210 lines
6.5 KiB
C++
210 lines
6.5 KiB
C++
|
/*
|
||
|
Bullet Continuous Collision Detection and Physics Library
|
||
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
#include "LinearMath/btScalar.h"
|
||
|
#include "SphereTriangleDetector.h"
|
||
|
#include "BulletCollision/CollisionShapes/btTriangleShape.h"
|
||
|
#include "BulletCollision/CollisionShapes/btSphereShape.h"
|
||
|
|
||
|
|
||
|
SphereTriangleDetector::SphereTriangleDetector(btSphereShape* sphere,btTriangleShape* triangle,btScalar contactBreakingThreshold)
|
||
|
:m_sphere(sphere),
|
||
|
m_triangle(triangle),
|
||
|
m_contactBreakingThreshold(contactBreakingThreshold)
|
||
|
{
|
||
|
|
||
|
}
|
||
|
|
||
|
void SphereTriangleDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw,bool swapResults)
|
||
|
{
|
||
|
|
||
|
(void)debugDraw;
|
||
|
const btTransform& transformA = input.m_transformA;
|
||
|
const btTransform& transformB = input.m_transformB;
|
||
|
|
||
|
btVector3 point,normal;
|
||
|
btScalar timeOfImpact = btScalar(1.);
|
||
|
btScalar depth = btScalar(0.);
|
||
|
// output.m_distance = btScalar(BT_LARGE_FLOAT);
|
||
|
//move sphere into triangle space
|
||
|
btTransform sphereInTr = transformB.inverseTimes(transformA);
|
||
|
|
||
|
if (collide(sphereInTr.getOrigin(),point,normal,depth,timeOfImpact,m_contactBreakingThreshold))
|
||
|
{
|
||
|
if (swapResults)
|
||
|
{
|
||
|
btVector3 normalOnB = transformB.getBasis()*normal;
|
||
|
btVector3 normalOnA = -normalOnB;
|
||
|
btVector3 pointOnA = transformB*point+normalOnB*depth;
|
||
|
output.addContactPoint(normalOnA,pointOnA,depth);
|
||
|
} else
|
||
|
{
|
||
|
output.addContactPoint(transformB.getBasis()*normal,transformB*point,depth);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
#define MAX_OVERLAP btScalar(0.)
|
||
|
|
||
|
|
||
|
|
||
|
// See also geometrictools.com
|
||
|
// Basic idea: D = |p - (lo + t0*lv)| where t0 = lv . (p - lo) / lv . lv
|
||
|
btScalar SegmentSqrDistance(const btVector3& from, const btVector3& to,const btVector3 &p, btVector3 &nearest);
|
||
|
|
||
|
btScalar SegmentSqrDistance(const btVector3& from, const btVector3& to,const btVector3 &p, btVector3 &nearest) {
|
||
|
btVector3 diff = p - from;
|
||
|
btVector3 v = to - from;
|
||
|
btScalar t = v.dot(diff);
|
||
|
|
||
|
if (t > 0) {
|
||
|
btScalar dotVV = v.dot(v);
|
||
|
if (t < dotVV) {
|
||
|
t /= dotVV;
|
||
|
diff -= t*v;
|
||
|
} else {
|
||
|
t = 1;
|
||
|
diff -= v;
|
||
|
}
|
||
|
} else
|
||
|
t = 0;
|
||
|
|
||
|
nearest = from + t*v;
|
||
|
return diff.dot(diff);
|
||
|
}
|
||
|
|
||
|
bool SphereTriangleDetector::facecontains(const btVector3 &p,const btVector3* vertices,btVector3& normal) {
|
||
|
btVector3 lp(p);
|
||
|
btVector3 lnormal(normal);
|
||
|
|
||
|
return pointInTriangle(vertices, lnormal, &lp);
|
||
|
}
|
||
|
|
||
|
///combined discrete/continuous sphere-triangle
|
||
|
bool SphereTriangleDetector::collide(const btVector3& sphereCenter,btVector3 &point, btVector3& resultNormal, btScalar& depth, btScalar &timeOfImpact, btScalar contactBreakingThreshold)
|
||
|
{
|
||
|
|
||
|
const btVector3* vertices = &m_triangle->getVertexPtr(0);
|
||
|
const btVector3& c = sphereCenter;
|
||
|
btScalar r = m_sphere->getRadius();
|
||
|
|
||
|
btVector3 delta (0,0,0);
|
||
|
|
||
|
btVector3 normal = (vertices[1]-vertices[0]).cross(vertices[2]-vertices[0]);
|
||
|
normal.normalize();
|
||
|
btVector3 p1ToCentre = c - vertices[0];
|
||
|
btScalar distanceFromPlane = p1ToCentre.dot(normal);
|
||
|
|
||
|
if (distanceFromPlane < btScalar(0.))
|
||
|
{
|
||
|
//triangle facing the other way
|
||
|
|
||
|
distanceFromPlane *= btScalar(-1.);
|
||
|
normal *= btScalar(-1.);
|
||
|
}
|
||
|
|
||
|
btScalar contactMargin = contactBreakingThreshold;
|
||
|
bool isInsideContactPlane = distanceFromPlane < r + contactMargin;
|
||
|
bool isInsideShellPlane = distanceFromPlane < r;
|
||
|
|
||
|
btScalar deltaDotNormal = delta.dot(normal);
|
||
|
if (!isInsideShellPlane && deltaDotNormal >= btScalar(0.0))
|
||
|
return false;
|
||
|
|
||
|
// Check for contact / intersection
|
||
|
bool hasContact = false;
|
||
|
btVector3 contactPoint;
|
||
|
if (isInsideContactPlane) {
|
||
|
if (facecontains(c,vertices,normal)) {
|
||
|
// Inside the contact wedge - touches a point on the shell plane
|
||
|
hasContact = true;
|
||
|
contactPoint = c - normal*distanceFromPlane;
|
||
|
} else {
|
||
|
// Could be inside one of the contact capsules
|
||
|
btScalar contactCapsuleRadiusSqr = (r + contactMargin) * (r + contactMargin);
|
||
|
btVector3 nearestOnEdge;
|
||
|
for (int i = 0; i < m_triangle->getNumEdges(); i++) {
|
||
|
|
||
|
btVector3 pa;
|
||
|
btVector3 pb;
|
||
|
|
||
|
m_triangle->getEdge(i,pa,pb);
|
||
|
|
||
|
btScalar distanceSqr = SegmentSqrDistance(pa,pb,c, nearestOnEdge);
|
||
|
if (distanceSqr < contactCapsuleRadiusSqr) {
|
||
|
// Yep, we're inside a capsule
|
||
|
hasContact = true;
|
||
|
contactPoint = nearestOnEdge;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (hasContact) {
|
||
|
btVector3 contactToCentre = c - contactPoint;
|
||
|
btScalar distanceSqr = contactToCentre.length2();
|
||
|
if (distanceSqr < (r - MAX_OVERLAP)*(r - MAX_OVERLAP)) {
|
||
|
btScalar distance = btSqrt(distanceSqr);
|
||
|
resultNormal = contactToCentre;
|
||
|
resultNormal.normalize();
|
||
|
point = contactPoint;
|
||
|
depth = -(r-distance);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if (delta.dot(contactToCentre) >= btScalar(0.0))
|
||
|
return false;
|
||
|
|
||
|
// Moving towards the contact point -> collision
|
||
|
point = contactPoint;
|
||
|
timeOfImpact = btScalar(0.0);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
bool SphereTriangleDetector::pointInTriangle(const btVector3 vertices[], const btVector3 &normal, btVector3 *p )
|
||
|
{
|
||
|
const btVector3* p1 = &vertices[0];
|
||
|
const btVector3* p2 = &vertices[1];
|
||
|
const btVector3* p3 = &vertices[2];
|
||
|
|
||
|
btVector3 edge1( *p2 - *p1 );
|
||
|
btVector3 edge2( *p3 - *p2 );
|
||
|
btVector3 edge3( *p1 - *p3 );
|
||
|
|
||
|
btVector3 p1_to_p( *p - *p1 );
|
||
|
btVector3 p2_to_p( *p - *p2 );
|
||
|
btVector3 p3_to_p( *p - *p3 );
|
||
|
|
||
|
btVector3 edge1_normal( edge1.cross(normal));
|
||
|
btVector3 edge2_normal( edge2.cross(normal));
|
||
|
btVector3 edge3_normal( edge3.cross(normal));
|
||
|
|
||
|
btScalar r1, r2, r3;
|
||
|
r1 = edge1_normal.dot( p1_to_p );
|
||
|
r2 = edge2_normal.dot( p2_to_p );
|
||
|
r3 = edge3_normal.dot( p3_to_p );
|
||
|
if ( ( r1 > 0 && r2 > 0 && r3 > 0 ) ||
|
||
|
( r1 <= 0 && r2 <= 0 && r3 <= 0 ) )
|
||
|
return true;
|
||
|
return false;
|
||
|
|
||
|
}
|