581 lines
19 KiB
C++
581 lines
19 KiB
C++
|
/*
|
||
|
Bullet Continuous Collision Detection and Physics Library
|
||
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
///Specialized capsule-capsule collision algorithm has been added for Bullet 2.75 release to increase ragdoll performance
|
||
|
///If you experience problems with capsule-capsule collision, try to define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER and report it in the Bullet forums
|
||
|
///with reproduction case
|
||
|
//define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER 1
|
||
|
|
||
|
#include "btConvexConvexAlgorithm.h"
|
||
|
|
||
|
//#include <stdio.h>
|
||
|
#include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
|
||
|
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
|
||
|
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
|
||
|
#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
||
|
#include "BulletCollision/CollisionShapes/btCapsuleShape.h"
|
||
|
|
||
|
|
||
|
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
|
||
|
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
|
||
|
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
|
||
|
#include "BulletCollision/CollisionShapes/btBoxShape.h"
|
||
|
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"
|
||
|
|
||
|
#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
|
||
|
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
|
||
|
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
|
||
|
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
|
||
|
|
||
|
|
||
|
|
||
|
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
|
||
|
#include "BulletCollision/CollisionShapes/btSphereShape.h"
|
||
|
|
||
|
#include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
|
||
|
|
||
|
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
|
||
|
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
|
||
|
|
||
|
|
||
|
|
||
|
///////////
|
||
|
|
||
|
|
||
|
|
||
|
static SIMD_FORCE_INLINE void segmentsClosestPoints(
|
||
|
btVector3& ptsVector,
|
||
|
btVector3& offsetA,
|
||
|
btVector3& offsetB,
|
||
|
btScalar& tA, btScalar& tB,
|
||
|
const btVector3& translation,
|
||
|
const btVector3& dirA, btScalar hlenA,
|
||
|
const btVector3& dirB, btScalar hlenB )
|
||
|
{
|
||
|
// compute the parameters of the closest points on each line segment
|
||
|
|
||
|
btScalar dirA_dot_dirB = btDot(dirA,dirB);
|
||
|
btScalar dirA_dot_trans = btDot(dirA,translation);
|
||
|
btScalar dirB_dot_trans = btDot(dirB,translation);
|
||
|
|
||
|
btScalar denom = 1.0f - dirA_dot_dirB * dirA_dot_dirB;
|
||
|
|
||
|
if ( denom == 0.0f ) {
|
||
|
tA = 0.0f;
|
||
|
} else {
|
||
|
tA = ( dirA_dot_trans - dirB_dot_trans * dirA_dot_dirB ) / denom;
|
||
|
if ( tA < -hlenA )
|
||
|
tA = -hlenA;
|
||
|
else if ( tA > hlenA )
|
||
|
tA = hlenA;
|
||
|
}
|
||
|
|
||
|
tB = tA * dirA_dot_dirB - dirB_dot_trans;
|
||
|
|
||
|
if ( tB < -hlenB ) {
|
||
|
tB = -hlenB;
|
||
|
tA = tB * dirA_dot_dirB + dirA_dot_trans;
|
||
|
|
||
|
if ( tA < -hlenA )
|
||
|
tA = -hlenA;
|
||
|
else if ( tA > hlenA )
|
||
|
tA = hlenA;
|
||
|
} else if ( tB > hlenB ) {
|
||
|
tB = hlenB;
|
||
|
tA = tB * dirA_dot_dirB + dirA_dot_trans;
|
||
|
|
||
|
if ( tA < -hlenA )
|
||
|
tA = -hlenA;
|
||
|
else if ( tA > hlenA )
|
||
|
tA = hlenA;
|
||
|
}
|
||
|
|
||
|
// compute the closest points relative to segment centers.
|
||
|
|
||
|
offsetA = dirA * tA;
|
||
|
offsetB = dirB * tB;
|
||
|
|
||
|
ptsVector = translation - offsetA + offsetB;
|
||
|
}
|
||
|
|
||
|
|
||
|
static SIMD_FORCE_INLINE btScalar capsuleCapsuleDistance(
|
||
|
btVector3& normalOnB,
|
||
|
btVector3& pointOnB,
|
||
|
btScalar capsuleLengthA,
|
||
|
btScalar capsuleRadiusA,
|
||
|
btScalar capsuleLengthB,
|
||
|
btScalar capsuleRadiusB,
|
||
|
int capsuleAxisA,
|
||
|
int capsuleAxisB,
|
||
|
const btTransform& transformA,
|
||
|
const btTransform& transformB,
|
||
|
btScalar distanceThreshold )
|
||
|
{
|
||
|
btVector3 directionA = transformA.getBasis().getColumn(capsuleAxisA);
|
||
|
btVector3 translationA = transformA.getOrigin();
|
||
|
btVector3 directionB = transformB.getBasis().getColumn(capsuleAxisB);
|
||
|
btVector3 translationB = transformB.getOrigin();
|
||
|
|
||
|
// translation between centers
|
||
|
|
||
|
btVector3 translation = translationB - translationA;
|
||
|
|
||
|
// compute the closest points of the capsule line segments
|
||
|
|
||
|
btVector3 ptsVector; // the vector between the closest points
|
||
|
|
||
|
btVector3 offsetA, offsetB; // offsets from segment centers to their closest points
|
||
|
btScalar tA, tB; // parameters on line segment
|
||
|
|
||
|
segmentsClosestPoints( ptsVector, offsetA, offsetB, tA, tB, translation,
|
||
|
directionA, capsuleLengthA, directionB, capsuleLengthB );
|
||
|
|
||
|
btScalar distance = ptsVector.length() - capsuleRadiusA - capsuleRadiusB;
|
||
|
|
||
|
if ( distance > distanceThreshold )
|
||
|
return distance;
|
||
|
|
||
|
btScalar lenSqr = ptsVector.length2();
|
||
|
if (lenSqr<= (SIMD_EPSILON*SIMD_EPSILON))
|
||
|
{
|
||
|
//degenerate case where 2 capsules are likely at the same location: take a vector tangential to 'directionA'
|
||
|
btVector3 q;
|
||
|
btPlaneSpace1(directionA,normalOnB,q);
|
||
|
} else
|
||
|
{
|
||
|
// compute the contact normal
|
||
|
normalOnB = ptsVector*-btRecipSqrt(lenSqr);
|
||
|
}
|
||
|
pointOnB = transformB.getOrigin()+offsetB + normalOnB * capsuleRadiusB;
|
||
|
|
||
|
return distance;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
//////////
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
btConvexConvexAlgorithm::CreateFunc::CreateFunc(btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver)
|
||
|
{
|
||
|
m_numPerturbationIterations = 0;
|
||
|
m_minimumPointsPerturbationThreshold = 3;
|
||
|
m_simplexSolver = simplexSolver;
|
||
|
m_pdSolver = pdSolver;
|
||
|
}
|
||
|
|
||
|
btConvexConvexAlgorithm::CreateFunc::~CreateFunc()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
btConvexConvexAlgorithm::btConvexConvexAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver,int numPerturbationIterations, int minimumPointsPerturbationThreshold)
|
||
|
: btActivatingCollisionAlgorithm(ci,body0,body1),
|
||
|
m_simplexSolver(simplexSolver),
|
||
|
m_pdSolver(pdSolver),
|
||
|
m_ownManifold (false),
|
||
|
m_manifoldPtr(mf),
|
||
|
m_lowLevelOfDetail(false),
|
||
|
#ifdef USE_SEPDISTANCE_UTIL2
|
||
|
m_sepDistance((static_cast<btConvexShape*>(body0->getCollisionShape()))->getAngularMotionDisc(),
|
||
|
(static_cast<btConvexShape*>(body1->getCollisionShape()))->getAngularMotionDisc()),
|
||
|
#endif
|
||
|
m_numPerturbationIterations(numPerturbationIterations),
|
||
|
m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold)
|
||
|
{
|
||
|
(void)body0;
|
||
|
(void)body1;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
btConvexConvexAlgorithm::~btConvexConvexAlgorithm()
|
||
|
{
|
||
|
if (m_ownManifold)
|
||
|
{
|
||
|
if (m_manifoldPtr)
|
||
|
m_dispatcher->releaseManifold(m_manifoldPtr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btConvexConvexAlgorithm ::setLowLevelOfDetail(bool useLowLevel)
|
||
|
{
|
||
|
m_lowLevelOfDetail = useLowLevel;
|
||
|
}
|
||
|
|
||
|
|
||
|
struct btPerturbedContactResult : public btManifoldResult
|
||
|
{
|
||
|
btManifoldResult* m_originalManifoldResult;
|
||
|
btTransform m_transformA;
|
||
|
btTransform m_transformB;
|
||
|
btTransform m_unPerturbedTransform;
|
||
|
bool m_perturbA;
|
||
|
btIDebugDraw* m_debugDrawer;
|
||
|
|
||
|
|
||
|
btPerturbedContactResult(btManifoldResult* originalResult,const btTransform& transformA,const btTransform& transformB,const btTransform& unPerturbedTransform,bool perturbA,btIDebugDraw* debugDrawer)
|
||
|
:m_originalManifoldResult(originalResult),
|
||
|
m_transformA(transformA),
|
||
|
m_transformB(transformB),
|
||
|
m_unPerturbedTransform(unPerturbedTransform),
|
||
|
m_perturbA(perturbA),
|
||
|
m_debugDrawer(debugDrawer)
|
||
|
{
|
||
|
}
|
||
|
virtual ~ btPerturbedContactResult()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar orgDepth)
|
||
|
{
|
||
|
btVector3 endPt,startPt;
|
||
|
btScalar newDepth;
|
||
|
btVector3 newNormal;
|
||
|
|
||
|
if (m_perturbA)
|
||
|
{
|
||
|
btVector3 endPtOrg = pointInWorld + normalOnBInWorld*orgDepth;
|
||
|
endPt = (m_unPerturbedTransform*m_transformA.inverse())(endPtOrg);
|
||
|
newDepth = (endPt - pointInWorld).dot(normalOnBInWorld);
|
||
|
startPt = endPt+normalOnBInWorld*newDepth;
|
||
|
} else
|
||
|
{
|
||
|
endPt = pointInWorld + normalOnBInWorld*orgDepth;
|
||
|
startPt = (m_unPerturbedTransform*m_transformB.inverse())(pointInWorld);
|
||
|
newDepth = (endPt - startPt).dot(normalOnBInWorld);
|
||
|
|
||
|
}
|
||
|
|
||
|
//#define DEBUG_CONTACTS 1
|
||
|
#ifdef DEBUG_CONTACTS
|
||
|
m_debugDrawer->drawLine(startPt,endPt,btVector3(1,0,0));
|
||
|
m_debugDrawer->drawSphere(startPt,0.05,btVector3(0,1,0));
|
||
|
m_debugDrawer->drawSphere(endPt,0.05,btVector3(0,0,1));
|
||
|
#endif //DEBUG_CONTACTS
|
||
|
|
||
|
|
||
|
m_originalManifoldResult->addContactPoint(normalOnBInWorld,startPt,newDepth);
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
extern btScalar gContactBreakingThreshold;
|
||
|
|
||
|
|
||
|
//
|
||
|
// Convex-Convex collision algorithm
|
||
|
//
|
||
|
void btConvexConvexAlgorithm ::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
||
|
{
|
||
|
|
||
|
if (!m_manifoldPtr)
|
||
|
{
|
||
|
//swapped?
|
||
|
m_manifoldPtr = m_dispatcher->getNewManifold(body0,body1);
|
||
|
m_ownManifold = true;
|
||
|
}
|
||
|
resultOut->setPersistentManifold(m_manifoldPtr);
|
||
|
|
||
|
//comment-out next line to test multi-contact generation
|
||
|
//resultOut->getPersistentManifold()->clearManifold();
|
||
|
|
||
|
|
||
|
btConvexShape* min0 = static_cast<btConvexShape*>(body0->getCollisionShape());
|
||
|
btConvexShape* min1 = static_cast<btConvexShape*>(body1->getCollisionShape());
|
||
|
|
||
|
btVector3 normalOnB;
|
||
|
btVector3 pointOnBWorld;
|
||
|
#ifndef BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
|
||
|
if ((min0->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) && (min1->getShapeType() == CAPSULE_SHAPE_PROXYTYPE))
|
||
|
{
|
||
|
btCapsuleShape* capsuleA = (btCapsuleShape*) min0;
|
||
|
btCapsuleShape* capsuleB = (btCapsuleShape*) min1;
|
||
|
btVector3 localScalingA = capsuleA->getLocalScaling();
|
||
|
btVector3 localScalingB = capsuleB->getLocalScaling();
|
||
|
|
||
|
btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
|
||
|
|
||
|
btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld,capsuleA->getHalfHeight(),capsuleA->getRadius(),
|
||
|
capsuleB->getHalfHeight(),capsuleB->getRadius(),capsuleA->getUpAxis(),capsuleB->getUpAxis(),
|
||
|
body0->getWorldTransform(),body1->getWorldTransform(),threshold);
|
||
|
|
||
|
if (dist<threshold)
|
||
|
{
|
||
|
btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON));
|
||
|
resultOut->addContactPoint(normalOnB,pointOnBWorld,dist);
|
||
|
}
|
||
|
resultOut->refreshContactPoints();
|
||
|
return;
|
||
|
}
|
||
|
#endif //BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
|
||
|
|
||
|
|
||
|
#ifdef USE_SEPDISTANCE_UTIL2
|
||
|
if (dispatchInfo.m_useConvexConservativeDistanceUtil)
|
||
|
{
|
||
|
m_sepDistance.updateSeparatingDistance(body0->getWorldTransform(),body1->getWorldTransform());
|
||
|
}
|
||
|
|
||
|
if (!dispatchInfo.m_useConvexConservativeDistanceUtil || m_sepDistance.getConservativeSeparatingDistance()<=0.f)
|
||
|
#endif //USE_SEPDISTANCE_UTIL2
|
||
|
|
||
|
{
|
||
|
|
||
|
|
||
|
btGjkPairDetector::ClosestPointInput input;
|
||
|
|
||
|
btGjkPairDetector gjkPairDetector(min0,min1,m_simplexSolver,m_pdSolver);
|
||
|
//TODO: if (dispatchInfo.m_useContinuous)
|
||
|
gjkPairDetector.setMinkowskiA(min0);
|
||
|
gjkPairDetector.setMinkowskiB(min1);
|
||
|
|
||
|
#ifdef USE_SEPDISTANCE_UTIL2
|
||
|
if (dispatchInfo.m_useConvexConservativeDistanceUtil)
|
||
|
{
|
||
|
input.m_maximumDistanceSquared = BT_LARGE_FLOAT;
|
||
|
} else
|
||
|
#endif //USE_SEPDISTANCE_UTIL2
|
||
|
{
|
||
|
if (dispatchInfo.m_convexMaxDistanceUseCPT)
|
||
|
{
|
||
|
input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactProcessingThreshold();
|
||
|
} else
|
||
|
{
|
||
|
input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
|
||
|
}
|
||
|
input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
|
||
|
}
|
||
|
|
||
|
input.m_stackAlloc = dispatchInfo.m_stackAllocator;
|
||
|
input.m_transformA = body0->getWorldTransform();
|
||
|
input.m_transformB = body1->getWorldTransform();
|
||
|
|
||
|
gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
|
||
|
|
||
|
|
||
|
|
||
|
#ifdef USE_SEPDISTANCE_UTIL2
|
||
|
btScalar sepDist = 0.f;
|
||
|
if (dispatchInfo.m_useConvexConservativeDistanceUtil)
|
||
|
{
|
||
|
sepDist = gjkPairDetector.getCachedSeparatingDistance();
|
||
|
if (sepDist>SIMD_EPSILON)
|
||
|
{
|
||
|
sepDist += dispatchInfo.m_convexConservativeDistanceThreshold;
|
||
|
//now perturbe directions to get multiple contact points
|
||
|
|
||
|
}
|
||
|
}
|
||
|
#endif //USE_SEPDISTANCE_UTIL2
|
||
|
|
||
|
//now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects
|
||
|
|
||
|
//perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points
|
||
|
if (m_numPerturbationIterations && resultOut->getPersistentManifold()->getNumContacts() < m_minimumPointsPerturbationThreshold)
|
||
|
{
|
||
|
|
||
|
int i;
|
||
|
btVector3 v0,v1;
|
||
|
btVector3 sepNormalWorldSpace;
|
||
|
|
||
|
sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis().normalized();
|
||
|
btPlaneSpace1(sepNormalWorldSpace,v0,v1);
|
||
|
|
||
|
|
||
|
bool perturbeA = true;
|
||
|
const btScalar angleLimit = 0.125f * SIMD_PI;
|
||
|
btScalar perturbeAngle;
|
||
|
btScalar radiusA = min0->getAngularMotionDisc();
|
||
|
btScalar radiusB = min1->getAngularMotionDisc();
|
||
|
if (radiusA < radiusB)
|
||
|
{
|
||
|
perturbeAngle = gContactBreakingThreshold /radiusA;
|
||
|
perturbeA = true;
|
||
|
} else
|
||
|
{
|
||
|
perturbeAngle = gContactBreakingThreshold / radiusB;
|
||
|
perturbeA = false;
|
||
|
}
|
||
|
if ( perturbeAngle > angleLimit )
|
||
|
perturbeAngle = angleLimit;
|
||
|
|
||
|
btTransform unPerturbedTransform;
|
||
|
if (perturbeA)
|
||
|
{
|
||
|
unPerturbedTransform = input.m_transformA;
|
||
|
} else
|
||
|
{
|
||
|
unPerturbedTransform = input.m_transformB;
|
||
|
}
|
||
|
|
||
|
for ( i=0;i<m_numPerturbationIterations;i++)
|
||
|
{
|
||
|
if (v0.length2()>SIMD_EPSILON)
|
||
|
{
|
||
|
btQuaternion perturbeRot(v0,perturbeAngle);
|
||
|
btScalar iterationAngle = i*(SIMD_2_PI/btScalar(m_numPerturbationIterations));
|
||
|
btQuaternion rotq(sepNormalWorldSpace,iterationAngle);
|
||
|
|
||
|
|
||
|
if (perturbeA)
|
||
|
{
|
||
|
input.m_transformA.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body0->getWorldTransform().getBasis());
|
||
|
input.m_transformB = body1->getWorldTransform();
|
||
|
#ifdef DEBUG_CONTACTS
|
||
|
dispatchInfo.m_debugDraw->drawTransform(input.m_transformA,10.0);
|
||
|
#endif //DEBUG_CONTACTS
|
||
|
} else
|
||
|
{
|
||
|
input.m_transformA = body0->getWorldTransform();
|
||
|
input.m_transformB.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body1->getWorldTransform().getBasis());
|
||
|
#ifdef DEBUG_CONTACTS
|
||
|
dispatchInfo.m_debugDraw->drawTransform(input.m_transformB,10.0);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
btPerturbedContactResult perturbedResultOut(resultOut,input.m_transformA,input.m_transformB,unPerturbedTransform,perturbeA,dispatchInfo.m_debugDraw);
|
||
|
gjkPairDetector.getClosestPoints(input,perturbedResultOut,dispatchInfo.m_debugDraw);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
#ifdef USE_SEPDISTANCE_UTIL2
|
||
|
if (dispatchInfo.m_useConvexConservativeDistanceUtil && (sepDist>SIMD_EPSILON))
|
||
|
{
|
||
|
m_sepDistance.initSeparatingDistance(gjkPairDetector.getCachedSeparatingAxis(),sepDist,body0->getWorldTransform(),body1->getWorldTransform());
|
||
|
}
|
||
|
#endif //USE_SEPDISTANCE_UTIL2
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
if (m_ownManifold)
|
||
|
{
|
||
|
resultOut->refreshContactPoints();
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
bool disableCcd = false;
|
||
|
btScalar btConvexConvexAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
||
|
{
|
||
|
(void)resultOut;
|
||
|
(void)dispatchInfo;
|
||
|
///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold
|
||
|
|
||
|
///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
|
||
|
///col0->m_worldTransform,
|
||
|
btScalar resultFraction = btScalar(1.);
|
||
|
|
||
|
|
||
|
btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2();
|
||
|
btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2();
|
||
|
|
||
|
if (squareMot0 < col0->getCcdSquareMotionThreshold() &&
|
||
|
squareMot1 < col1->getCcdSquareMotionThreshold())
|
||
|
return resultFraction;
|
||
|
|
||
|
if (disableCcd)
|
||
|
return btScalar(1.);
|
||
|
|
||
|
|
||
|
//An adhoc way of testing the Continuous Collision Detection algorithms
|
||
|
//One object is approximated as a sphere, to simplify things
|
||
|
//Starting in penetration should report no time of impact
|
||
|
//For proper CCD, better accuracy and handling of 'allowed' penetration should be added
|
||
|
//also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
|
||
|
|
||
|
|
||
|
/// Convex0 against sphere for Convex1
|
||
|
{
|
||
|
btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape());
|
||
|
|
||
|
btSphereShape sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
|
||
|
btConvexCast::CastResult result;
|
||
|
btVoronoiSimplexSolver voronoiSimplex;
|
||
|
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
|
||
|
///Simplification, one object is simplified as a sphere
|
||
|
btGjkConvexCast ccd1( convex0 ,&sphere1,&voronoiSimplex);
|
||
|
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
|
||
|
if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
|
||
|
col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
|
||
|
{
|
||
|
|
||
|
//store result.m_fraction in both bodies
|
||
|
|
||
|
if (col0->getHitFraction()> result.m_fraction)
|
||
|
col0->setHitFraction( result.m_fraction );
|
||
|
|
||
|
if (col1->getHitFraction() > result.m_fraction)
|
||
|
col1->setHitFraction( result.m_fraction);
|
||
|
|
||
|
if (resultFraction > result.m_fraction)
|
||
|
resultFraction = result.m_fraction;
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
/// Sphere (for convex0) against Convex1
|
||
|
{
|
||
|
btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape());
|
||
|
|
||
|
btSphereShape sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
|
||
|
btConvexCast::CastResult result;
|
||
|
btVoronoiSimplexSolver voronoiSimplex;
|
||
|
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
|
||
|
///Simplification, one object is simplified as a sphere
|
||
|
btGjkConvexCast ccd1(&sphere0,convex1,&voronoiSimplex);
|
||
|
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
|
||
|
if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
|
||
|
col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
|
||
|
{
|
||
|
|
||
|
//store result.m_fraction in both bodies
|
||
|
|
||
|
if (col0->getHitFraction() > result.m_fraction)
|
||
|
col0->setHitFraction( result.m_fraction);
|
||
|
|
||
|
if (col1->getHitFraction() > result.m_fraction)
|
||
|
col1->setHitFraction( result.m_fraction);
|
||
|
|
||
|
if (resultFraction > result.m_fraction)
|
||
|
resultFraction = result.m_fraction;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return resultFraction;
|
||
|
|
||
|
}
|
||
|
|