689 lines
21 KiB
C
689 lines
21 KiB
C
|
/*
|
||
|
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#ifndef BT_MATRIX3x3_H
|
||
|
#define BT_MATRIX3x3_H
|
||
|
|
||
|
#include "btVector3.h"
|
||
|
#include "btQuaternion.h"
|
||
|
|
||
|
#ifdef BT_USE_DOUBLE_PRECISION
|
||
|
#define btMatrix3x3Data btMatrix3x3DoubleData
|
||
|
#else
|
||
|
#define btMatrix3x3Data btMatrix3x3FloatData
|
||
|
#endif //BT_USE_DOUBLE_PRECISION
|
||
|
|
||
|
|
||
|
/**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
|
||
|
* Make sure to only include a pure orthogonal matrix without scaling. */
|
||
|
class btMatrix3x3 {
|
||
|
|
||
|
///Data storage for the matrix, each vector is a row of the matrix
|
||
|
btVector3 m_el[3];
|
||
|
|
||
|
public:
|
||
|
/** @brief No initializaion constructor */
|
||
|
btMatrix3x3 () {}
|
||
|
|
||
|
// explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }
|
||
|
|
||
|
/**@brief Constructor from Quaternion */
|
||
|
explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); }
|
||
|
/*
|
||
|
template <typename btScalar>
|
||
|
Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
|
||
|
{
|
||
|
setEulerYPR(yaw, pitch, roll);
|
||
|
}
|
||
|
*/
|
||
|
/** @brief Constructor with row major formatting */
|
||
|
btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
|
||
|
const btScalar& yx, const btScalar& yy, const btScalar& yz,
|
||
|
const btScalar& zx, const btScalar& zy, const btScalar& zz)
|
||
|
{
|
||
|
setValue(xx, xy, xz,
|
||
|
yx, yy, yz,
|
||
|
zx, zy, zz);
|
||
|
}
|
||
|
/** @brief Copy constructor */
|
||
|
SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other)
|
||
|
{
|
||
|
m_el[0] = other.m_el[0];
|
||
|
m_el[1] = other.m_el[1];
|
||
|
m_el[2] = other.m_el[2];
|
||
|
}
|
||
|
/** @brief Assignment Operator */
|
||
|
SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
|
||
|
{
|
||
|
m_el[0] = other.m_el[0];
|
||
|
m_el[1] = other.m_el[1];
|
||
|
m_el[2] = other.m_el[2];
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
/** @brief Get a column of the matrix as a vector
|
||
|
* @param i Column number 0 indexed */
|
||
|
SIMD_FORCE_INLINE btVector3 getColumn(int i) const
|
||
|
{
|
||
|
return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]);
|
||
|
}
|
||
|
|
||
|
|
||
|
/** @brief Get a row of the matrix as a vector
|
||
|
* @param i Row number 0 indexed */
|
||
|
SIMD_FORCE_INLINE const btVector3& getRow(int i) const
|
||
|
{
|
||
|
btFullAssert(0 <= i && i < 3);
|
||
|
return m_el[i];
|
||
|
}
|
||
|
|
||
|
/** @brief Get a mutable reference to a row of the matrix as a vector
|
||
|
* @param i Row number 0 indexed */
|
||
|
SIMD_FORCE_INLINE btVector3& operator[](int i)
|
||
|
{
|
||
|
btFullAssert(0 <= i && i < 3);
|
||
|
return m_el[i];
|
||
|
}
|
||
|
|
||
|
/** @brief Get a const reference to a row of the matrix as a vector
|
||
|
* @param i Row number 0 indexed */
|
||
|
SIMD_FORCE_INLINE const btVector3& operator[](int i) const
|
||
|
{
|
||
|
btFullAssert(0 <= i && i < 3);
|
||
|
return m_el[i];
|
||
|
}
|
||
|
|
||
|
/** @brief Multiply by the target matrix on the right
|
||
|
* @param m Rotation matrix to be applied
|
||
|
* Equivilant to this = this * m */
|
||
|
btMatrix3x3& operator*=(const btMatrix3x3& m);
|
||
|
|
||
|
/** @brief Set from a carray of btScalars
|
||
|
* @param m A pointer to the beginning of an array of 9 btScalars */
|
||
|
void setFromOpenGLSubMatrix(const btScalar *m)
|
||
|
{
|
||
|
m_el[0].setValue(m[0],m[4],m[8]);
|
||
|
m_el[1].setValue(m[1],m[5],m[9]);
|
||
|
m_el[2].setValue(m[2],m[6],m[10]);
|
||
|
|
||
|
}
|
||
|
/** @brief Set the values of the matrix explicitly (row major)
|
||
|
* @param xx Top left
|
||
|
* @param xy Top Middle
|
||
|
* @param xz Top Right
|
||
|
* @param yx Middle Left
|
||
|
* @param yy Middle Middle
|
||
|
* @param yz Middle Right
|
||
|
* @param zx Bottom Left
|
||
|
* @param zy Bottom Middle
|
||
|
* @param zz Bottom Right*/
|
||
|
void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz,
|
||
|
const btScalar& yx, const btScalar& yy, const btScalar& yz,
|
||
|
const btScalar& zx, const btScalar& zy, const btScalar& zz)
|
||
|
{
|
||
|
m_el[0].setValue(xx,xy,xz);
|
||
|
m_el[1].setValue(yx,yy,yz);
|
||
|
m_el[2].setValue(zx,zy,zz);
|
||
|
}
|
||
|
|
||
|
/** @brief Set the matrix from a quaternion
|
||
|
* @param q The Quaternion to match */
|
||
|
void setRotation(const btQuaternion& q)
|
||
|
{
|
||
|
btScalar d = q.length2();
|
||
|
btFullAssert(d != btScalar(0.0));
|
||
|
btScalar s = btScalar(2.0) / d;
|
||
|
btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s;
|
||
|
btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs;
|
||
|
btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs;
|
||
|
btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs;
|
||
|
setValue(btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
|
||
|
xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
|
||
|
xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
|
||
|
}
|
||
|
|
||
|
|
||
|
/** @brief Set the matrix from euler angles using YPR around YXZ respectively
|
||
|
* @param yaw Yaw about Y axis
|
||
|
* @param pitch Pitch about X axis
|
||
|
* @param roll Roll about Z axis
|
||
|
*/
|
||
|
void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
|
||
|
{
|
||
|
setEulerZYX(roll, pitch, yaw);
|
||
|
}
|
||
|
|
||
|
/** @brief Set the matrix from euler angles YPR around ZYX axes
|
||
|
* @param eulerX Roll about X axis
|
||
|
* @param eulerY Pitch around Y axis
|
||
|
* @param eulerZ Yaw aboud Z axis
|
||
|
*
|
||
|
* These angles are used to produce a rotation matrix. The euler
|
||
|
* angles are applied in ZYX order. I.e a vector is first rotated
|
||
|
* about X then Y and then Z
|
||
|
**/
|
||
|
void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) {
|
||
|
///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code
|
||
|
btScalar ci ( btCos(eulerX));
|
||
|
btScalar cj ( btCos(eulerY));
|
||
|
btScalar ch ( btCos(eulerZ));
|
||
|
btScalar si ( btSin(eulerX));
|
||
|
btScalar sj ( btSin(eulerY));
|
||
|
btScalar sh ( btSin(eulerZ));
|
||
|
btScalar cc = ci * ch;
|
||
|
btScalar cs = ci * sh;
|
||
|
btScalar sc = si * ch;
|
||
|
btScalar ss = si * sh;
|
||
|
|
||
|
setValue(cj * ch, sj * sc - cs, sj * cc + ss,
|
||
|
cj * sh, sj * ss + cc, sj * cs - sc,
|
||
|
-sj, cj * si, cj * ci);
|
||
|
}
|
||
|
|
||
|
/**@brief Set the matrix to the identity */
|
||
|
void setIdentity()
|
||
|
{
|
||
|
setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),
|
||
|
btScalar(0.0), btScalar(1.0), btScalar(0.0),
|
||
|
btScalar(0.0), btScalar(0.0), btScalar(1.0));
|
||
|
}
|
||
|
|
||
|
static const btMatrix3x3& getIdentity()
|
||
|
{
|
||
|
static const btMatrix3x3 identityMatrix(btScalar(1.0), btScalar(0.0), btScalar(0.0),
|
||
|
btScalar(0.0), btScalar(1.0), btScalar(0.0),
|
||
|
btScalar(0.0), btScalar(0.0), btScalar(1.0));
|
||
|
return identityMatrix;
|
||
|
}
|
||
|
|
||
|
/**@brief Fill the values of the matrix into a 9 element array
|
||
|
* @param m The array to be filled */
|
||
|
void getOpenGLSubMatrix(btScalar *m) const
|
||
|
{
|
||
|
m[0] = btScalar(m_el[0].x());
|
||
|
m[1] = btScalar(m_el[1].x());
|
||
|
m[2] = btScalar(m_el[2].x());
|
||
|
m[3] = btScalar(0.0);
|
||
|
m[4] = btScalar(m_el[0].y());
|
||
|
m[5] = btScalar(m_el[1].y());
|
||
|
m[6] = btScalar(m_el[2].y());
|
||
|
m[7] = btScalar(0.0);
|
||
|
m[8] = btScalar(m_el[0].z());
|
||
|
m[9] = btScalar(m_el[1].z());
|
||
|
m[10] = btScalar(m_el[2].z());
|
||
|
m[11] = btScalar(0.0);
|
||
|
}
|
||
|
|
||
|
/**@brief Get the matrix represented as a quaternion
|
||
|
* @param q The quaternion which will be set */
|
||
|
void getRotation(btQuaternion& q) const
|
||
|
{
|
||
|
btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
|
||
|
btScalar temp[4];
|
||
|
|
||
|
if (trace > btScalar(0.0))
|
||
|
{
|
||
|
btScalar s = btSqrt(trace + btScalar(1.0));
|
||
|
temp[3]=(s * btScalar(0.5));
|
||
|
s = btScalar(0.5) / s;
|
||
|
|
||
|
temp[0]=((m_el[2].y() - m_el[1].z()) * s);
|
||
|
temp[1]=((m_el[0].z() - m_el[2].x()) * s);
|
||
|
temp[2]=((m_el[1].x() - m_el[0].y()) * s);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int i = m_el[0].x() < m_el[1].y() ?
|
||
|
(m_el[1].y() < m_el[2].z() ? 2 : 1) :
|
||
|
(m_el[0].x() < m_el[2].z() ? 2 : 0);
|
||
|
int j = (i + 1) % 3;
|
||
|
int k = (i + 2) % 3;
|
||
|
|
||
|
btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
|
||
|
temp[i] = s * btScalar(0.5);
|
||
|
s = btScalar(0.5) / s;
|
||
|
|
||
|
temp[3] = (m_el[k][j] - m_el[j][k]) * s;
|
||
|
temp[j] = (m_el[j][i] + m_el[i][j]) * s;
|
||
|
temp[k] = (m_el[k][i] + m_el[i][k]) * s;
|
||
|
}
|
||
|
q.setValue(temp[0],temp[1],temp[2],temp[3]);
|
||
|
}
|
||
|
|
||
|
/**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
|
||
|
* @param yaw Yaw around Y axis
|
||
|
* @param pitch Pitch around X axis
|
||
|
* @param roll around Z axis */
|
||
|
void getEulerYPR(btScalar& yaw, btScalar& pitch, btScalar& roll) const
|
||
|
{
|
||
|
|
||
|
// first use the normal calculus
|
||
|
yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x()));
|
||
|
pitch = btScalar(btAsin(-m_el[2].x()));
|
||
|
roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z()));
|
||
|
|
||
|
// on pitch = +/-HalfPI
|
||
|
if (btFabs(pitch)==SIMD_HALF_PI)
|
||
|
{
|
||
|
if (yaw>0)
|
||
|
yaw-=SIMD_PI;
|
||
|
else
|
||
|
yaw+=SIMD_PI;
|
||
|
|
||
|
if (roll>0)
|
||
|
roll-=SIMD_PI;
|
||
|
else
|
||
|
roll+=SIMD_PI;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
/**@brief Get the matrix represented as euler angles around ZYX
|
||
|
* @param yaw Yaw around X axis
|
||
|
* @param pitch Pitch around Y axis
|
||
|
* @param roll around X axis
|
||
|
* @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/
|
||
|
void getEulerZYX(btScalar& yaw, btScalar& pitch, btScalar& roll, unsigned int solution_number = 1) const
|
||
|
{
|
||
|
struct Euler
|
||
|
{
|
||
|
btScalar yaw;
|
||
|
btScalar pitch;
|
||
|
btScalar roll;
|
||
|
};
|
||
|
|
||
|
Euler euler_out;
|
||
|
Euler euler_out2; //second solution
|
||
|
//get the pointer to the raw data
|
||
|
|
||
|
// Check that pitch is not at a singularity
|
||
|
if (btFabs(m_el[2].x()) >= 1)
|
||
|
{
|
||
|
euler_out.yaw = 0;
|
||
|
euler_out2.yaw = 0;
|
||
|
|
||
|
// From difference of angles formula
|
||
|
btScalar delta = btAtan2(m_el[0].x(),m_el[0].z());
|
||
|
if (m_el[2].x() > 0) //gimbal locked up
|
||
|
{
|
||
|
euler_out.pitch = SIMD_PI / btScalar(2.0);
|
||
|
euler_out2.pitch = SIMD_PI / btScalar(2.0);
|
||
|
euler_out.roll = euler_out.pitch + delta;
|
||
|
euler_out2.roll = euler_out.pitch + delta;
|
||
|
}
|
||
|
else // gimbal locked down
|
||
|
{
|
||
|
euler_out.pitch = -SIMD_PI / btScalar(2.0);
|
||
|
euler_out2.pitch = -SIMD_PI / btScalar(2.0);
|
||
|
euler_out.roll = -euler_out.pitch + delta;
|
||
|
euler_out2.roll = -euler_out.pitch + delta;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
euler_out.pitch = - btAsin(m_el[2].x());
|
||
|
euler_out2.pitch = SIMD_PI - euler_out.pitch;
|
||
|
|
||
|
euler_out.roll = btAtan2(m_el[2].y()/btCos(euler_out.pitch),
|
||
|
m_el[2].z()/btCos(euler_out.pitch));
|
||
|
euler_out2.roll = btAtan2(m_el[2].y()/btCos(euler_out2.pitch),
|
||
|
m_el[2].z()/btCos(euler_out2.pitch));
|
||
|
|
||
|
euler_out.yaw = btAtan2(m_el[1].x()/btCos(euler_out.pitch),
|
||
|
m_el[0].x()/btCos(euler_out.pitch));
|
||
|
euler_out2.yaw = btAtan2(m_el[1].x()/btCos(euler_out2.pitch),
|
||
|
m_el[0].x()/btCos(euler_out2.pitch));
|
||
|
}
|
||
|
|
||
|
if (solution_number == 1)
|
||
|
{
|
||
|
yaw = euler_out.yaw;
|
||
|
pitch = euler_out.pitch;
|
||
|
roll = euler_out.roll;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
yaw = euler_out2.yaw;
|
||
|
pitch = euler_out2.pitch;
|
||
|
roll = euler_out2.roll;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**@brief Create a scaled copy of the matrix
|
||
|
* @param s Scaling vector The elements of the vector will scale each column */
|
||
|
|
||
|
btMatrix3x3 scaled(const btVector3& s) const
|
||
|
{
|
||
|
return btMatrix3x3(m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
|
||
|
m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
|
||
|
m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
|
||
|
}
|
||
|
|
||
|
/**@brief Return the determinant of the matrix */
|
||
|
btScalar determinant() const;
|
||
|
/**@brief Return the adjoint of the matrix */
|
||
|
btMatrix3x3 adjoint() const;
|
||
|
/**@brief Return the matrix with all values non negative */
|
||
|
btMatrix3x3 absolute() const;
|
||
|
/**@brief Return the transpose of the matrix */
|
||
|
btMatrix3x3 transpose() const;
|
||
|
/**@brief Return the inverse of the matrix */
|
||
|
btMatrix3x3 inverse() const;
|
||
|
|
||
|
btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
|
||
|
btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;
|
||
|
|
||
|
SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const
|
||
|
{
|
||
|
return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z();
|
||
|
}
|
||
|
SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const
|
||
|
{
|
||
|
return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z();
|
||
|
}
|
||
|
SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const
|
||
|
{
|
||
|
return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z();
|
||
|
}
|
||
|
|
||
|
|
||
|
/**@brief diagonalizes this matrix by the Jacobi method.
|
||
|
* @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
|
||
|
* coordinate system, i.e., old_this = rot * new_this * rot^T.
|
||
|
* @param threshold See iteration
|
||
|
* @param iteration The iteration stops when all off-diagonal elements are less than the threshold multiplied
|
||
|
* by the sum of the absolute values of the diagonal, or when maxSteps have been executed.
|
||
|
*
|
||
|
* Note that this matrix is assumed to be symmetric.
|
||
|
*/
|
||
|
void diagonalize(btMatrix3x3& rot, btScalar threshold, int maxSteps)
|
||
|
{
|
||
|
rot.setIdentity();
|
||
|
for (int step = maxSteps; step > 0; step--)
|
||
|
{
|
||
|
// find off-diagonal element [p][q] with largest magnitude
|
||
|
int p = 0;
|
||
|
int q = 1;
|
||
|
int r = 2;
|
||
|
btScalar max = btFabs(m_el[0][1]);
|
||
|
btScalar v = btFabs(m_el[0][2]);
|
||
|
if (v > max)
|
||
|
{
|
||
|
q = 2;
|
||
|
r = 1;
|
||
|
max = v;
|
||
|
}
|
||
|
v = btFabs(m_el[1][2]);
|
||
|
if (v > max)
|
||
|
{
|
||
|
p = 1;
|
||
|
q = 2;
|
||
|
r = 0;
|
||
|
max = v;
|
||
|
}
|
||
|
|
||
|
btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2]));
|
||
|
if (max <= t)
|
||
|
{
|
||
|
if (max <= SIMD_EPSILON * t)
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
step = 1;
|
||
|
}
|
||
|
|
||
|
// compute Jacobi rotation J which leads to a zero for element [p][q]
|
||
|
btScalar mpq = m_el[p][q];
|
||
|
btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq);
|
||
|
btScalar theta2 = theta * theta;
|
||
|
btScalar cos;
|
||
|
btScalar sin;
|
||
|
if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON))
|
||
|
{
|
||
|
t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2))
|
||
|
: 1 / (theta - btSqrt(1 + theta2));
|
||
|
cos = 1 / btSqrt(1 + t * t);
|
||
|
sin = cos * t;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// approximation for large theta-value, i.e., a nearly diagonal matrix
|
||
|
t = 1 / (theta * (2 + btScalar(0.5) / theta2));
|
||
|
cos = 1 - btScalar(0.5) * t * t;
|
||
|
sin = cos * t;
|
||
|
}
|
||
|
|
||
|
// apply rotation to matrix (this = J^T * this * J)
|
||
|
m_el[p][q] = m_el[q][p] = 0;
|
||
|
m_el[p][p] -= t * mpq;
|
||
|
m_el[q][q] += t * mpq;
|
||
|
btScalar mrp = m_el[r][p];
|
||
|
btScalar mrq = m_el[r][q];
|
||
|
m_el[r][p] = m_el[p][r] = cos * mrp - sin * mrq;
|
||
|
m_el[r][q] = m_el[q][r] = cos * mrq + sin * mrp;
|
||
|
|
||
|
// apply rotation to rot (rot = rot * J)
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
btVector3& row = rot[i];
|
||
|
mrp = row[p];
|
||
|
mrq = row[q];
|
||
|
row[p] = cos * mrp - sin * mrq;
|
||
|
row[q] = cos * mrq + sin * mrp;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/**@brief Calculate the matrix cofactor
|
||
|
* @param r1 The first row to use for calculating the cofactor
|
||
|
* @param c1 The first column to use for calculating the cofactor
|
||
|
* @param r1 The second row to use for calculating the cofactor
|
||
|
* @param c1 The second column to use for calculating the cofactor
|
||
|
* See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details
|
||
|
*/
|
||
|
btScalar cofac(int r1, int c1, int r2, int c2) const
|
||
|
{
|
||
|
return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
|
||
|
}
|
||
|
|
||
|
void serialize(struct btMatrix3x3Data& dataOut) const;
|
||
|
|
||
|
void serializeFloat(struct btMatrix3x3FloatData& dataOut) const;
|
||
|
|
||
|
void deSerialize(const struct btMatrix3x3Data& dataIn);
|
||
|
|
||
|
void deSerializeFloat(const struct btMatrix3x3FloatData& dataIn);
|
||
|
|
||
|
void deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn);
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
SIMD_FORCE_INLINE btMatrix3x3&
|
||
|
btMatrix3x3::operator*=(const btMatrix3x3& m)
|
||
|
{
|
||
|
setValue(m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
|
||
|
m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
|
||
|
m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btScalar
|
||
|
btMatrix3x3::determinant() const
|
||
|
{
|
||
|
return btTriple((*this)[0], (*this)[1], (*this)[2]);
|
||
|
}
|
||
|
|
||
|
|
||
|
SIMD_FORCE_INLINE btMatrix3x3
|
||
|
btMatrix3x3::absolute() const
|
||
|
{
|
||
|
return btMatrix3x3(
|
||
|
btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
|
||
|
btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
|
||
|
btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btMatrix3x3
|
||
|
btMatrix3x3::transpose() const
|
||
|
{
|
||
|
return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(),
|
||
|
m_el[0].y(), m_el[1].y(), m_el[2].y(),
|
||
|
m_el[0].z(), m_el[1].z(), m_el[2].z());
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btMatrix3x3
|
||
|
btMatrix3x3::adjoint() const
|
||
|
{
|
||
|
return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
|
||
|
cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
|
||
|
cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btMatrix3x3
|
||
|
btMatrix3x3::inverse() const
|
||
|
{
|
||
|
btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
|
||
|
btScalar det = (*this)[0].dot(co);
|
||
|
btFullAssert(det != btScalar(0.0));
|
||
|
btScalar s = btScalar(1.0) / det;
|
||
|
return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
|
||
|
co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
|
||
|
co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btMatrix3x3
|
||
|
btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
|
||
|
{
|
||
|
return btMatrix3x3(
|
||
|
m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
|
||
|
m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
|
||
|
m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
|
||
|
m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
|
||
|
m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
|
||
|
m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
|
||
|
m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
|
||
|
m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
|
||
|
m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z());
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btMatrix3x3
|
||
|
btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
|
||
|
{
|
||
|
return btMatrix3x3(
|
||
|
m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
|
||
|
m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
|
||
|
m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
|
||
|
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btVector3
|
||
|
operator*(const btMatrix3x3& m, const btVector3& v)
|
||
|
{
|
||
|
return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
|
||
|
}
|
||
|
|
||
|
|
||
|
SIMD_FORCE_INLINE btVector3
|
||
|
operator*(const btVector3& v, const btMatrix3x3& m)
|
||
|
{
|
||
|
return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btMatrix3x3
|
||
|
operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
|
||
|
{
|
||
|
return btMatrix3x3(
|
||
|
m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]),
|
||
|
m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]),
|
||
|
m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2]));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) {
|
||
|
return btMatrix3x3(
|
||
|
m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0],
|
||
|
m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1],
|
||
|
m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2],
|
||
|
m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0],
|
||
|
m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1],
|
||
|
m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2],
|
||
|
m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0],
|
||
|
m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1],
|
||
|
m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
/**@brief Equality operator between two matrices
|
||
|
* It will test all elements are equal. */
|
||
|
SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2)
|
||
|
{
|
||
|
return ( m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
|
||
|
m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
|
||
|
m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] );
|
||
|
}
|
||
|
|
||
|
///for serialization
|
||
|
struct btMatrix3x3FloatData
|
||
|
{
|
||
|
btVector3FloatData m_el[3];
|
||
|
};
|
||
|
|
||
|
///for serialization
|
||
|
struct btMatrix3x3DoubleData
|
||
|
{
|
||
|
btVector3DoubleData m_el[3];
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
SIMD_FORCE_INLINE void btMatrix3x3::serialize(struct btMatrix3x3Data& dataOut) const
|
||
|
{
|
||
|
for (int i=0;i<3;i++)
|
||
|
m_el[i].serialize(dataOut.m_el[i]);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void btMatrix3x3::serializeFloat(struct btMatrix3x3FloatData& dataOut) const
|
||
|
{
|
||
|
for (int i=0;i<3;i++)
|
||
|
m_el[i].serializeFloat(dataOut.m_el[i]);
|
||
|
}
|
||
|
|
||
|
|
||
|
SIMD_FORCE_INLINE void btMatrix3x3::deSerialize(const struct btMatrix3x3Data& dataIn)
|
||
|
{
|
||
|
for (int i=0;i<3;i++)
|
||
|
m_el[i].deSerialize(dataIn.m_el[i]);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void btMatrix3x3::deSerializeFloat(const struct btMatrix3x3FloatData& dataIn)
|
||
|
{
|
||
|
for (int i=0;i<3;i++)
|
||
|
m_el[i].deSerializeFloat(dataIn.m_el[i]);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void btMatrix3x3::deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn)
|
||
|
{
|
||
|
for (int i=0;i<3;i++)
|
||
|
m_el[i].deSerializeDouble(dataIn.m_el[i]);
|
||
|
}
|
||
|
|
||
|
#endif //BT_MATRIX3x3_H
|
||
|
|