386 lines
11 KiB
C++
386 lines
11 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#ifndef RIGIDBODY_H
|
|
#define RIGIDBODY_H
|
|
|
|
#include "LinearMath/btAlignedObjectArray.h"
|
|
#include "LinearMath/btPoint3.h"
|
|
#include "LinearMath/btTransform.h"
|
|
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
|
|
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
|
|
|
|
class btCollisionShape;
|
|
class btMotionState;
|
|
class btTypedConstraint;
|
|
|
|
|
|
extern btScalar gLinearAirDamping;
|
|
|
|
extern btScalar gDeactivationTime;
|
|
extern bool gDisableDeactivation;
|
|
extern btScalar gLinearSleepingThreshold;
|
|
extern btScalar gAngularSleepingThreshold;
|
|
|
|
|
|
/// btRigidBody class for btRigidBody Dynamics
|
|
///
|
|
class btRigidBody : public btCollisionObject
|
|
{
|
|
|
|
btMatrix3x3 m_invInertiaTensorWorld;
|
|
btVector3 m_linearVelocity;
|
|
btVector3 m_angularVelocity;
|
|
btScalar m_inverseMass;
|
|
btScalar m_angularFactor;
|
|
|
|
btVector3 m_gravity;
|
|
btVector3 m_invInertiaLocal;
|
|
btVector3 m_totalForce;
|
|
btVector3 m_totalTorque;
|
|
|
|
btScalar m_linearDamping;
|
|
btScalar m_angularDamping;
|
|
|
|
btScalar m_linearSleepingThreshold;
|
|
btScalar m_angularSleepingThreshold;
|
|
|
|
|
|
//m_optionalMotionState allows to automatic synchronize the world transform for active objects
|
|
btMotionState* m_optionalMotionState;
|
|
|
|
//keep track of typed constraints referencing this rigid body
|
|
btAlignedObjectArray<btTypedConstraint*> m_constraintRefs;
|
|
|
|
public:
|
|
|
|
#ifdef OBSOLETE_MOTIONSTATE_LESS
|
|
//not supported, please use btMotionState
|
|
btRigidBody(btScalar mass, const btTransform& worldTransform, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0),btScalar linearDamping=btScalar(0.),btScalar angularDamping=btScalar(0.),btScalar friction=btScalar(0.5),btScalar restitution=btScalar(0.));
|
|
#endif //OBSOLETE_MOTIONSTATE_LESS
|
|
|
|
btRigidBody(btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0),btScalar linearDamping=btScalar(0.),btScalar angularDamping=btScalar(0.),btScalar friction=btScalar(0.5),btScalar restitution=btScalar(0.));
|
|
|
|
virtual ~btRigidBody()
|
|
{
|
|
//No constraints should point to this rigidbody
|
|
//Remove constraints from the dynamics world before you delete the related rigidbodies.
|
|
btAssert(m_constraintRefs.size()==0);
|
|
}
|
|
|
|
|
|
void proceedToTransform(const btTransform& newTrans);
|
|
|
|
///to keep collision detection and dynamics separate we don't store a rigidbody pointer
|
|
///but a rigidbody is derived from btCollisionObject, so we can safely perform an upcast
|
|
static const btRigidBody* upcast(const btCollisionObject* colObj)
|
|
{
|
|
return (const btRigidBody*)colObj->getInternalOwner();
|
|
}
|
|
static btRigidBody* upcast(btCollisionObject* colObj)
|
|
{
|
|
return (btRigidBody*)colObj->getInternalOwner();
|
|
}
|
|
|
|
/// continuous collision detection needs prediction
|
|
void predictIntegratedTransform(btScalar step, btTransform& predictedTransform) ;
|
|
|
|
void saveKinematicState(btScalar step);
|
|
|
|
|
|
void applyForces(btScalar step);
|
|
|
|
void setGravity(const btVector3& acceleration);
|
|
|
|
const btVector3& getGravity() const
|
|
{
|
|
return m_gravity;
|
|
}
|
|
|
|
void setDamping(btScalar lin_damping, btScalar ang_damping);
|
|
|
|
inline const btCollisionShape* getCollisionShape() const {
|
|
return m_collisionShape;
|
|
}
|
|
|
|
inline btCollisionShape* getCollisionShape() {
|
|
return m_collisionShape;
|
|
}
|
|
|
|
void setMassProps(btScalar mass, const btVector3& inertia);
|
|
|
|
btScalar getInvMass() const { return m_inverseMass; }
|
|
const btMatrix3x3& getInvInertiaTensorWorld() const {
|
|
return m_invInertiaTensorWorld;
|
|
}
|
|
|
|
void integrateVelocities(btScalar step);
|
|
|
|
void setCenterOfMassTransform(const btTransform& xform);
|
|
|
|
void applyCentralForce(const btVector3& force)
|
|
{
|
|
m_totalForce += force;
|
|
}
|
|
|
|
const btVector3& getInvInertiaDiagLocal()
|
|
{
|
|
return m_invInertiaLocal;
|
|
};
|
|
|
|
void setInvInertiaDiagLocal(const btVector3& diagInvInertia)
|
|
{
|
|
m_invInertiaLocal = diagInvInertia;
|
|
}
|
|
|
|
void setSleepingThresholds(btScalar linear,btScalar angular)
|
|
{
|
|
m_linearSleepingThreshold = linear;
|
|
m_angularSleepingThreshold = angular;
|
|
}
|
|
|
|
void applyTorque(const btVector3& torque)
|
|
{
|
|
m_totalTorque += torque;
|
|
}
|
|
|
|
void applyForce(const btVector3& force, const btVector3& rel_pos)
|
|
{
|
|
applyCentralForce(force);
|
|
applyTorque(rel_pos.cross(force));
|
|
}
|
|
|
|
void applyCentralImpulse(const btVector3& impulse)
|
|
{
|
|
m_linearVelocity += impulse * m_inverseMass;
|
|
}
|
|
|
|
void applyTorqueImpulse(const btVector3& torque)
|
|
{
|
|
m_angularVelocity += m_invInertiaTensorWorld * torque;
|
|
}
|
|
|
|
void applyImpulse(const btVector3& impulse, const btVector3& rel_pos)
|
|
{
|
|
if (m_inverseMass != btScalar(0.))
|
|
{
|
|
applyCentralImpulse(impulse);
|
|
if (m_angularFactor)
|
|
{
|
|
applyTorqueImpulse(rel_pos.cross(impulse)*m_angularFactor);
|
|
}
|
|
}
|
|
}
|
|
|
|
//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
|
|
inline void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude)
|
|
{
|
|
if (m_inverseMass != btScalar(0.))
|
|
{
|
|
m_linearVelocity += linearComponent*impulseMagnitude;
|
|
if (m_angularFactor)
|
|
{
|
|
m_angularVelocity += angularComponent*impulseMagnitude*m_angularFactor;
|
|
}
|
|
}
|
|
}
|
|
|
|
void clearForces()
|
|
{
|
|
m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
|
|
m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
|
|
}
|
|
|
|
void updateInertiaTensor();
|
|
|
|
const btPoint3& getCenterOfMassPosition() const {
|
|
return m_worldTransform.getOrigin();
|
|
}
|
|
btQuaternion getOrientation() const;
|
|
|
|
const btTransform& getCenterOfMassTransform() const {
|
|
return m_worldTransform;
|
|
}
|
|
const btVector3& getLinearVelocity() const {
|
|
return m_linearVelocity;
|
|
}
|
|
const btVector3& getAngularVelocity() const {
|
|
return m_angularVelocity;
|
|
}
|
|
|
|
|
|
inline void setLinearVelocity(const btVector3& lin_vel)
|
|
{
|
|
assert (m_collisionFlags != btCollisionObject::CF_STATIC_OBJECT);
|
|
m_linearVelocity = lin_vel;
|
|
}
|
|
|
|
inline void setAngularVelocity(const btVector3& ang_vel) {
|
|
assert (m_collisionFlags != btCollisionObject::CF_STATIC_OBJECT);
|
|
{
|
|
m_angularVelocity = ang_vel;
|
|
}
|
|
}
|
|
|
|
btVector3 getVelocityInLocalPoint(const btVector3& rel_pos) const
|
|
{
|
|
//we also calculate lin/ang velocity for kinematic objects
|
|
return m_linearVelocity + m_angularVelocity.cross(rel_pos);
|
|
|
|
//for kinematic objects, we could also use use:
|
|
// return (m_worldTransform(rel_pos) - m_interpolationWorldTransform(rel_pos)) / m_kinematicTimeStep;
|
|
}
|
|
|
|
void translate(const btVector3& v)
|
|
{
|
|
m_worldTransform.getOrigin() += v;
|
|
}
|
|
|
|
|
|
void getAabb(btVector3& aabbMin,btVector3& aabbMax) const;
|
|
|
|
|
|
|
|
|
|
|
|
inline btScalar computeImpulseDenominator(const btPoint3& pos, const btVector3& normal) const
|
|
{
|
|
btVector3 r0 = pos - getCenterOfMassPosition();
|
|
|
|
btVector3 c0 = (r0).cross(normal);
|
|
|
|
btVector3 vec = (c0 * getInvInertiaTensorWorld()).cross(r0);
|
|
|
|
return m_inverseMass + normal.dot(vec);
|
|
|
|
}
|
|
|
|
inline btScalar computeAngularImpulseDenominator(const btVector3& axis) const
|
|
{
|
|
btVector3 vec = axis * getInvInertiaTensorWorld();
|
|
return axis.dot(vec);
|
|
}
|
|
|
|
inline void updateDeactivation(btScalar timeStep)
|
|
{
|
|
if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == DISABLE_DEACTIVATION))
|
|
return;
|
|
|
|
if ((getLinearVelocity().length2() < m_linearSleepingThreshold*m_linearSleepingThreshold) &&
|
|
(getAngularVelocity().length2() < m_angularSleepingThreshold*m_angularSleepingThreshold))
|
|
{
|
|
m_deactivationTime += timeStep;
|
|
} else
|
|
{
|
|
m_deactivationTime=btScalar(0.);
|
|
setActivationState(0);
|
|
}
|
|
|
|
}
|
|
|
|
inline bool wantsSleeping()
|
|
{
|
|
|
|
if (getActivationState() == DISABLE_DEACTIVATION)
|
|
return false;
|
|
|
|
//disable deactivation
|
|
if (gDisableDeactivation || (gDeactivationTime == btScalar(0.)))
|
|
return false;
|
|
|
|
if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == WANTS_DEACTIVATION))
|
|
return true;
|
|
|
|
if (m_deactivationTime> gDeactivationTime)
|
|
{
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
const btBroadphaseProxy* getBroadphaseProxy() const
|
|
{
|
|
return m_broadphaseHandle;
|
|
}
|
|
btBroadphaseProxy* getBroadphaseProxy()
|
|
{
|
|
return m_broadphaseHandle;
|
|
}
|
|
void setNewBroadphaseProxy(btBroadphaseProxy* broadphaseProxy)
|
|
{
|
|
m_broadphaseHandle = broadphaseProxy;
|
|
}
|
|
|
|
//btMotionState allows to automatic synchronize the world transform for active objects
|
|
btMotionState* getMotionState()
|
|
{
|
|
return m_optionalMotionState;
|
|
}
|
|
const btMotionState* getMotionState() const
|
|
{
|
|
return m_optionalMotionState;
|
|
}
|
|
void setMotionState(btMotionState* motionState)
|
|
{
|
|
m_optionalMotionState = motionState;
|
|
if (m_optionalMotionState)
|
|
motionState->getWorldTransform(m_worldTransform);
|
|
}
|
|
|
|
//for experimental overriding of friction/contact solver func
|
|
int m_contactSolverType;
|
|
int m_frictionSolverType;
|
|
|
|
void setAngularFactor(btScalar angFac)
|
|
{
|
|
m_angularFactor = angFac;
|
|
}
|
|
btScalar getAngularFactor() const
|
|
{
|
|
return m_angularFactor;
|
|
}
|
|
|
|
//is this rigidbody added to a btCollisionWorld/btDynamicsWorld/btBroadphase?
|
|
bool isInWorld() const
|
|
{
|
|
return (getBroadphaseProxy() != 0);
|
|
}
|
|
|
|
virtual bool checkCollideWithOverride(btCollisionObject* co);
|
|
|
|
void addConstraintRef(btTypedConstraint* c);
|
|
void removeConstraintRef(btTypedConstraint* c);
|
|
|
|
btTypedConstraint* getConstraintRef(int index)
|
|
{
|
|
return m_constraintRefs[index];
|
|
}
|
|
|
|
int getNumConstraintRefs()
|
|
{
|
|
return m_constraintRefs.size();
|
|
}
|
|
|
|
|
|
int m_debugBodyId;
|
|
};
|
|
|
|
|
|
|
|
#endif
|
|
|