434 lines
15 KiB
C
434 lines
15 KiB
C
|
/*
|
||
|
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
|
||
|
|
||
|
#ifndef SIMD__QUATERNION_H_
|
||
|
#define SIMD__QUATERNION_H_
|
||
|
|
||
|
|
||
|
#include "btVector3.h"
|
||
|
#include "btQuadWord.h"
|
||
|
|
||
|
/**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */
|
||
|
class btQuaternion : public btQuadWord {
|
||
|
public:
|
||
|
/**@brief No initialization constructor */
|
||
|
btQuaternion() {}
|
||
|
|
||
|
// template <typename btScalar>
|
||
|
// explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {}
|
||
|
/**@brief Constructor from scalars */
|
||
|
btQuaternion(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w)
|
||
|
: btQuadWord(x, y, z, w)
|
||
|
{}
|
||
|
/**@brief Axis angle Constructor
|
||
|
* @param axis The axis which the rotation is around
|
||
|
* @param angle The magnitude of the rotation around the angle (Radians) */
|
||
|
btQuaternion(const btVector3& axis, const btScalar& angle)
|
||
|
{
|
||
|
setRotation(axis, angle);
|
||
|
}
|
||
|
/**@brief Constructor from Euler angles
|
||
|
* @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z
|
||
|
* @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y
|
||
|
* @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */
|
||
|
btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
|
||
|
{
|
||
|
#ifndef BT_EULER_DEFAULT_ZYX
|
||
|
setEuler(yaw, pitch, roll);
|
||
|
#else
|
||
|
setEulerZYX(yaw, pitch, roll);
|
||
|
#endif
|
||
|
}
|
||
|
/**@brief Set the rotation using axis angle notation
|
||
|
* @param axis The axis around which to rotate
|
||
|
* @param angle The magnitude of the rotation in Radians */
|
||
|
void setRotation(const btVector3& axis, const btScalar& angle)
|
||
|
{
|
||
|
btScalar d = axis.length();
|
||
|
btAssert(d != btScalar(0.0));
|
||
|
btScalar s = btSin(angle * btScalar(0.5)) / d;
|
||
|
setValue(axis.x() * s, axis.y() * s, axis.z() * s,
|
||
|
btCos(angle * btScalar(0.5)));
|
||
|
}
|
||
|
/**@brief Set the quaternion using Euler angles
|
||
|
* @param yaw Angle around Y
|
||
|
* @param pitch Angle around X
|
||
|
* @param roll Angle around Z */
|
||
|
void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
|
||
|
{
|
||
|
btScalar halfYaw = btScalar(yaw) * btScalar(0.5);
|
||
|
btScalar halfPitch = btScalar(pitch) * btScalar(0.5);
|
||
|
btScalar halfRoll = btScalar(roll) * btScalar(0.5);
|
||
|
btScalar cosYaw = btCos(halfYaw);
|
||
|
btScalar sinYaw = btSin(halfYaw);
|
||
|
btScalar cosPitch = btCos(halfPitch);
|
||
|
btScalar sinPitch = btSin(halfPitch);
|
||
|
btScalar cosRoll = btCos(halfRoll);
|
||
|
btScalar sinRoll = btSin(halfRoll);
|
||
|
setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
|
||
|
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
|
||
|
sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
|
||
|
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
|
||
|
}
|
||
|
/**@brief Set the quaternion using euler angles
|
||
|
* @param yaw Angle around Z
|
||
|
* @param pitch Angle around Y
|
||
|
* @param roll Angle around X */
|
||
|
void setEulerZYX(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
|
||
|
{
|
||
|
btScalar halfYaw = btScalar(yaw) * btScalar(0.5);
|
||
|
btScalar halfPitch = btScalar(pitch) * btScalar(0.5);
|
||
|
btScalar halfRoll = btScalar(roll) * btScalar(0.5);
|
||
|
btScalar cosYaw = btCos(halfYaw);
|
||
|
btScalar sinYaw = btSin(halfYaw);
|
||
|
btScalar cosPitch = btCos(halfPitch);
|
||
|
btScalar sinPitch = btSin(halfPitch);
|
||
|
btScalar cosRoll = btCos(halfRoll);
|
||
|
btScalar sinRoll = btSin(halfRoll);
|
||
|
setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x
|
||
|
cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y
|
||
|
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z
|
||
|
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx
|
||
|
}
|
||
|
/**@brief Add two quaternions
|
||
|
* @param q The quaternion to add to this one */
|
||
|
SIMD_FORCE_INLINE btQuaternion& operator+=(const btQuaternion& q)
|
||
|
{
|
||
|
m_floats[0] += q.x(); m_floats[1] += q.y(); m_floats[2] += q.z(); m_floats[3] += q.m_floats[3];
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
/**@brief Subtract out a quaternion
|
||
|
* @param q The quaternion to subtract from this one */
|
||
|
btQuaternion& operator-=(const btQuaternion& q)
|
||
|
{
|
||
|
m_floats[0] -= q.x(); m_floats[1] -= q.y(); m_floats[2] -= q.z(); m_floats[3] -= q.m_floats[3];
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
/**@brief Scale this quaternion
|
||
|
* @param s The scalar to scale by */
|
||
|
btQuaternion& operator*=(const btScalar& s)
|
||
|
{
|
||
|
m_floats[0] *= s; m_floats[1] *= s; m_floats[2] *= s; m_floats[3] *= s;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
/**@brief Multiply this quaternion by q on the right
|
||
|
* @param q The other quaternion
|
||
|
* Equivilant to this = this * q */
|
||
|
btQuaternion& operator*=(const btQuaternion& q)
|
||
|
{
|
||
|
setValue(m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(),
|
||
|
m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(),
|
||
|
m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(),
|
||
|
m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z());
|
||
|
return *this;
|
||
|
}
|
||
|
/**@brief Return the dot product between this quaternion and another
|
||
|
* @param q The other quaternion */
|
||
|
btScalar dot(const btQuaternion& q) const
|
||
|
{
|
||
|
return m_floats[0] * q.x() + m_floats[1] * q.y() + m_floats[2] * q.z() + m_floats[3] * q.m_floats[3];
|
||
|
}
|
||
|
|
||
|
/**@brief Return the length squared of the quaternion */
|
||
|
btScalar length2() const
|
||
|
{
|
||
|
return dot(*this);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the length of the quaternion */
|
||
|
btScalar length() const
|
||
|
{
|
||
|
return btSqrt(length2());
|
||
|
}
|
||
|
|
||
|
/**@brief Normalize the quaternion
|
||
|
* Such that x^2 + y^2 + z^2 +w^2 = 1 */
|
||
|
btQuaternion& normalize()
|
||
|
{
|
||
|
return *this /= length();
|
||
|
}
|
||
|
|
||
|
/**@brief Return a scaled version of this quaternion
|
||
|
* @param s The scale factor */
|
||
|
SIMD_FORCE_INLINE btQuaternion
|
||
|
operator*(const btScalar& s) const
|
||
|
{
|
||
|
return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**@brief Return an inversely scaled versionof this quaternion
|
||
|
* @param s The inverse scale factor */
|
||
|
btQuaternion operator/(const btScalar& s) const
|
||
|
{
|
||
|
btAssert(s != btScalar(0.0));
|
||
|
return *this * (btScalar(1.0) / s);
|
||
|
}
|
||
|
|
||
|
/**@brief Inversely scale this quaternion
|
||
|
* @param s The scale factor */
|
||
|
btQuaternion& operator/=(const btScalar& s)
|
||
|
{
|
||
|
btAssert(s != btScalar(0.0));
|
||
|
return *this *= btScalar(1.0) / s;
|
||
|
}
|
||
|
|
||
|
/**@brief Return a normalized version of this quaternion */
|
||
|
btQuaternion normalized() const
|
||
|
{
|
||
|
return *this / length();
|
||
|
}
|
||
|
/**@brief Return the angle between this quaternion and the other
|
||
|
* @param q The other quaternion */
|
||
|
btScalar angle(const btQuaternion& q) const
|
||
|
{
|
||
|
btScalar s = btSqrt(length2() * q.length2());
|
||
|
btAssert(s != btScalar(0.0));
|
||
|
return btAcos(dot(q) / s);
|
||
|
}
|
||
|
/**@brief Return the angle of rotation represented by this quaternion */
|
||
|
btScalar getAngle() const
|
||
|
{
|
||
|
btScalar s = btScalar(2.) * btAcos(m_floats[3]);
|
||
|
return s;
|
||
|
}
|
||
|
|
||
|
/**@brief Return the axis of the rotation represented by this quaternion */
|
||
|
btVector3 getAxis() const
|
||
|
{
|
||
|
btScalar s_squared = btScalar(1.) - btPow(m_floats[3], btScalar(2.));
|
||
|
if (s_squared < btScalar(10.) * SIMD_EPSILON) //Check for divide by zero
|
||
|
return btVector3(1.0, 0.0, 0.0); // Arbitrary
|
||
|
btScalar s = btSqrt(s_squared);
|
||
|
return btVector3(m_floats[0] / s, m_floats[1] / s, m_floats[2] / s);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the inverse of this quaternion */
|
||
|
btQuaternion inverse() const
|
||
|
{
|
||
|
return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the sum of this quaternion and the other
|
||
|
* @param q2 The other quaternion */
|
||
|
SIMD_FORCE_INLINE btQuaternion
|
||
|
operator+(const btQuaternion& q2) const
|
||
|
{
|
||
|
const btQuaternion& q1 = *this;
|
||
|
return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the difference between this quaternion and the other
|
||
|
* @param q2 The other quaternion */
|
||
|
SIMD_FORCE_INLINE btQuaternion
|
||
|
operator-(const btQuaternion& q2) const
|
||
|
{
|
||
|
const btQuaternion& q1 = *this;
|
||
|
return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the negative of this quaternion
|
||
|
* This simply negates each element */
|
||
|
SIMD_FORCE_INLINE btQuaternion operator-() const
|
||
|
{
|
||
|
const btQuaternion& q2 = *this;
|
||
|
return btQuaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_floats[3]);
|
||
|
}
|
||
|
/**@todo document this and it's use */
|
||
|
SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const
|
||
|
{
|
||
|
btQuaternion diff,sum;
|
||
|
diff = *this - qd;
|
||
|
sum = *this + qd;
|
||
|
if( diff.dot(diff) > sum.dot(sum) )
|
||
|
return qd;
|
||
|
return (-qd);
|
||
|
}
|
||
|
|
||
|
/**@todo document this and it's use */
|
||
|
SIMD_FORCE_INLINE btQuaternion nearest( const btQuaternion& qd) const
|
||
|
{
|
||
|
btQuaternion diff,sum;
|
||
|
diff = *this - qd;
|
||
|
sum = *this + qd;
|
||
|
if( diff.dot(diff) < sum.dot(sum) )
|
||
|
return qd;
|
||
|
return (-qd);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
|
||
|
* @param q The other quaternion to interpolate with
|
||
|
* @param t The ratio between this and q to interpolate. If t = 0 the result is this, if t=1 the result is q.
|
||
|
* Slerp interpolates assuming constant velocity. */
|
||
|
btQuaternion slerp(const btQuaternion& q, const btScalar& t) const
|
||
|
{
|
||
|
btScalar theta = angle(q);
|
||
|
if (theta != btScalar(0.0))
|
||
|
{
|
||
|
btScalar d = btScalar(1.0) / btSin(theta);
|
||
|
btScalar s0 = btSin((btScalar(1.0) - t) * theta);
|
||
|
btScalar s1 = btSin(t * theta);
|
||
|
if (dot(q) < 0) // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
|
||
|
return btQuaternion((m_floats[0] * s0 + -q.x() * s1) * d,
|
||
|
(m_floats[1] * s0 + -q.y() * s1) * d,
|
||
|
(m_floats[2] * s0 + -q.z() * s1) * d,
|
||
|
(m_floats[3] * s0 + -q.m_floats[3] * s1) * d);
|
||
|
else
|
||
|
return btQuaternion((m_floats[0] * s0 + q.x() * s1) * d,
|
||
|
(m_floats[1] * s0 + q.y() * s1) * d,
|
||
|
(m_floats[2] * s0 + q.z() * s1) * d,
|
||
|
(m_floats[3] * s0 + q.m_floats[3] * s1) * d);
|
||
|
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return *this;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const btQuaternion& getIdentity()
|
||
|
{
|
||
|
static const btQuaternion identityQuat(btScalar(0.),btScalar(0.),btScalar(0.),btScalar(1.));
|
||
|
return identityQuat;
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; }
|
||
|
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
/**@brief Return the negative of a quaternion */
|
||
|
SIMD_FORCE_INLINE btQuaternion
|
||
|
operator-(const btQuaternion& q)
|
||
|
{
|
||
|
return btQuaternion(-q.x(), -q.y(), -q.z(), -q.w());
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/**@brief Return the product of two quaternions */
|
||
|
SIMD_FORCE_INLINE btQuaternion
|
||
|
operator*(const btQuaternion& q1, const btQuaternion& q2) {
|
||
|
return btQuaternion(q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
|
||
|
q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(),
|
||
|
q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(),
|
||
|
q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z());
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btQuaternion
|
||
|
operator*(const btQuaternion& q, const btVector3& w)
|
||
|
{
|
||
|
return btQuaternion( q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
|
||
|
q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
|
||
|
q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
|
||
|
-q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btQuaternion
|
||
|
operator*(const btVector3& w, const btQuaternion& q)
|
||
|
{
|
||
|
return btQuaternion( w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
|
||
|
w.y() * q.w() + w.z() * q.x() - w.x() * q.z(),
|
||
|
w.z() * q.w() + w.x() * q.y() - w.y() * q.x(),
|
||
|
-w.x() * q.x() - w.y() * q.y() - w.z() * q.z());
|
||
|
}
|
||
|
|
||
|
/**@brief Calculate the dot product between two quaternions */
|
||
|
SIMD_FORCE_INLINE btScalar
|
||
|
dot(const btQuaternion& q1, const btQuaternion& q2)
|
||
|
{
|
||
|
return q1.dot(q2);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**@brief Return the length of a quaternion */
|
||
|
SIMD_FORCE_INLINE btScalar
|
||
|
length(const btQuaternion& q)
|
||
|
{
|
||
|
return q.length();
|
||
|
}
|
||
|
|
||
|
/**@brief Return the angle between two quaternions*/
|
||
|
SIMD_FORCE_INLINE btScalar
|
||
|
angle(const btQuaternion& q1, const btQuaternion& q2)
|
||
|
{
|
||
|
return q1.angle(q2);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the inverse of a quaternion*/
|
||
|
SIMD_FORCE_INLINE btQuaternion
|
||
|
inverse(const btQuaternion& q)
|
||
|
{
|
||
|
return q.inverse();
|
||
|
}
|
||
|
|
||
|
/**@brief Return the result of spherical linear interpolation betwen two quaternions
|
||
|
* @param q1 The first quaternion
|
||
|
* @param q2 The second quaternion
|
||
|
* @param t The ration between q1 and q2. t = 0 return q1, t=1 returns q2
|
||
|
* Slerp assumes constant velocity between positions. */
|
||
|
SIMD_FORCE_INLINE btQuaternion
|
||
|
slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t)
|
||
|
{
|
||
|
return q1.slerp(q2, t);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btVector3
|
||
|
quatRotate(const btQuaternion& rotation, const btVector3& v)
|
||
|
{
|
||
|
btQuaternion q = rotation * v;
|
||
|
q *= rotation.inverse();
|
||
|
return btVector3(q.getX(),q.getY(),q.getZ());
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btQuaternion
|
||
|
shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized
|
||
|
{
|
||
|
btVector3 c = v0.cross(v1);
|
||
|
btScalar d = v0.dot(v1);
|
||
|
|
||
|
if (d < -1.0 + SIMD_EPSILON)
|
||
|
{
|
||
|
btVector3 n,unused;
|
||
|
btPlaneSpace1(v0,n,unused);
|
||
|
return btQuaternion(n.x(),n.y(),n.z(),0.0f); // just pick any vector that is orthogonal to v0
|
||
|
}
|
||
|
|
||
|
btScalar s = btSqrt((1.0f + d) * 2.0f);
|
||
|
btScalar rs = 1.0f / s;
|
||
|
|
||
|
return btQuaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btQuaternion
|
||
|
shortestArcQuatNormalize2(btVector3& v0,btVector3& v1)
|
||
|
{
|
||
|
v0.normalize();
|
||
|
v1.normalize();
|
||
|
return shortestArcQuat(v0,v1);
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
|