490 lines
17 KiB
C++
Raw Normal View History

2011-01-18 21:02:48 +01:00
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btMultiSapBroadphase.h"
#include "btSimpleBroadphase.h"
#include "LinearMath/btAabbUtil2.h"
#include "btQuantizedBvh.h"
/// btSapBroadphaseArray m_sapBroadphases;
/// btOverlappingPairCache* m_overlappingPairs;
extern int gOverlappingPairs;
/*
class btMultiSapSortedOverlappingPairCache : public btSortedOverlappingPairCache
{
public:
virtual btBroadphasePair* addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
{
return btSortedOverlappingPairCache::addOverlappingPair((btBroadphaseProxy*)proxy0->m_multiSapParentProxy,(btBroadphaseProxy*)proxy1->m_multiSapParentProxy);
}
};
*/
btMultiSapBroadphase::btMultiSapBroadphase(int /*maxProxies*/,btOverlappingPairCache* pairCache)
:m_overlappingPairs(pairCache),
m_optimizedAabbTree(0),
m_ownsPairCache(false),
m_invalidPair(0)
{
if (!m_overlappingPairs)
{
m_ownsPairCache = true;
void* mem = btAlignedAlloc(sizeof(btSortedOverlappingPairCache),16);
m_overlappingPairs = new (mem)btSortedOverlappingPairCache();
}
struct btMultiSapOverlapFilterCallback : public btOverlapFilterCallback
{
virtual ~btMultiSapOverlapFilterCallback()
{}
// return true when pairs need collision
virtual bool needBroadphaseCollision(btBroadphaseProxy* childProxy0,btBroadphaseProxy* childProxy1) const
{
btBroadphaseProxy* multiProxy0 = (btBroadphaseProxy*)childProxy0->m_multiSapParentProxy;
btBroadphaseProxy* multiProxy1 = (btBroadphaseProxy*)childProxy1->m_multiSapParentProxy;
bool collides = (multiProxy0->m_collisionFilterGroup & multiProxy1->m_collisionFilterMask) != 0;
collides = collides && (multiProxy1->m_collisionFilterGroup & multiProxy0->m_collisionFilterMask);
return collides;
}
};
void* mem = btAlignedAlloc(sizeof(btMultiSapOverlapFilterCallback),16);
m_filterCallback = new (mem)btMultiSapOverlapFilterCallback();
m_overlappingPairs->setOverlapFilterCallback(m_filterCallback);
// mem = btAlignedAlloc(sizeof(btSimpleBroadphase),16);
// m_simpleBroadphase = new (mem) btSimpleBroadphase(maxProxies,m_overlappingPairs);
}
btMultiSapBroadphase::~btMultiSapBroadphase()
{
if (m_ownsPairCache)
{
m_overlappingPairs->~btOverlappingPairCache();
btAlignedFree(m_overlappingPairs);
}
}
void btMultiSapBroadphase::buildTree(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax)
{
m_optimizedAabbTree = new btQuantizedBvh();
m_optimizedAabbTree->setQuantizationValues(bvhAabbMin,bvhAabbMax);
QuantizedNodeArray& nodes = m_optimizedAabbTree->getLeafNodeArray();
for (int i=0;i<m_sapBroadphases.size();i++)
{
btQuantizedBvhNode node;
btVector3 aabbMin,aabbMax;
m_sapBroadphases[i]->getBroadphaseAabb(aabbMin,aabbMax);
m_optimizedAabbTree->quantize(&node.m_quantizedAabbMin[0],aabbMin,0);
m_optimizedAabbTree->quantize(&node.m_quantizedAabbMax[0],aabbMax,1);
int partId = 0;
node.m_escapeIndexOrTriangleIndex = (partId<<(31-MAX_NUM_PARTS_IN_BITS)) | i;
nodes.push_back(node);
}
m_optimizedAabbTree->buildInternal();
}
btBroadphaseProxy* btMultiSapBroadphase::createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr, short int collisionFilterGroup,short int collisionFilterMask, btDispatcher* dispatcher,void* /*ignoreMe*/)
{
//void* ignoreMe -> we could think of recursive multi-sap, if someone is interested
void* mem = btAlignedAlloc(sizeof(btMultiSapProxy),16);
btMultiSapProxy* proxy = new (mem)btMultiSapProxy(aabbMin, aabbMax,shapeType,userPtr, collisionFilterGroup,collisionFilterMask);
m_multiSapProxies.push_back(proxy);
///this should deal with inserting/removal into child broadphases
setAabb(proxy,aabbMin,aabbMax,dispatcher);
return proxy;
}
void btMultiSapBroadphase::destroyProxy(btBroadphaseProxy* /*proxy*/,btDispatcher* /*dispatcher*/)
{
///not yet
btAssert(0);
}
void btMultiSapBroadphase::addToChildBroadphase(btMultiSapProxy* parentMultiSapProxy, btBroadphaseProxy* childProxy, btBroadphaseInterface* childBroadphase)
{
void* mem = btAlignedAlloc(sizeof(btBridgeProxy),16);
btBridgeProxy* bridgeProxyRef = new(mem) btBridgeProxy;
bridgeProxyRef->m_childProxy = childProxy;
bridgeProxyRef->m_childBroadphase = childBroadphase;
parentMultiSapProxy->m_bridgeProxies.push_back(bridgeProxyRef);
}
bool boxIsContainedWithinBox(const btVector3& amin,const btVector3& amax,const btVector3& bmin,const btVector3& bmax);
bool boxIsContainedWithinBox(const btVector3& amin,const btVector3& amax,const btVector3& bmin,const btVector3& bmax)
{
return
amin.getX() >= bmin.getX() && amax.getX() <= bmax.getX() &&
amin.getY() >= bmin.getY() && amax.getY() <= bmax.getY() &&
amin.getZ() >= bmin.getZ() && amax.getZ() <= bmax.getZ();
}
void btMultiSapBroadphase::getAabb(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const
{
btMultiSapProxy* multiProxy = static_cast<btMultiSapProxy*>(proxy);
aabbMin = multiProxy->m_aabbMin;
aabbMax = multiProxy->m_aabbMax;
}
void btMultiSapBroadphase::rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin,const btVector3& aabbMax)
{
for (int i=0;i<m_multiSapProxies.size();i++)
{
rayCallback.process(m_multiSapProxies[i]);
}
}
//#include <stdio.h>
void btMultiSapBroadphase::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax, btDispatcher* dispatcher)
{
btMultiSapProxy* multiProxy = static_cast<btMultiSapProxy*>(proxy);
multiProxy->m_aabbMin = aabbMin;
multiProxy->m_aabbMax = aabbMax;
// bool fullyContained = false;
// bool alreadyInSimple = false;
struct MyNodeOverlapCallback : public btNodeOverlapCallback
{
btMultiSapBroadphase* m_multiSap;
btMultiSapProxy* m_multiProxy;
btDispatcher* m_dispatcher;
MyNodeOverlapCallback(btMultiSapBroadphase* multiSap,btMultiSapProxy* multiProxy,btDispatcher* dispatcher)
:m_multiSap(multiSap),
m_multiProxy(multiProxy),
m_dispatcher(dispatcher)
{
}
virtual void processNode(int /*nodeSubPart*/, int broadphaseIndex)
{
btBroadphaseInterface* childBroadphase = m_multiSap->getBroadphaseArray()[broadphaseIndex];
int containingBroadphaseIndex = -1;
//already found?
for (int i=0;i<m_multiProxy->m_bridgeProxies.size();i++)
{
if (m_multiProxy->m_bridgeProxies[i]->m_childBroadphase == childBroadphase)
{
containingBroadphaseIndex = i;
break;
}
}
if (containingBroadphaseIndex<0)
{
//add it
btBroadphaseProxy* childProxy = childBroadphase->createProxy(m_multiProxy->m_aabbMin,m_multiProxy->m_aabbMax,m_multiProxy->m_shapeType,m_multiProxy->m_clientObject,m_multiProxy->m_collisionFilterGroup,m_multiProxy->m_collisionFilterMask, m_dispatcher,m_multiProxy);
m_multiSap->addToChildBroadphase(m_multiProxy,childProxy,childBroadphase);
}
}
};
MyNodeOverlapCallback myNodeCallback(this,multiProxy,dispatcher);
if (m_optimizedAabbTree)
m_optimizedAabbTree->reportAabbOverlappingNodex(&myNodeCallback,aabbMin,aabbMax);
int i;
for ( i=0;i<multiProxy->m_bridgeProxies.size();i++)
{
btVector3 worldAabbMin,worldAabbMax;
multiProxy->m_bridgeProxies[i]->m_childBroadphase->getBroadphaseAabb(worldAabbMin,worldAabbMax);
bool overlapsBroadphase = TestAabbAgainstAabb2(worldAabbMin,worldAabbMax,multiProxy->m_aabbMin,multiProxy->m_aabbMax);
if (!overlapsBroadphase)
{
//remove it now
btBridgeProxy* bridgeProxy = multiProxy->m_bridgeProxies[i];
btBroadphaseProxy* childProxy = bridgeProxy->m_childProxy;
bridgeProxy->m_childBroadphase->destroyProxy(childProxy,dispatcher);
multiProxy->m_bridgeProxies.swap( i,multiProxy->m_bridgeProxies.size()-1);
multiProxy->m_bridgeProxies.pop_back();
}
}
/*
if (1)
{
//find broadphase that contain this multiProxy
int numChildBroadphases = getBroadphaseArray().size();
for (int i=0;i<numChildBroadphases;i++)
{
btBroadphaseInterface* childBroadphase = getBroadphaseArray()[i];
btVector3 worldAabbMin,worldAabbMax;
childBroadphase->getBroadphaseAabb(worldAabbMin,worldAabbMax);
bool overlapsBroadphase = TestAabbAgainstAabb2(worldAabbMin,worldAabbMax,multiProxy->m_aabbMin,multiProxy->m_aabbMax);
// fullyContained = fullyContained || boxIsContainedWithinBox(worldAabbMin,worldAabbMax,multiProxy->m_aabbMin,multiProxy->m_aabbMax);
int containingBroadphaseIndex = -1;
//if already contains this
for (int i=0;i<multiProxy->m_bridgeProxies.size();i++)
{
if (multiProxy->m_bridgeProxies[i]->m_childBroadphase == childBroadphase)
{
containingBroadphaseIndex = i;
}
alreadyInSimple = alreadyInSimple || (multiProxy->m_bridgeProxies[i]->m_childBroadphase == m_simpleBroadphase);
}
if (overlapsBroadphase)
{
if (containingBroadphaseIndex<0)
{
btBroadphaseProxy* childProxy = childBroadphase->createProxy(aabbMin,aabbMax,multiProxy->m_shapeType,multiProxy->m_clientObject,multiProxy->m_collisionFilterGroup,multiProxy->m_collisionFilterMask, dispatcher);
childProxy->m_multiSapParentProxy = multiProxy;
addToChildBroadphase(multiProxy,childProxy,childBroadphase);
}
} else
{
if (containingBroadphaseIndex>=0)
{
//remove
btBridgeProxy* bridgeProxy = multiProxy->m_bridgeProxies[containingBroadphaseIndex];
btBroadphaseProxy* childProxy = bridgeProxy->m_childProxy;
bridgeProxy->m_childBroadphase->destroyProxy(childProxy,dispatcher);
multiProxy->m_bridgeProxies.swap( containingBroadphaseIndex,multiProxy->m_bridgeProxies.size()-1);
multiProxy->m_bridgeProxies.pop_back();
}
}
}
///If we are in no other child broadphase, stick the proxy in the global 'simple' broadphase (brute force)
///hopefully we don't end up with many entries here (can assert/provide feedback on stats)
if (0)//!multiProxy->m_bridgeProxies.size())
{
///we don't pass the userPtr but our multisap proxy. We need to patch this, before processing an actual collision
///this is needed to be able to calculate the aabb overlap
btBroadphaseProxy* childProxy = m_simpleBroadphase->createProxy(aabbMin,aabbMax,multiProxy->m_shapeType,multiProxy->m_clientObject,multiProxy->m_collisionFilterGroup,multiProxy->m_collisionFilterMask, dispatcher);
childProxy->m_multiSapParentProxy = multiProxy;
addToChildBroadphase(multiProxy,childProxy,m_simpleBroadphase);
}
}
if (!multiProxy->m_bridgeProxies.size())
{
///we don't pass the userPtr but our multisap proxy. We need to patch this, before processing an actual collision
///this is needed to be able to calculate the aabb overlap
btBroadphaseProxy* childProxy = m_simpleBroadphase->createProxy(aabbMin,aabbMax,multiProxy->m_shapeType,multiProxy->m_clientObject,multiProxy->m_collisionFilterGroup,multiProxy->m_collisionFilterMask, dispatcher);
childProxy->m_multiSapParentProxy = multiProxy;
addToChildBroadphase(multiProxy,childProxy,m_simpleBroadphase);
}
*/
//update
for ( i=0;i<multiProxy->m_bridgeProxies.size();i++)
{
btBridgeProxy* bridgeProxyRef = multiProxy->m_bridgeProxies[i];
bridgeProxyRef->m_childBroadphase->setAabb(bridgeProxyRef->m_childProxy,aabbMin,aabbMax,dispatcher);
}
}
bool stopUpdating=false;
class btMultiSapBroadphasePairSortPredicate
{
public:
bool operator() ( const btBroadphasePair& a1, const btBroadphasePair& b1 )
{
btMultiSapBroadphase::btMultiSapProxy* aProxy0 = a1.m_pProxy0 ? (btMultiSapBroadphase::btMultiSapProxy*)a1.m_pProxy0->m_multiSapParentProxy : 0;
btMultiSapBroadphase::btMultiSapProxy* aProxy1 = a1.m_pProxy1 ? (btMultiSapBroadphase::btMultiSapProxy*)a1.m_pProxy1->m_multiSapParentProxy : 0;
btMultiSapBroadphase::btMultiSapProxy* bProxy0 = b1.m_pProxy0 ? (btMultiSapBroadphase::btMultiSapProxy*)b1.m_pProxy0->m_multiSapParentProxy : 0;
btMultiSapBroadphase::btMultiSapProxy* bProxy1 = b1.m_pProxy1 ? (btMultiSapBroadphase::btMultiSapProxy*)b1.m_pProxy1->m_multiSapParentProxy : 0;
return aProxy0 > bProxy0 ||
(aProxy0 == bProxy0 && aProxy1 > bProxy1) ||
(aProxy0 == bProxy0 && aProxy1 == bProxy1 && a1.m_algorithm > b1.m_algorithm);
}
};
///calculateOverlappingPairs is optional: incremental algorithms (sweep and prune) might do it during the set aabb
void btMultiSapBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
{
// m_simpleBroadphase->calculateOverlappingPairs(dispatcher);
if (!stopUpdating && getOverlappingPairCache()->hasDeferredRemoval())
{
btBroadphasePairArray& overlappingPairArray = getOverlappingPairCache()->getOverlappingPairArray();
// quicksort(overlappingPairArray,0,overlappingPairArray.size());
overlappingPairArray.quickSort(btMultiSapBroadphasePairSortPredicate());
//perform a sort, to find duplicates and to sort 'invalid' pairs to the end
// overlappingPairArray.heapSort(btMultiSapBroadphasePairSortPredicate());
overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
m_invalidPair = 0;
int i;
btBroadphasePair previousPair;
previousPair.m_pProxy0 = 0;
previousPair.m_pProxy1 = 0;
previousPair.m_algorithm = 0;
for (i=0;i<overlappingPairArray.size();i++)
{
btBroadphasePair& pair = overlappingPairArray[i];
btMultiSapProxy* aProxy0 = pair.m_pProxy0 ? (btMultiSapProxy*)pair.m_pProxy0->m_multiSapParentProxy : 0;
btMultiSapProxy* aProxy1 = pair.m_pProxy1 ? (btMultiSapProxy*)pair.m_pProxy1->m_multiSapParentProxy : 0;
btMultiSapProxy* bProxy0 = previousPair.m_pProxy0 ? (btMultiSapProxy*)previousPair.m_pProxy0->m_multiSapParentProxy : 0;
btMultiSapProxy* bProxy1 = previousPair.m_pProxy1 ? (btMultiSapProxy*)previousPair.m_pProxy1->m_multiSapParentProxy : 0;
bool isDuplicate = (aProxy0 == bProxy0) && (aProxy1 == bProxy1);
previousPair = pair;
bool needsRemoval = false;
if (!isDuplicate)
{
bool hasOverlap = testAabbOverlap(pair.m_pProxy0,pair.m_pProxy1);
if (hasOverlap)
{
needsRemoval = false;//callback->processOverlap(pair);
} else
{
needsRemoval = true;
}
} else
{
//remove duplicate
needsRemoval = true;
//should have no algorithm
btAssert(!pair.m_algorithm);
}
if (needsRemoval)
{
getOverlappingPairCache()->cleanOverlappingPair(pair,dispatcher);
// m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
// m_overlappingPairArray.pop_back();
pair.m_pProxy0 = 0;
pair.m_pProxy1 = 0;
m_invalidPair++;
gOverlappingPairs--;
}
}
///if you don't like to skip the invalid pairs in the array, execute following code:
#define CLEAN_INVALID_PAIRS 1
#ifdef CLEAN_INVALID_PAIRS
//perform a sort, to sort 'invalid' pairs to the end
//overlappingPairArray.heapSort(btMultiSapBroadphasePairSortPredicate());
overlappingPairArray.quickSort(btMultiSapBroadphasePairSortPredicate());
overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
m_invalidPair = 0;
#endif//CLEAN_INVALID_PAIRS
//printf("overlappingPairArray.size()=%d\n",overlappingPairArray.size());
}
}
bool btMultiSapBroadphase::testAabbOverlap(btBroadphaseProxy* childProxy0,btBroadphaseProxy* childProxy1)
{
btMultiSapProxy* multiSapProxy0 = (btMultiSapProxy*)childProxy0->m_multiSapParentProxy;
btMultiSapProxy* multiSapProxy1 = (btMultiSapProxy*)childProxy1->m_multiSapParentProxy;
return TestAabbAgainstAabb2(multiSapProxy0->m_aabbMin,multiSapProxy0->m_aabbMax,
multiSapProxy1->m_aabbMin,multiSapProxy1->m_aabbMax);
}
void btMultiSapBroadphase::printStats()
{
/* printf("---------------------------------\n");
printf("btMultiSapBroadphase.h\n");
printf("numHandles = %d\n",m_multiSapProxies.size());
//find broadphase that contain this multiProxy
int numChildBroadphases = getBroadphaseArray().size();
for (int i=0;i<numChildBroadphases;i++)
{
btBroadphaseInterface* childBroadphase = getBroadphaseArray()[i];
childBroadphase->printStats();
}
*/
}
void btMultiSapBroadphase::resetPool(btDispatcher* dispatcher)
{
// not yet
}