bluecore/ode/OPCODE/OPC_OptimizedTree.h
2008-01-16 11:45:17 +00:00

207 lines
9.2 KiB
C++

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* OPCODE - Optimized Collision Detection
* Copyright (C) 2001 Pierre Terdiman
* Homepage: http://www.codercorner.com/Opcode.htm
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains code for optimized trees.
* \file OPC_OptimizedTree.h
* \author Pierre Terdiman
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Include Guard
#ifndef __OPC_OPTIMIZEDTREE_H__
#define __OPC_OPTIMIZEDTREE_H__
//! Common interface for a node of an implicit tree
#define IMPLEMENT_IMPLICIT_NODE(base_class, volume) \
public: \
/* Constructor / Destructor */ \
inline_ base_class() : mData(0) {} \
inline_ ~base_class() {} \
/* Leaf test */ \
inline_ BOOL IsLeaf() const { return (mData&1)!=0; } \
/* Data access */ \
inline_ const base_class* GetPos() const { return (base_class*)mData; } \
inline_ const base_class* GetNeg() const { return ((base_class*)mData)+1; } \
inline_ size_t GetPrimitive() const { return (mData>>1); } \
/* Stats */ \
inline_ udword GetNodeSize() const { return SIZEOFOBJECT; } \
\
volume mAABB; \
size_t mData;
//! Common interface for a node of a no-leaf tree
#define IMPLEMENT_NOLEAF_NODE(base_class, volume) \
public: \
/* Constructor / Destructor */ \
inline_ base_class() : mPosData(0), mNegData(0) {} \
inline_ ~base_class() {} \
/* Leaf tests */ \
inline_ BOOL HasPosLeaf() const { return (mPosData&1)!=0; } \
inline_ BOOL HasNegLeaf() const { return (mNegData&1)!=0; } \
/* Data access */ \
inline_ const base_class* GetPos() const { return (base_class*)mPosData; } \
inline_ const base_class* GetNeg() const { return (base_class*)mNegData; } \
inline_ size_t GetPosPrimitive() const { return (mPosData>>1); } \
inline_ size_t GetNegPrimitive() const { return (mNegData>>1); } \
/* Stats */ \
inline_ udword GetNodeSize() const { return SIZEOFOBJECT; } \
\
volume mAABB; \
size_t mPosData; \
size_t mNegData;
class OPCODE_API AABBCollisionNode
{
IMPLEMENT_IMPLICIT_NODE(AABBCollisionNode, CollisionAABB)
inline_ float GetVolume() const { return mAABB.mExtents.x * mAABB.mExtents.y * mAABB.mExtents.z; }
inline_ float GetSize() const { return mAABB.mExtents.SquareMagnitude(); }
inline_ udword GetRadius() const
{
udword* Bits = (udword*)&mAABB.mExtents.x;
udword Max = Bits[0];
if(Bits[1]>Max) Max = Bits[1];
if(Bits[2]>Max) Max = Bits[2];
return Max;
}
// NB: using the square-magnitude or the true volume of the box, seems to yield better results
// (assuming UNC-like informed traversal methods). I borrowed this idea from PQP. The usual "size"
// otherwise, is the largest box extent. In SOLID that extent is computed on-the-fly each time it's
// needed (the best approach IMHO). In RAPID the rotation matrix is permuted so that Extent[0] is
// always the greatest, which saves looking for it at runtime. On the other hand, it yields matrices
// whose determinant is not 1, i.e. you can't encode them anymore as unit quaternions. Not a very
// good strategy.
};
class OPCODE_API AABBQuantizedNode
{
IMPLEMENT_IMPLICIT_NODE(AABBQuantizedNode, QuantizedAABB)
inline_ uword GetSize() const
{
const uword* Bits = mAABB.mExtents;
uword Max = Bits[0];
if(Bits[1]>Max) Max = Bits[1];
if(Bits[2]>Max) Max = Bits[2];
return Max;
}
// NB: for quantized nodes I don't feel like computing a square-magnitude with integers all
// over the place.......!
};
class OPCODE_API AABBNoLeafNode
{
IMPLEMENT_NOLEAF_NODE(AABBNoLeafNode, CollisionAABB)
};
class OPCODE_API AABBQuantizedNoLeafNode
{
IMPLEMENT_NOLEAF_NODE(AABBQuantizedNoLeafNode, QuantizedAABB)
};
//! Common interface for a collision tree
#define IMPLEMENT_COLLISION_TREE(base_class, node) \
public: \
/* Constructor / Destructor */ \
base_class(); \
virtual ~base_class(); \
/* Builds from a standard tree */ \
override(AABBOptimizedTree) bool Build(AABBTree* tree); \
/* Refits the tree */ \
override(AABBOptimizedTree) bool Refit(const MeshInterface* mesh_interface); \
/* Walks the tree */ \
override(AABBOptimizedTree) bool Walk(GenericWalkingCallback callback, void* user_data) const; \
/* Data access */ \
inline_ const node* GetNodes() const { return mNodes; } \
/* Stats */ \
override(AABBOptimizedTree) udword GetUsedBytes() const { return mNbNodes*sizeof(node); } \
private: \
node* mNodes;
typedef bool (*GenericWalkingCallback) (const void* current, void* user_data);
class OPCODE_API AABBOptimizedTree
{
public:
// Constructor / Destructor
AABBOptimizedTree() :
mNbNodes (0)
{}
virtual ~AABBOptimizedTree() {}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Builds the collision tree from a generic AABB tree.
* \param tree [in] generic AABB tree
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
virtual bool Build(AABBTree* tree) = 0;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Refits the collision tree after vertices have been modified.
* \param mesh_interface [in] mesh interface for current model
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
virtual bool Refit(const MeshInterface* mesh_interface) = 0;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Walks the tree and call the user back for each node.
* \param callback [in] walking callback
* \param user_data [in] callback's user data
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
virtual bool Walk(GenericWalkingCallback callback, void* user_data) const = 0;
// Data access
virtual udword GetUsedBytes() const = 0;
inline_ udword GetNbNodes() const { return mNbNodes; }
protected:
udword mNbNodes;
};
class OPCODE_API AABBCollisionTree : public AABBOptimizedTree
{
IMPLEMENT_COLLISION_TREE(AABBCollisionTree, AABBCollisionNode)
};
class OPCODE_API AABBNoLeafTree : public AABBOptimizedTree
{
IMPLEMENT_COLLISION_TREE(AABBNoLeafTree, AABBNoLeafNode)
};
class OPCODE_API AABBQuantizedTree : public AABBOptimizedTree
{
IMPLEMENT_COLLISION_TREE(AABBQuantizedTree, AABBQuantizedNode)
public:
Point mCenterCoeff;
Point mExtentsCoeff;
};
class OPCODE_API AABBQuantizedNoLeafTree : public AABBOptimizedTree
{
IMPLEMENT_COLLISION_TREE(AABBQuantizedNoLeafTree, AABBQuantizedNoLeafNode)
public:
Point mCenterCoeff;
Point mExtentsCoeff;
};
#endif // __OPC_OPTIMIZEDTREE_H__