func_starts_with, xpath_type_boolean, args[0], args[1]); else if (name == PUGIXML_TEXT("substring-before") && argc == 2) return new (alloc_node()) xpath_ast_node(ast_func_substring_before, xpath_type_string, args[0], args[1]); else if (name == PUGIXML_TEXT("substring-after") && argc == 2) return new (alloc_node()) xpath_ast_node(ast_func_substring_after, xpath_type_string, args[0], args[1]); else if (name == PUGIXML_TEXT("substring") && (argc == 2 || argc == 3)) return new (alloc_node()) xpath_ast_node(argc == 2 ? ast_func_substring_2 : ast_func_substring_3, xpath_type_string, args[0], args[1]); else if (name == PUGIXML_TEXT("sum") && argc == 1) { if (args[0]->rettype() != xpath_type_node_set) throw_error("Function has to be applied to node set"); return new (alloc_node()) xpath_ast_node(ast_func_sum, xpath_type_number, args[0]); } break; case 't': if (name == PUGIXML_TEXT("translate") && argc == 3) return new (alloc_node()) xpath_ast_node(ast_func_translate, xpath_type_string, args[0], args[1]); else if (name == PUGIXML_TEXT("true") && argc == 0) return new (alloc_node()) xpath_ast_node(ast_func_true, xpath_type_boolean); break; } throw_error("Unrecognized function or wrong parameter count"); return 0; } axis_t parse_axis_name(const xpath_lexer_string& name, bool& specified) { specified = true; switch (name.begin[0]) { case 'a': if (name == PUGIXML_TEXT("ancestor")) return axis_ancestor; else if (name == PUGIXML_TEXT("ancestor-or-self")) return axis_ancestor_or_self; else if (name == PUGIXML_TEXT("attribute")) return axis_attribute; break; case 'c': if (name == PUGIXML_TEXT("child")) return axis_child; break; case 'd': if (name == PUGIXML_TEXT("descendant")) return axis_descendant; else if (name == PUGIXML_TEXT("descendant-or-self")) return axis_descendant_or_self; break; case 'f': if (name == PUGIXML_TEXT("following")) return axis_following; else if (name == PUGIXML_TEXT("following-sibling")) return axis_following_sibling; break; case 'n': if (name == PUGIXML_TEXT("namespace")) return axis_namespace; break; case 'p': if (name == PUGIXML_TEXT("parent")) return axis_parent; else if (name == PUGIXML_TEXT("preceding")) return axis_preceding; else if (name == PUGIXML_TEXT("preceding-sibling")) return axis_preceding_sibling; break; case 's': if (name == PUGIXML_TEXT("self")) return axis_self; break; } specified = false; return axis_child; } nodetest_t parse_node_test_type(const xpath_lexer_string& name) { switch (name.begin[0]) { case 'c': if (name == PUGIXML_TEXT("comment")) return nodetest_type_comment; break; case 'n': if (name == PUGIXML_TEXT("node")) return nodetest_type_node; break; case 'p': if (name == PUGIXML_TEXT("processing-instruction")) return nodetest_type_pi; break; case 't': if (name == PUGIXML_TEXT("text")) return nodetest_type_text; break; } return nodetest_none; } // PrimaryExpr ::= VariableReference | '(' Expr ')' | Literal | Number | FunctionCall xpath_ast_node* parse_primary_expression() { switch (_lexer.current()) { case lex_var_ref: { xpath_lexer_string name = _lexer.contents(); if (!_variables) throw_error("Unknown variable: variable set is not provided"); xpath_variable* var = get_variable(_variables, name.begin, name.end); if (!var) throw_error("Unknown variable: variable set does not contain the given name"); _lexer.next(); return new (alloc_node()) xpath_ast_node(ast_variable, var->type(), var); } case lex_open_brace: { _lexer.next(); xpath_ast_node* n = parse_expression(); if (_lexer.current() != lex_close_brace) throw_error("Unmatched braces"); _lexer.next(); return n; } case lex_quoted_string: { const char_t* value = alloc_string(_lexer.contents()); xpath_ast_node* n = new (alloc_node()) xpath_ast_node(ast_string_constant, xpath_type_string, value); _lexer.next(); return n; } case lex_number: { double value = 0; if (!convert_string_to_number(_lexer.contents().begin, _lexer.contents().end, &value)) throw_error_oom(); xpath_ast_node* n = new (alloc_node()) xpath_ast_node(ast_number_constant, xpath_type_number, value); _lexer.next(); return n; } case lex_string: { xpath_ast_node* args[2] = {0}; size_t argc = 0; xpath_lexer_string function = _lexer.contents(); _lexer.next(); xpath_ast_node* last_arg = 0; if (_lexer.current() != lex_open_brace) throw_error("Unrecognized function call"); _lexer.next(); if (_lexer.current() != lex_close_brace) args[argc++] = parse_expression(); while (_lexer.current() != lex_close_brace) { if (_lexer.current() != lex_comma) throw_error("No comma between function arguments"); _lexer.next(); xpath_ast_node* n = parse_expression(); if (argc < 2) args[argc] = n; else last_arg->set_next(n); argc++; last_arg = n; } _lexer.next(); return parse_function(function, argc, args); } default: throw_error("Unrecognizable primary expression"); return 0; } } // FilterExpr ::= PrimaryExpr | FilterExpr Predicate // Predicate ::= '[' PredicateExpr ']' // PredicateExpr ::= Expr xpath_ast_node* parse_filter_expression() { xpath_ast_node* n = parse_primary_expression(); while (_lexer.current() == lex_open_square_brace) { _lexer.next(); xpath_ast_node* expr = parse_expression(); if (n->rettype() != xpath_type_node_set) throw_error("Predicate has to be applied to node set"); bool posinv = expr->rettype() != xpath_type_number && expr->is_posinv(); n = new (alloc_node()) xpath_ast_node(posinv ? ast_filter_posinv : ast_filter, xpath_type_node_set, n, expr); if (_lexer.current() != lex_close_square_brace) throw_error("Unmatched square brace"); _lexer.next(); } return n; } // Step ::= AxisSpecifier NodeTest Predicate* | AbbreviatedStep // AxisSpecifier ::= AxisName '::' | '@'? // NodeTest ::= NameTest | NodeType '(' ')' | 'processing-instruction' '(' Literal ')' // NameTest ::= '*' | NCName ':' '*' | QName // AbbreviatedStep ::= '.' | '..' xpath_ast_node* parse_step(xpath_ast_node* set) { if (set && set->rettype() != xpath_type_node_set) throw_error("Step has to be applied to node set"); bool axis_specified = false; axis_t axis = axis_child; // implied child axis if (_lexer.current() == lex_axis_attribute) { axis = axis_attribute; axis_specified = true; _lexer.next(); } else if (_lexer.current() == lex_dot) { _lexer.next(); return new (alloc_node()) xpath_ast_node(ast_step, set, axis_self, nodetest_type_node, 0); } else if (_lexer.current() == lex_double_dot) { _lexer.next(); return new (alloc_node()) xpath_ast_node(ast_step, set, axis_parent, nodetest_type_node, 0); } nodetest_t nt_type = nodetest_none; xpath_lexer_string nt_name; if (_lexer.current() == lex_string) { // node name test nt_name = _lexer.contents(); _lexer.next(); // was it an axis name? if (_lexer.current() == lex_double_colon) { // parse axis name if (axis_specified) throw_error("Two axis specifiers in one step"); axis = parse_axis_name(nt_name, axis_specified); if (!axis_specified) throw_error("Unknown axis"); // read actual node test _lexer.next(); if (_lexer.current() == lex_multiply) { nt_type = nodetest_all; nt_name = xpath_lexer_string(); _lexer.next(); } else if (_lexer.current() == lex_string) { nt_name = _lexer.contents(); _lexer.next(); } else throw_error("Unrecognized node test"); } if (nt_type == nodetest_none) { // node type test or processing-instruction if (_lexer.current() == lex_open_brace) { _lexer.next(); if (_lexer.current() == lex_close_brace) { _lexer.next(); nt_type = parse_node_test_type(nt_name); if (nt_type == nodetest_none) throw_error("Unrecognized node type"); nt_name = xpath_lexer_string(); } else if (nt_name == PUGIXML_TEXT("processing-instruction")) { if (_lexer.current() != lex_quoted_string) throw_error("Only literals are allowed as arguments to processing-instruction()"); nt_type = nodetest_pi; nt_name = _lexer.contents(); _lexer.next(); if (_lexer.current() != lex_close_brace) throw_error("Unmatched brace near processing-instruction()"); _lexer.next(); } else throw_error("Unmatched brace near node type test"); } // QName or NCName:* else { if (nt_name.end - nt_name.begin > 2 && nt_name.end[-2] == ':' && nt_name.end[-1] == '*') // NCName:* { nt_name.end--; // erase * nt_type = nodetest_all_in_namespace; } else nt_type = nodetest_name; } } } else if (_lexer.current() == lex_multiply) { nt_type = nodetest_all; _lexer.next(); } else throw_error("Unrecognized node test"); xpath_ast_node* n = new (alloc_node()) xpath_ast_node(ast_step, set, axis, nt_type, alloc_string(nt_name)); xpath_ast_node* last = 0; while (_lexer.current() == lex_open_square_brace) { _lexer.next(); xpath_ast_node* expr = parse_expression(); xpath_ast_node* pred = new (alloc_node()) xpath_ast_node(ast_predicate, xpath_type_node_set, expr); if (_lexer.current() != lex_close_square_brace) throw_error("Unmatched square brace"); _lexer.next(); if (last) last->set_next(pred); else n->set_right(pred); last = pred; } return n; } // RelativeLocationPath ::= Step | RelativeLocationPath '/' Step | RelativeLocationPath '//' Step xpath_ast_node* parse_relative_location_path(xpath_ast_node* set) { xpath_ast_node* n = parse_step(set); while (_lexer.current() == lex_slash || _lexer.current() == lex_double_slash) { lexeme_t l = _lexer.current(); _lexer.next(); if (l == lex_double_slash) n = new (alloc_node()) xpath_ast_node(ast_step, n, axis_descendant_or_self, nodetest_type_node, 0); n = parse_step(n); } return n; } // LocationPath ::= RelativeLocationPath | AbsoluteLocationPath // AbsoluteLocationPath ::= '/' RelativeLocationPath? | '//' RelativeLocationPath xpath_ast_node* parse_location_path() { if (_lexer.current() == lex_slash) { _lexer.next(); xpath_ast_node* n = new (alloc_node()) xpath_ast_node(ast_step_root, xpath_type_node_set); // relative location path can start from axis_attribute, dot, double_dot, multiply and string lexemes; any other lexeme means standalone root path lexeme_t l = _lexer.current(); if (l == lex_string || l == lex_axis_attribute || l == lex_dot || l == lex_double_dot || l == lex_multiply) return parse_relative_location_path(n); else return n; } else if (_lexer.current() == lex_double_slash) { _lexer.next(); xpath_ast_node* n = new (alloc_node()) xpath_ast_node(ast_step_root, xpath_type_node_set); n = new (alloc_node()) xpath_ast_node(ast_step, n, axis_descendant_or_self, nodetest_type_node, 0); return parse_relative_location_path(n); } // else clause moved outside of if because of bogus warning 'control may reach end of non-void function being inlined' in gcc 4.0.1 return parse_relative_location_path(0); } // PathExpr ::= LocationPath // | FilterExpr // | FilterExpr '/' RelativeLocationPath // | FilterExpr '//' RelativeLocationPath xpath_ast_node* parse_path_expression() { // Clarification. // PathExpr begins with either LocationPath or FilterExpr. // FilterExpr begins with PrimaryExpr // PrimaryExpr begins with '$' in case of it being a variable reference, // '(' in case of it being an expression, string literal, number constant or // function call. if (_lexer.current() == lex_var_ref || _lexer.current() == lex_open_brace || _lexer.current() == lex_quoted_string || _lexer.current() == lex_number || _lexer.current() == lex_string) { if (_lexer.current() == lex_string) { // This is either a function call, or not - if not, we shall proceed with location path const char_t* state = _lexer.state(); while (IS_CHARTYPE(*state, ct_space)) ++state; if (*state != '(') return parse_location_path(); // This looks like a function call; however this still can be a node-test. Check it. if (parse_node_test_type(_lexer.contents()) != nodetest_none) return parse_location_path(); } xpath_ast_node* n = parse_filter_expression(); if (_lexer.current() == lex_slash || _lexer.current() == lex_double_slash) { lexeme_t l = _lexer.current(); _lexer.next(); if (l == lex_double_slash) { if (n->rettype() != xpath_type_node_set) throw_error("Step has to be applied to node set"); n = new (alloc_node()) xpath_ast_node(ast_step, n, axis_descendant_or_self, nodetest_type_node, 0); } // select from location path return parse_relative_location_path(n); } return n; } else return parse_location_path(); } // UnionExpr ::= PathExpr | UnionExpr '|' PathExpr xpath_ast_node* parse_union_expression() { xpath_ast_node* n = parse_path_expression(); while (_lexer.current() == lex_union) { _lexer.next(); xpath_ast_node* expr = parse_union_expression(); if (n->rettype() != xpath_type_node_set || expr->rettype() != xpath_type_node_set) throw_error("Union operator has to be applied to node sets"); n = new (alloc_node()) xpath_ast_node(ast_op_union, xpath_type_node_set, n, expr); } return n; } // UnaryExpr ::= UnionExpr | '-' UnaryExpr xpath_ast_node* parse_unary_expression() { if (_lexer.current() == lex_minus) { _lexer.next(); xpath_ast_node* expr = parse_unary_expression(); return new (alloc_node()) xpath_ast_node(ast_op_negate, xpath_type_number, expr); } else return parse_union_expression(); } // MultiplicativeExpr ::= UnaryExpr // | MultiplicativeExpr '*' UnaryExpr // | MultiplicativeExpr 'div' UnaryExpr // | MultiplicativeExpr 'mod' UnaryExpr xpath_ast_node* parse_multiplicative_expression() { xpath_ast_node* n = parse_unary_expression(); while (_lexer.current() == lex_multiply || (_lexer.current() == lex_string && (_lexer.contents() == PUGIXML_TEXT("mod") || _lexer.contents() == PUGIXML_TEXT("div")))) { ast_type_t op = _lexer.current() == lex_multiply ? ast_op_multiply : _lexer.contents().begin[0] == 'd' ? ast_op_divide : ast_op_mod; _lexer.next(); xpath_ast_node* expr = parse_unary_expression(); n = new (alloc_node()) xpath_ast_node(op, xpath_type_number, n, expr); } return n; } // AdditiveExpr ::= MultiplicativeExpr // | AdditiveExpr '+' MultiplicativeExpr // | AdditiveExpr '-' MultiplicativeExpr xpath_ast_node* parse_additive_expression() { xpath_ast_node* n = parse_multiplicative_expression(); while (_lexer.current() == lex_plus || _lexer.current() == lex_minus) { lexeme_t l = _lexer.current(); _lexer.next(); xpath_ast_node* expr = parse_multiplicative_expression(); n = new (alloc_node()) xpath_ast_node(l == lex_plus ? ast_op_add : ast_op_subtract, xpath_type_number, n, expr); } return n; } // RelationalExpr ::= AdditiveExpr // | RelationalExpr '<' AdditiveExpr // | RelationalExpr '>' AdditiveExpr // | RelationalExpr '<=' AdditiveExpr // | RelationalExpr '>=' AdditiveExpr xpath_ast_node* parse_relational_expression() { xpath_ast_node* n = parse_additive_expression(); while (_lexer.current() == lex_less || _lexer.current() == lex_less_or_equal || _lexer.current() == lex_greater || _lexer.current() == lex_greater_or_equal) { lexeme_t l = _lexer.current(); _lexer.next(); xpath_ast_node* expr = parse_additive_expression(); n = new (alloc_node()) xpath_ast_node(l == lex_less ? ast_op_less : l == lex_greater ? ast_op_greater : l == lex_less_or_equal ? ast_op_less_or_equal : ast_op_greater_or_equal, xpath_type_boolean, n, expr); } return n; } // EqualityExpr ::= RelationalExpr // | EqualityExpr '=' RelationalExpr // | EqualityExpr '!=' RelationalExpr xpath_ast_node* parse_equality_expression() { xpath_ast_node* n = parse_relational_expression(); while (_lexer.current() == lex_equal || _lexer.current() == lex_not_equal) { lexeme_t l = _lexer.current(); _lexer.next(); xpath_ast_node* expr = parse_relational_expression(); n = new (alloc_node()) xpath_ast_node(l == lex_equal ? ast_op_equal : ast_op_not_equal, xpath_type_boolean, n, expr); } return n; } // AndExpr ::= EqualityExpr | AndExpr 'and' EqualityExpr xpath_ast_node* parse_and_expression() { xpath_ast_node* n = parse_equality_expression(); while (_lexer.current() == lex_string && _lexer.contents() == PUGIXML_TEXT("and")) { _lexer.next(); xpath_ast_node* expr = parse_equality_expression(); n = new (alloc_node()) xpath_ast_node(ast_op_and, xpath_type_boolean, n, expr); } return n; } // OrExpr ::= AndExpr | OrExpr 'or' AndExpr xpath_ast_node* parse_or_expression() { xpath_ast_node* n = parse_and_expression(); while (_lexer.current() == lex_string && _lexer.contents() == PUGIXML_TEXT("or")) { _lexer.next(); xpath_ast_node* expr = parse_and_expression(); n = new (alloc_node()) xpath_ast_node(ast_op_or, xpath_type_boolean, n, expr); } return n; } // Expr ::= OrExpr xpath_ast_node* parse_expression() { return parse_or_expression(); } xpath_parser(const char_t* query, xpath_variable_set* variables, xpath_allocator* alloc, xpath_parse_result* result): _alloc(alloc), _lexer(query), _query(query), _variables(variables), _result(result) { } xpath_ast_node* parse() { xpath_ast_node* result = parse_expression(); if (_lexer.current() != lex_eof) { // there are still unparsed tokens left, error throw_error("Incorrect query"); } return result; } static xpath_ast_node* parse(const char_t* query, xpath_variable_set* variables, xpath_allocator* alloc, xpath_parse_result* result) { xpath_parser parser(query, variables, alloc, result); #ifdef PUGIXML_NO_EXCEPTIONS int error = setjmp(parser._error_handler); return (error == 0) ? parser.parse() : 0; #else return parser.parse(); #endif } }; struct xpath_query_impl { static xpath_query_impl* create() { void* memory = global_allocate(sizeof(xpath_query_impl)); return new (memory) xpath_query_impl(); } static void destroy(void* ptr) { if (!ptr) return; // free all allocated pages static_cast<xpath_query_impl*>(ptr)->alloc.release(); // free allocator memory (with the first page) global_deallocate(ptr); } xpath_query_impl(): root(0), alloc(&block) { block.next = 0; } xpath_ast_node* root; xpath_allocator alloc; xpath_memory_block block; }; xpath_string evaluate_string_impl(xpath_query_impl* impl, const xpath_node& n, xpath_stack_data& sd) { if (!impl) return xpath_string(); #ifdef PUGIXML_NO_EXCEPTIONS if (setjmp(sd.error_handler)) return xpath_string(); #endif xpath_context c(n, 1, 1); return impl->root->eval_string(c, sd.stack); } } namespace pugi { #ifndef PUGIXML_NO_EXCEPTIONS xpath_exception::xpath_exception(const xpath_parse_result& result): _result(result) { assert(result.error); } const char* xpath_exception::what() const throw() { return _result.error; } const xpath_parse_result& xpath_exception::result() const { return _result; } #endif xpath_node::xpath_node() { } xpath_node::xpath_node(const xml_node& node): _node(node) { } xpath_node::xpath_node(const xml_attribute& attribute, const xml_node& parent): _node(attribute ? parent : xml_node()), _attribute(attribute) { } xml_node xpath_node::node() const { return _attribute ? xml_node() : _node; } xml_attribute xpath_node::attribute() const { return _attribute; } xml_node xpath_node::parent() const { return _attribute ? _node : _node.parent(); } xpath_node::operator xpath_node::unspecified_bool_type() const { return (_node || _attribute) ? &xpath_node::_node : 0; } bool xpath_node::operator!() const { return !(_node || _attribute); } bool xpath_node::operator==(const xpath_node& n) const { return _node == n._node && _attribute == n._attribute; } bool xpath_node::operator!=(const xpath_node& n) const { return _node != n._node || _attribute != n._attribute; } #ifdef __BORLANDC__ bool operator&&(const xpath_node& lhs, bool rhs) { return (bool)lhs && rhs; } bool operator||(const xpath_node& lhs, bool rhs) { return (bool)lhs || rhs; } #endif void xpath_node_set::_assign(const_iterator begin, const_iterator end) { assert(begin <= end); size_t size = static_cast<size_t>(end - begin); if (size <= 1) { // deallocate old buffer if (_begin != &_storage) global_deallocate(_begin); // use internal buffer if (begin != end) _storage = *begin; _begin = &_storage; _end = &_storage + size; } else { // make heap copy xpath_node* storage = static_cast<xpath_node*>(global_allocate(size * sizeof(xpath_node))); if (!storage) { #ifdef PUGIXML_NO_EXCEPTIONS return; #else throw std::bad_alloc(); #endif } memcpy(storage, begin, size * sizeof(xpath_node)); // deallocate old buffer if (_begin != &_storage) global_deallocate(_begin); // finalize _begin = storage; _end = storage + size; } } xpath_node_set::xpath_node_set(): _type(type_unsorted), _begin(&_storage), _end(&_storage) { } xpath_node_set::xpath_node_set(const_iterator begin, const_iterator end, type_t type): _type(type), _begin(&_storage), _end(&_storage) { _assign(begin, end); } xpath_node_set::~xpath_node_set() { if (_begin != &_storage) global_deallocate(_begin); } xpath_node_set::xpath_node_set(const xpath_node_set& ns): _type(ns._type), _begin(&_storage), _end(&_storage) { _assign(ns._begin, ns._end); } xpath_node_set& xpath_node_set::operator=(const xpath_node_set& ns) { if (this == &ns) return *this; _type = ns._type; _assign(ns._begin, ns._end); return *this; } xpath_node_set::type_t xpath_node_set::type() const { return _type; } size_t xpath_node_set::size() const { return _end - _begin; } bool xpath_node_set::empty() const { return _begin == _end; } const xpath_node& xpath_node_set::operator[](size_t index) const { assert(index < size()); return _begin[index]; } xpath_node_set::const_iterator xpath_node_set::begin() const { return _begin; } xpath_node_set::const_iterator xpath_node_set::end() const { return _end; } void xpath_node_set::sort(bool reverse) { _type = xpath_sort(_begin, _end, _type, reverse); } xpath_node xpath_node_set::first() const { return xpath_first(_begin, _end, _type); } xpath_parse_result::xpath_parse_result(): error("Internal error"), offset(0) { } xpath_parse_result::operator bool() const { return error == 0; } const char* xpath_parse_result::description() const { return error ? error : "No error"; } xpath_variable::xpath_variable() { } const char_t* xpath_variable::name() const { switch (_type) { case xpath_type_node_set: return static_cast<const xpath_variable_node_set*>(this)->name; case xpath_type_number: return static_cast<const xpath_variable_number*>(this)->name; case xpath_type_string: return static_cast<const xpath_variable_string*>(this)->name; case xpath_type_boolean: return static_cast<const xpath_variable_boolean*>(this)->name; default: assert(!"Invalid variable type"); return 0; } } xpath_value_type xpath_variable::type() const { return _type; } bool xpath_variable::get_boolean() const { return (_type == xpath_type_boolean) ? static_cast<const xpath_variable_boolean*>(this)->value : false; } double xpath_variable::get_number() const { return (_type == xpath_type_number) ? static_cast<const xpath_variable_number*>(this)->value : gen_nan(); } const char_t* xpath_variable::get_string() const { const char_t* value = (_type == xpath_type_string) ? static_cast<const xpath_variable_string*>(this)->value : 0; return value ? value : PUGIXML_TEXT(""); } const xpath_node_set& xpath_variable::get_node_set() const { return (_type == xpath_type_node_set) ? static_cast<const xpath_variable_node_set*>(this)->value : dummy_node_set; } bool xpath_variable::set(bool value) { if (_type != xpath_type_boolean) return false; static_cast<xpath_variable_boolean*>(this)->value = value; return true; } bool xpath_variable::set(double value) { if (_type != xpath_type_number) return false; static_cast<xpath_variable_number*>(this)->value = value; return true; } bool xpath_variable::set(const char_t* value) { if (_type != xpath_type_string) return false; xpath_variable_string* var = static_cast<xpath_variable_string*>(this); // duplicate string size_t size = (strlength(value) + 1) * sizeof(char_t); char_t* copy = static_cast<char_t*>(global_allocate(size)); if (!copy) return false; memcpy(copy, value, size); // replace old string if (var->value) global_deallocate(var->value); var->value = copy; return true; } bool xpath_variable::set(const xpath_node_set& value) { if (_type != xpath_type_node_set) return false; static_cast<xpath_variable_node_set*>(this)->value = value; return true; } xpath_variable_set::xpath_variable_set() { for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i) _data[i] = 0; } xpath_variable_set::~xpath_variable_set() { for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i) { xpath_variable* var = _data[i]; while (var) { xpath_variable* next = var->_next; delete_xpath_variable(var->_type, var); var = next; } } } xpath_variable* xpath_variable_set::find(const char_t* name) const { const size_t hash_size = sizeof(_data) / sizeof(_data[0]); size_t hash = hash_string(name) % hash_size; // look for existing variable for (xpath_variable* var = _data[hash]; var; var = var->_next) if (strequal(var->name(), name)) return var; return 0; } xpath_variable* xpath_variable_set::add(const char_t* name, xpath_value_type type) { const size_t hash_size = sizeof(_data) / sizeof(_data[0]); size_t hash = hash_string(name) % hash_size; // look for existing variable for (xpath_variable* var = _data[hash]; var; var = var->_next) if (strequal(var->name(), name)) return var->type() == type ? var : 0; // add new variable xpath_variable* result = new_xpath_variable(type, name); if (result) { result->_type = type; result->_next = _data[hash]; _data[hash] = result; } return result; } bool xpath_variable_set::set(const char_t* name, bool value) { xpath_variable* var = add(name, xpath_type_boolean); return var ? var->set(value) : false; } bool xpath_variable_set::set(const char_t* name, double value) { xpath_variable* var = add(name, xpath_type_number); return var ? var->set(value) : false; } bool xpath_variable_set::set(const char_t* name, const char_t* value) { xpath_variable* var = add(name, xpath_type_string); return var ? var->set(value) : false; } bool xpath_variable_set::set(const char_t* name, const xpath_node_set& value) { xpath_variable* var = add(name, xpath_type_node_set); return var ? var->set(value) : false; } xpath_variable* xpath_variable_set::get(const char_t* name) { return find(name); } const xpath_variable* xpath_variable_set::get(const char_t* name) const { return find(name); } xpath_query::xpath_query(const char_t* query, xpath_variable_set* variables): _impl(0) { xpath_query_impl* impl = xpath_query_impl::create(); if (!impl) { #ifdef PUGIXML_NO_EXCEPTIONS _result.error = "Out of memory"; #else throw std::bad_alloc(); #endif } else { buffer_holder impl_holder(impl, xpath_query_impl::destroy); impl->root = xpath_parser::parse(query, variables, &impl->alloc, &_result); if (impl->root) { _impl = static_cast<xpath_query_impl*>(impl_holder.release()); _result.error = 0; } } } xpath_query::~xpath_query() { xpath_query_impl::destroy(_impl); } xpath_value_type xpath_query::return_type() const { if (!_impl) return xpath_type_none; return static_cast<xpath_query_impl*>(_impl)->root->rettype(); } bool xpath_query::evaluate_boolean(const xpath_node& n) const { if (!_impl) return false; xpath_context c(n, 1, 1); xpath_stack_data sd; #ifdef PUGIXML_NO_EXCEPTIONS if (setjmp(sd.error_handler)) return false; #endif return static_cast<xpath_query_impl*>(_impl)->root->eval_boolean(c, sd.stack); } double xpath_query::evaluate_number(const xpath_node& n) const { if (!_impl) return gen_nan(); xpath_context c(n, 1, 1); xpath_stack_data sd; #ifdef PUGIXML_NO_EXCEPTIONS if (setjmp(sd.error_handler)) return gen_nan(); #endif return static_cast<xpath_query_impl*>(_impl)->root->eval_number(c, sd.stack); } #ifndef PUGIXML_NO_STL string_t xpath_query::evaluate_string(const xpath_node& n) const { xpath_stack_data sd; return evaluate_string_impl(static_cast<xpath_query_impl*>(_impl), n, sd).c_str(); } #endif size_t xpath_query::evaluate_string(char_t* buffer, size_t capacity, const xpath_node& n) const { xpath_stack_data sd; xpath_string r = evaluate_string_impl(static_cast<xpath_query_impl*>(_impl), n, sd); size_t full_size = r.length() + 1; if (capacity > 0) { size_t size = (full_size < capacity) ? full_size : capacity; assert(size > 0); memcpy(buffer, r.c_str(), (size - 1) * sizeof(char_t)); buffer[size - 1] = 0; } return full_size; } xpath_node_set xpath_query::evaluate_node_set(const xpath_node& n) const { if (!_impl) return xpath_node_set(); xpath_ast_node* root = static_cast<xpath_query_impl*>(_impl)->root; if (root->rettype() != xpath_type_node_set) { #ifdef PUGIXML_NO_EXCEPTIONS return xpath_node_set(); #else xpath_parse_result result; result.error = "Expression does not evaluate to node set"; throw xpath_exception(result); #endif } xpath_context c(n, 1, 1); xpath_stack_data sd; #ifdef PUGIXML_NO_EXCEPTIONS if (setjmp(sd.error_handler)) return xpath_node_set(); #endif xpath_node_set_raw r = root->eval_node_set(c, sd.stack); return xpath_node_set(r.begin(), r.end(), r.type()); } const xpath_parse_result& xpath_query::result() const { return _result; } xpath_query::operator xpath_query::unspecified_bool_type() const { return _impl ? &xpath_query::_impl : 0; } bool xpath_query::operator!() const { return !_impl; } xpath_node xml_node::select_single_node(const char_t* query, xpath_variable_set* variables) const { xpath_query q(query, variables); return select_single_node(q); } xpath_node xml_node::select_single_node(const xpath_query& query) const { xpath_node_set s = query.evaluate_node_set(*this); return s.empty() ? xpath_node() : s.first(); } xpath_node_set xml_node::select_nodes(const char_t* query, xpath_variable_set* variables) const { xpath_query q(query, variables); return select_nodes(q); } xpath_node_set xml_node::select_nodes(const xpath_query& query) const { return query.evaluate_node_set(*this); } } #endif /** * Copyright (c) 2006-2010 Arseny Kapoulkine * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */