179 lines
4.9 KiB
C
179 lines
4.9 KiB
C
|
/*
|
||
|
Bullet Continuous Collision Detection and Physics Library
|
||
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
|
||
|
|
||
|
#ifndef btVoronoiSimplexSolver_H
|
||
|
#define btVoronoiSimplexSolver_H
|
||
|
|
||
|
#include "btSimplexSolverInterface.h"
|
||
|
|
||
|
|
||
|
|
||
|
#define VORONOI_SIMPLEX_MAX_VERTS 5
|
||
|
|
||
|
///disable next define, or use defaultCollisionConfiguration->getSimplexSolver()->setEqualVertexThreshold(0.f) to disable/configure
|
||
|
#define BT_USE_EQUAL_VERTEX_THRESHOLD
|
||
|
#define VORONOI_DEFAULT_EQUAL_VERTEX_THRESHOLD 0.0001f
|
||
|
|
||
|
|
||
|
struct btUsageBitfield{
|
||
|
btUsageBitfield()
|
||
|
{
|
||
|
reset();
|
||
|
}
|
||
|
|
||
|
void reset()
|
||
|
{
|
||
|
usedVertexA = false;
|
||
|
usedVertexB = false;
|
||
|
usedVertexC = false;
|
||
|
usedVertexD = false;
|
||
|
}
|
||
|
unsigned short usedVertexA : 1;
|
||
|
unsigned short usedVertexB : 1;
|
||
|
unsigned short usedVertexC : 1;
|
||
|
unsigned short usedVertexD : 1;
|
||
|
unsigned short unused1 : 1;
|
||
|
unsigned short unused2 : 1;
|
||
|
unsigned short unused3 : 1;
|
||
|
unsigned short unused4 : 1;
|
||
|
};
|
||
|
|
||
|
|
||
|
struct btSubSimplexClosestResult
|
||
|
{
|
||
|
btVector3 m_closestPointOnSimplex;
|
||
|
//MASK for m_usedVertices
|
||
|
//stores the simplex vertex-usage, using the MASK,
|
||
|
// if m_usedVertices & MASK then the related vertex is used
|
||
|
btUsageBitfield m_usedVertices;
|
||
|
btScalar m_barycentricCoords[4];
|
||
|
bool m_degenerate;
|
||
|
|
||
|
void reset()
|
||
|
{
|
||
|
m_degenerate = false;
|
||
|
setBarycentricCoordinates();
|
||
|
m_usedVertices.reset();
|
||
|
}
|
||
|
bool isValid()
|
||
|
{
|
||
|
bool valid = (m_barycentricCoords[0] >= btScalar(0.)) &&
|
||
|
(m_barycentricCoords[1] >= btScalar(0.)) &&
|
||
|
(m_barycentricCoords[2] >= btScalar(0.)) &&
|
||
|
(m_barycentricCoords[3] >= btScalar(0.));
|
||
|
|
||
|
|
||
|
return valid;
|
||
|
}
|
||
|
void setBarycentricCoordinates(btScalar a=btScalar(0.),btScalar b=btScalar(0.),btScalar c=btScalar(0.),btScalar d=btScalar(0.))
|
||
|
{
|
||
|
m_barycentricCoords[0] = a;
|
||
|
m_barycentricCoords[1] = b;
|
||
|
m_barycentricCoords[2] = c;
|
||
|
m_barycentricCoords[3] = d;
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
/// btVoronoiSimplexSolver is an implementation of the closest point distance algorithm from a 1-4 points simplex to the origin.
|
||
|
/// Can be used with GJK, as an alternative to Johnson distance algorithm.
|
||
|
#ifdef NO_VIRTUAL_INTERFACE
|
||
|
class btVoronoiSimplexSolver
|
||
|
#else
|
||
|
class btVoronoiSimplexSolver : public btSimplexSolverInterface
|
||
|
#endif
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
int m_numVertices;
|
||
|
|
||
|
btVector3 m_simplexVectorW[VORONOI_SIMPLEX_MAX_VERTS];
|
||
|
btVector3 m_simplexPointsP[VORONOI_SIMPLEX_MAX_VERTS];
|
||
|
btVector3 m_simplexPointsQ[VORONOI_SIMPLEX_MAX_VERTS];
|
||
|
|
||
|
|
||
|
|
||
|
btVector3 m_cachedP1;
|
||
|
btVector3 m_cachedP2;
|
||
|
btVector3 m_cachedV;
|
||
|
btVector3 m_lastW;
|
||
|
|
||
|
btScalar m_equalVertexThreshold;
|
||
|
bool m_cachedValidClosest;
|
||
|
|
||
|
|
||
|
btSubSimplexClosestResult m_cachedBC;
|
||
|
|
||
|
bool m_needsUpdate;
|
||
|
|
||
|
void removeVertex(int index);
|
||
|
void reduceVertices (const btUsageBitfield& usedVerts);
|
||
|
bool updateClosestVectorAndPoints();
|
||
|
|
||
|
bool closestPtPointTetrahedron(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d, btSubSimplexClosestResult& finalResult);
|
||
|
int pointOutsideOfPlane(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d);
|
||
|
bool closestPtPointTriangle(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c,btSubSimplexClosestResult& result);
|
||
|
|
||
|
public:
|
||
|
|
||
|
btVoronoiSimplexSolver()
|
||
|
: m_equalVertexThreshold(VORONOI_DEFAULT_EQUAL_VERTEX_THRESHOLD)
|
||
|
{
|
||
|
}
|
||
|
void reset();
|
||
|
|
||
|
void addVertex(const btVector3& w, const btVector3& p, const btVector3& q);
|
||
|
|
||
|
void setEqualVertexThreshold(btScalar threshold)
|
||
|
{
|
||
|
m_equalVertexThreshold = threshold;
|
||
|
}
|
||
|
|
||
|
btScalar getEqualVertexThreshold() const
|
||
|
{
|
||
|
return m_equalVertexThreshold;
|
||
|
}
|
||
|
|
||
|
bool closest(btVector3& v);
|
||
|
|
||
|
btScalar maxVertex();
|
||
|
|
||
|
bool fullSimplex() const
|
||
|
{
|
||
|
return (m_numVertices == 4);
|
||
|
}
|
||
|
|
||
|
int getSimplex(btVector3 *pBuf, btVector3 *qBuf, btVector3 *yBuf) const;
|
||
|
|
||
|
bool inSimplex(const btVector3& w);
|
||
|
|
||
|
void backup_closest(btVector3& v) ;
|
||
|
|
||
|
bool emptySimplex() const ;
|
||
|
|
||
|
void compute_points(btVector3& p1, btVector3& p2) ;
|
||
|
|
||
|
int numVertices() const
|
||
|
{
|
||
|
return m_numVertices;
|
||
|
}
|
||
|
|
||
|
|
||
|
};
|
||
|
|
||
|
#endif //VoronoiSimplexSolver
|