gremlin/libs/bullet/LinearMath/btHashMap.h

435 lines
8.7 KiB
C
Raw Normal View History

2011-01-18 20:02:48 +00:00
#ifndef BT_HASH_MAP_H
#define BT_HASH_MAP_H
#include "btAlignedObjectArray.h"
///very basic hashable string implementation, compatible with btHashMap
struct btHashString
{
const char* m_string;
unsigned int m_hash;
SIMD_FORCE_INLINE unsigned int getHash()const
{
return m_hash;
}
btHashString(const char* name)
:m_string(name)
{
/* magic numbers from http://www.isthe.com/chongo/tech/comp/fnv/ */
static const unsigned int InitialFNV = 2166136261u;
static const unsigned int FNVMultiple = 16777619u;
/* Fowler / Noll / Vo (FNV) Hash */
unsigned int hash = InitialFNV;
for(int i = 0; m_string[i]; i++)
{
hash = hash ^ (m_string[i]); /* xor the low 8 bits */
hash = hash * FNVMultiple; /* multiply by the magic number */
}
m_hash = hash;
}
int portableStringCompare(const char* src, const char* dst) const
{
int ret = 0 ;
while( ! (ret = *(unsigned char *)src - *(unsigned char *)dst) && *dst)
++src, ++dst;
if ( ret < 0 )
ret = -1 ;
else if ( ret > 0 )
ret = 1 ;
return( ret );
}
bool equals(const btHashString& other) const
{
return (m_string == other.m_string) ||
(0==portableStringCompare(m_string,other.m_string));
}
};
const int BT_HASH_NULL=0xffffffff;
class btHashInt
{
int m_uid;
public:
btHashInt(int uid) :m_uid(uid)
{
}
int getUid1() const
{
return m_uid;
}
void setUid1(int uid)
{
m_uid = uid;
}
bool equals(const btHashInt& other) const
{
return getUid1() == other.getUid1();
}
//to our success
SIMD_FORCE_INLINE unsigned int getHash()const
{
int key = m_uid;
// Thomas Wang's hash
key += ~(key << 15); key ^= (key >> 10); key += (key << 3); key ^= (key >> 6); key += ~(key << 11); key ^= (key >> 16);
return key;
}
};
class btHashPtr
{
union
{
const void* m_pointer;
int m_hashValues[2];
};
public:
btHashPtr(const void* ptr)
:m_pointer(ptr)
{
}
const void* getPointer() const
{
return m_pointer;
}
bool equals(const btHashPtr& other) const
{
return getPointer() == other.getPointer();
}
//to our success
SIMD_FORCE_INLINE unsigned int getHash()const
{
const bool VOID_IS_8 = ((sizeof(void*)==8));
int key = VOID_IS_8? m_hashValues[0]+m_hashValues[1] : m_hashValues[0];
// Thomas Wang's hash
key += ~(key << 15); key ^= (key >> 10); key += (key << 3); key ^= (key >> 6); key += ~(key << 11); key ^= (key >> 16);
return key;
}
};
template <class Value>
class btHashKeyPtr
{
int m_uid;
public:
btHashKeyPtr(int uid) :m_uid(uid)
{
}
int getUid1() const
{
return m_uid;
}
bool equals(const btHashKeyPtr<Value>& other) const
{
return getUid1() == other.getUid1();
}
//to our success
SIMD_FORCE_INLINE unsigned int getHash()const
{
int key = m_uid;
// Thomas Wang's hash
key += ~(key << 15); key ^= (key >> 10); key += (key << 3); key ^= (key >> 6); key += ~(key << 11); key ^= (key >> 16);
return key;
}
};
template <class Value>
class btHashKey
{
int m_uid;
public:
btHashKey(int uid) :m_uid(uid)
{
}
int getUid1() const
{
return m_uid;
}
bool equals(const btHashKey<Value>& other) const
{
return getUid1() == other.getUid1();
}
//to our success
SIMD_FORCE_INLINE unsigned int getHash()const
{
int key = m_uid;
// Thomas Wang's hash
key += ~(key << 15); key ^= (key >> 10); key += (key << 3); key ^= (key >> 6); key += ~(key << 11); key ^= (key >> 16);
return key;
}
};
///The btHashMap template class implements a generic and lightweight hashmap.
///A basic sample of how to use btHashMap is located in Demos\BasicDemo\main.cpp
template <class Key, class Value>
class btHashMap
{
protected:
btAlignedObjectArray<int> m_hashTable;
btAlignedObjectArray<int> m_next;
btAlignedObjectArray<Value> m_valueArray;
btAlignedObjectArray<Key> m_keyArray;
void growTables(const Key& /*key*/)
{
int newCapacity = m_valueArray.capacity();
if (m_hashTable.size() < newCapacity)
{
//grow hashtable and next table
int curHashtableSize = m_hashTable.size();
m_hashTable.resize(newCapacity);
m_next.resize(newCapacity);
int i;
for (i= 0; i < newCapacity; ++i)
{
m_hashTable[i] = BT_HASH_NULL;
}
for (i = 0; i < newCapacity; ++i)
{
m_next[i] = BT_HASH_NULL;
}
for(i=0;i<curHashtableSize;i++)
{
//const Value& value = m_valueArray[i];
//const Key& key = m_keyArray[i];
int hashValue = m_keyArray[i].getHash() & (m_valueArray.capacity()-1); // New hash value with new mask
m_next[i] = m_hashTable[hashValue];
m_hashTable[hashValue] = i;
}
}
}
public:
void insert(const Key& key, const Value& value) {
int hash = key.getHash() & (m_valueArray.capacity()-1);
//replace value if the key is already there
int index = findIndex(key);
if (index != BT_HASH_NULL)
{
m_valueArray[index]=value;
return;
}
int count = m_valueArray.size();
int oldCapacity = m_valueArray.capacity();
m_valueArray.push_back(value);
m_keyArray.push_back(key);
int newCapacity = m_valueArray.capacity();
if (oldCapacity < newCapacity)
{
growTables(key);
//hash with new capacity
hash = key.getHash() & (m_valueArray.capacity()-1);
}
m_next[count] = m_hashTable[hash];
m_hashTable[hash] = count;
}
void remove(const Key& key) {
int hash = key.getHash() & (m_valueArray.capacity()-1);
int pairIndex = findIndex(key);
if (pairIndex ==BT_HASH_NULL)
{
return;
}
// Remove the pair from the hash table.
int index = m_hashTable[hash];
btAssert(index != BT_HASH_NULL);
int previous = BT_HASH_NULL;
while (index != pairIndex)
{
previous = index;
index = m_next[index];
}
if (previous != BT_HASH_NULL)
{
btAssert(m_next[previous] == pairIndex);
m_next[previous] = m_next[pairIndex];
}
else
{
m_hashTable[hash] = m_next[pairIndex];
}
// We now move the last pair into spot of the
// pair being removed. We need to fix the hash
// table indices to support the move.
int lastPairIndex = m_valueArray.size() - 1;
// If the removed pair is the last pair, we are done.
if (lastPairIndex == pairIndex)
{
m_valueArray.pop_back();
m_keyArray.pop_back();
return;
}
// Remove the last pair from the hash table.
int lastHash = m_keyArray[lastPairIndex].getHash() & (m_valueArray.capacity()-1);
index = m_hashTable[lastHash];
btAssert(index != BT_HASH_NULL);
previous = BT_HASH_NULL;
while (index != lastPairIndex)
{
previous = index;
index = m_next[index];
}
if (previous != BT_HASH_NULL)
{
btAssert(m_next[previous] == lastPairIndex);
m_next[previous] = m_next[lastPairIndex];
}
else
{
m_hashTable[lastHash] = m_next[lastPairIndex];
}
// Copy the last pair into the remove pair's spot.
m_valueArray[pairIndex] = m_valueArray[lastPairIndex];
m_keyArray[pairIndex] = m_keyArray[lastPairIndex];
// Insert the last pair into the hash table
m_next[pairIndex] = m_hashTable[lastHash];
m_hashTable[lastHash] = pairIndex;
m_valueArray.pop_back();
m_keyArray.pop_back();
}
int size() const
{
return m_valueArray.size();
}
const Value* getAtIndex(int index) const
{
btAssert(index < m_valueArray.size());
return &m_valueArray[index];
}
Value* getAtIndex(int index)
{
btAssert(index < m_valueArray.size());
return &m_valueArray[index];
}
Value* operator[](const Key& key) {
return find(key);
}
const Value* find(const Key& key) const
{
int index = findIndex(key);
if (index == BT_HASH_NULL)
{
return NULL;
}
return &m_valueArray[index];
}
Value* find(const Key& key)
{
int index = findIndex(key);
if (index == BT_HASH_NULL)
{
return NULL;
}
return &m_valueArray[index];
}
int findIndex(const Key& key) const
{
unsigned int hash = key.getHash() & (m_valueArray.capacity()-1);
if (hash >= (unsigned int)m_hashTable.size())
{
return BT_HASH_NULL;
}
int index = m_hashTable[hash];
while ((index != BT_HASH_NULL) && key.equals(m_keyArray[index]) == false)
{
index = m_next[index];
}
return index;
}
void clear()
{
m_hashTable.clear();
m_next.clear();
m_valueArray.clear();
m_keyArray.clear();
}
};
#endif //BT_HASH_MAP_H