bluecore/bullet/src/BulletCollision/NarrowPhaseCollision/btGjkEpa.cpp

629 lines
15 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the
use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software in a
product, an acknowledgment in the product documentation would be appreciated
but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/*
GJK-EPA collision solver by Nathanael Presson
Nov.2006
*/
#include "btGjkEpa.h"
#include <string.h> //for memset
#include <LinearMath/btStackAlloc.h>
#if defined(DEBUG) || defined (_DEBUG)
#include <stdio.h> //for debug printf
#ifdef __SPU__
#include <spu_printf.h>
#define printf spu_printf
#endif //__SPU__
#endif
namespace gjkepa_impl
{
//
// Port. typedefs
//
typedef btScalar F;
typedef bool Z;
typedef int I;
typedef unsigned int U;
typedef unsigned char U1;
typedef unsigned short U2;
typedef btVector3 Vector3;
typedef btMatrix3x3 Rotation;
//
// Config
//
#if 0
#define BTLOCALSUPPORT localGetSupportingVertexWithoutMargin
#else
#define BTLOCALSUPPORT localGetSupportingVertex
#endif
//
// Const
//
#define cstInf SIMD_INFINITY
#define cstPi SIMD_PI
#define cst2Pi SIMD_2_PI
#define GJK_maxiterations (128)
#define GJK_hashsize (1<<6)
#define GJK_hashmask (GJK_hashsize-1)
#define GJK_insimplex_eps F(0.0001)
#define GJK_sqinsimplex_eps (GJK_insimplex_eps*GJK_insimplex_eps)
#define EPA_maxiterations 256
#define EPA_inface_eps F(0.01)
#define EPA_accuracy F(0.001)
//
// Utils
//
static inline F Abs(F v) { return(v<0?-v:v); }
static inline F Sign(F v) { return(F(v<0?-1:1)); }
template <typename T> static inline void Swap(T& a,T& b) { T
t(a);a=b;b=t; }
template <typename T> static inline T Min(const T& a,const T& b) {
return(a<b?a:b); }
template <typename T> static inline T Max(const T& a,const T& b) {
return(a>b?a:b); }
static inline void ClearMemory(void* p,U sz) { memset(p,0,(size_t)sz);
}
#if 0
template <typename T> static inline void Raise(const T& object) {
throw(object); }
#else
template <typename T> static inline void Raise(const T&) {}
#endif
//
// GJK
//
struct GJK
{
struct Mkv
{
Vector3 w; /* Minkowski vertice */
Vector3 r; /* Ray */
};
struct He
{
Vector3 v;
He* n;
};
btStackAlloc* sa;
btBlock* sablock;
He* table[GJK_hashsize];
Rotation wrotations[2];
Vector3 positions[2];
const btConvexShape* shapes[2];
Mkv simplex[5];
Vector3 ray;
U order;
U iterations;
F margin;
Z failed;
//
GJK(btStackAlloc* psa,
const Rotation& wrot0,const Vector3& pos0,const btConvexShape* shape0,
const Rotation& wrot1,const Vector3& pos1,const btConvexShape* shape1,
F pmargin=0)
{
wrotations[0]=wrot0;positions[0]=pos0;shapes[0]=shape0;
wrotations[1]=wrot1;positions[1]=pos1;shapes[1]=shape1;
sa =psa;
sablock =sa->beginBlock();
margin =pmargin;
failed =false;
}
//
~GJK()
{
sa->endBlock(sablock);
}
// vdh : very dumm hash
static inline U Hash(const Vector3& v)
{
//this doesn't compile under GCC 3.3.5, so add the ()...
//const U h(U(v[0]*15461)^U(v[1]*83003)^U(v[2]*15473));
//return(((*((const U*)&h))*169639)&GJK_hashmask);
const U h((U)(v[0]*15461)^(U)(v[1]*83003)^(U)(v[2]*15473));
return(((*((const U*)&h))*169639)&GJK_hashmask);
}
//
inline Vector3 LocalSupport(const Vector3& d,U i) const
{
return(wrotations[i]*shapes[i]->BTLOCALSUPPORT(d*wrotations[i])+positions[i]);
}
//
inline void Support(const Vector3& d,Mkv& v) const
{
v.r = d;
v.w = LocalSupport(d,0)-LocalSupport(-d,1)+d*margin;
}
#define SPX(_i_) simplex[_i_]
#define SPXW(_i_) simplex[_i_].w
//
inline Z FetchSupport()
{
const U h(Hash(ray));
He* e = (He*)(table[h]);
while(e) { if(e->v==ray) { --order;return(false); } else e=e->n; }
e=(He*)sa->allocate(sizeof(He));e->v=ray;e->n=table[h];table[h]=e;
Support(ray,simplex[++order]);
return(ray.dot(SPXW(order))>0);
}
//
inline Z SolveSimplex2(const Vector3& ao,const Vector3& ab)
{
if(ab.dot(ao)>=0)
{
const Vector3 cabo(cross(ab,ao));
if(cabo.length2()>GJK_sqinsimplex_eps)
{ ray=cross(cabo,ab); }
else
{ return(true); }
}
else
{ order=0;SPX(0)=SPX(1);ray=ao; }
return(false);
}
//
inline Z SolveSimplex3(const Vector3& ao,const Vector3& ab,const Vector3&
ac)
{
return(SolveSimplex3a(ao,ab,ac,cross(ab,ac)));
}
//
inline Z SolveSimplex3a(const Vector3& ao,const Vector3& ab,const Vector3&
ac,const Vector3& cabc)
{
if((cross(cabc,ab)).dot(ao)<-GJK_insimplex_eps)
{ order=1;SPX(0)=SPX(1);SPX(1)=SPX(2);return(SolveSimplex2(ao,ab)); }
else if((cross(cabc,ac)).dot(ao)>+GJK_insimplex_eps)
{ order=1;SPX(1)=SPX(2);return(SolveSimplex2(ao,ac)); }
else
{
const F d(cabc.dot(ao));
if(Abs(d)>GJK_insimplex_eps)
{
if(d>0)
{ ray=cabc; }
else
{ ray=-cabc;Swap(SPX(0),SPX(1)); }
return(false);
} else return(true);
}
}
//
inline Z SolveSimplex4(const Vector3& ao,const Vector3& ab,const Vector3&
ac,const Vector3& ad)
{
Vector3 crs;
if((crs=cross(ab,ac)).dot(ao)>GJK_insimplex_eps)
{
order=2;SPX(0)=SPX(1);SPX(1)=SPX(2);SPX(2)=SPX(3);return(SolveSimplex3a(ao,ab,ac,crs));
}
else if((crs=cross(ac,ad)).dot(ao)>GJK_insimplex_eps)
{ order=2;SPX(2)=SPX(3);return(SolveSimplex3a(ao,ac,ad,crs)); }
else if((crs=cross(ad,ab)).dot(ao)>GJK_insimplex_eps)
{
order=2;SPX(1)=SPX(0);SPX(0)=SPX(2);SPX(2)=SPX(3);return(SolveSimplex3a(ao,ad,ab,crs));
}
else return(true);
}
//
inline Z SearchOrigin(const Vector3& initray=Vector3(1,0,0))
{
iterations = 0;
order = (U)-1;
failed = false;
ray = initray.normalized();
ClearMemory(table,sizeof(void*)*GJK_hashsize);
FetchSupport();
ray = -SPXW(0);
for(;iterations<GJK_maxiterations;++iterations)
{
const F rl(ray.length());
ray/=rl>0?rl:1;
if(FetchSupport())
{
Z found(false);
switch(order)
{
case 1: found=SolveSimplex2(-SPXW(1),SPXW(0)-SPXW(1));break;
case 2: found=SolveSimplex3(-SPXW(2),SPXW(1)-SPXW(2),SPXW(0)-SPXW(2));break;
case 3: found=SolveSimplex4(-SPXW(3),SPXW(2)-SPXW(3),SPXW(1)-SPXW(3),SPXW(0)-SPXW(3));break;
}
if(found) return(true);
} else return(false);
}
failed=true;
return(false);
}
//
inline Z EncloseOrigin()
{
switch(order)
{
/* Point */
case 0: break;
/* Line */
case 1:
{
const Vector3 ab(SPXW(1)-SPXW(0));
const Vector3 b[]={ cross(ab,Vector3(1,0,0)),
cross(ab,Vector3(0,1,0)),
cross(ab,Vector3(0,0,1))};
const F m[]={b[0].length2(),b[1].length2(),b[2].length2()};
const Rotation r(btQuaternion(ab.normalized(),cst2Pi/3));
Vector3 w(b[m[0]>m[1]?m[0]>m[2]?0:2:m[1]>m[2]?1:2]);
Support(w.normalized(),simplex[4]);w=r*w;
Support(w.normalized(),simplex[2]);w=r*w;
Support(w.normalized(),simplex[3]);w=r*w;
order=4;
return(true);
}
break;
/* Triangle */
case 2:
{
const
Vector3 n(cross((SPXW(1)-SPXW(0)),(SPXW(2)-SPXW(0))).normalized());
Support( n,simplex[3]);
Support(-n,simplex[4]);
order=4;
return(true);
}
break;
/* Tetrahedron */
case 3: return(true);
/* Hexahedron */
case 4: return(true);
}
return(false);
}
#undef SPX
#undef SPXW
};
//
// EPA
//
struct EPA
{
//
struct Face
{
const GJK::Mkv* v[3];
Face* f[3];
U e[3];
Vector3 n;
F d;
U mark;
Face* prev;
Face* next;
Face() {}
};
//
GJK* gjk;
btStackAlloc* sa;
Face* root;
U nfaces;
U iterations;
Vector3 features[2][3];
Vector3 nearest[2];
Vector3 normal;
F depth;
Z failed;
//
EPA(GJK* pgjk)
{
gjk = pgjk;
sa = pgjk->sa;
}
//
~EPA()
{
}
//
inline Vector3 GetCoordinates(const Face* face) const
{
const Vector3 o(face->n*-face->d);
const F a[]={ cross(face->v[0]->w-o,face->v[1]->w-o).length(),
cross(face->v[1]->w-o,face->v[2]->w-o).length(),
cross(face->v[2]->w-o,face->v[0]->w-o).length()};
const F sm(a[0]+a[1]+a[2]);
return(Vector3(a[1],a[2],a[0])/(sm>0?sm:1));
}
//
inline Face* FindBest() const
{
Face* bf = 0;
if(root)
{
Face* cf = root;
F bd(cstInf);
do {
if(cf->d<bd) { bd=cf->d;bf=cf; }
} while(0!=(cf=cf->next));
}
return(bf);
}
//
inline Z Set(Face* f,const GJK::Mkv* a,const GJK::Mkv* b,const GJK::Mkv*
c) const
{
const Vector3 nrm(cross(b->w-a->w,c->w-a->w));
const F len(nrm.length());
const Z valid( (cross(a->w,b->w).dot(nrm)>=-EPA_inface_eps)&&
(cross(b->w,c->w).dot(nrm)>=-EPA_inface_eps)&&
(cross(c->w,a->w).dot(nrm)>=-EPA_inface_eps));
f->v[0] = a;
f->v[1] = b;
f->v[2] = c;
f->mark = 0;
f->n = nrm/(len>0?len:cstInf);
f->d = Max<F>(0,-f->n.dot(a->w));
return(valid);
}
//
inline Face* NewFace(const GJK::Mkv* a,const GJK::Mkv* b,const GJK::Mkv* c)
{
Face* pf = (Face*)sa->allocate(sizeof(Face));
if(Set(pf,a,b,c))
{
if(root) root->prev=pf;
pf->prev=0;
pf->next=root;
root =pf;
++nfaces;
}
else
{
pf->prev=pf->next=0;
}
return(pf);
}
//
inline void Detach(Face* face)
{
if(face->prev||face->next)
{
--nfaces;
if(face==root)
{ root=face->next;root->prev=0; }
else
{
if(face->next==0)
{ face->prev->next=0; }
else
{ face->prev->next=face->next;face->next->prev=face->prev; }
}
face->prev=face->next=0;
}
}
//
inline void Link(Face* f0,U e0,Face* f1,U e1) const
{
f0->f[e0]=f1;f1->e[e1]=e0;
f1->f[e1]=f0;f0->e[e0]=e1;
}
//
GJK::Mkv* Support(const Vector3& w) const
{
GJK::Mkv* v =(GJK::Mkv*)sa->allocate(sizeof(GJK::Mkv));
gjk->Support(w,*v);
return(v);
}
//
U BuildHorizon(U markid,const GJK::Mkv* w,Face& f,U e,Face*& cf,Face*&
ff)
{
static const U mod3[]={0,1,2,0,1};
U ne(0);
if(f.mark!=markid)
{
const U e1(mod3[e+1]);
if((f.n.dot(w->w)+f.d)>0)
{
Face* nf = NewFace(f.v[e1],f.v[e],w);
Link(nf,0,&f,e);
if(cf) Link(cf,1,nf,2); else ff=nf;
cf=nf;ne=1;
}
else
{
const U e2(mod3[e+2]);
Detach(&f);
f.mark = markid;
ne += BuildHorizon(markid,w,*f.f[e1],f.e[e1],cf,ff);
ne += BuildHorizon(markid,w,*f.f[e2],f.e[e2],cf,ff);
}
}
return(ne);
}
//
inline F EvaluatePD(F accuracy=EPA_accuracy)
{
btBlock* sablock = sa->beginBlock();
Face* bestface = 0;
U markid(1);
depth = -cstInf;
normal = Vector3(0,0,0);
root = 0;
nfaces = 0;
iterations = 0;
failed = false;
/* Prepare hull */
if(gjk->EncloseOrigin())
{
const U* pfidx = 0;
U nfidx= 0;
const U* peidx = 0;
U neidx = 0;
GJK::Mkv* basemkv[5];
Face* basefaces[6];
switch(gjk->order)
{
/* Tetrahedron */
case 3: {
static const U fidx[4][3]={{2,1,0},{3,0,1},{3,1,2},{3,2,0}};
static const
U eidx[6][4]={{0,0,2,1},{0,1,1,1},{0,2,3,1},{1,0,3,2},{2,0,1,2},{3,0,2,2}};
pfidx=(const U*)fidx;nfidx=4;peidx=(const U*)eidx;neidx=6;
} break;
/* Hexahedron */
case 4: {
static const
U fidx[6][3]={{2,0,4},{4,1,2},{1,4,0},{0,3,1},{0,2,3},{1,3,2}};
static const
U eidx[9][4]={{0,0,4,0},{0,1,2,1},{0,2,1,2},{1,1,5,2},{1,0,2,0},{2,2,3,2},{3,1,5,0},{3,0,4,2},{5,1,4,1}};
pfidx=(const U*)fidx;nfidx=6;peidx=(const U*)eidx;neidx=9;
} break;
}
U i;
for( i=0;i<=gjk->order;++i) {
basemkv[i]=(GJK::Mkv*)sa->allocate(sizeof(GJK::Mkv));*basemkv[i]=gjk->simplex[i];
}
for( i=0;i<nfidx;++i,pfidx+=3) {
basefaces[i]=NewFace(basemkv[pfidx[0]],basemkv[pfidx[1]],basemkv[pfidx[2]]);
}
for( i=0;i<neidx;++i,peidx+=4) {
Link(basefaces[peidx[0]],peidx[1],basefaces[peidx[2]],peidx[3]); }
}
if(0==nfaces)
{
sa->endBlock(sablock);
return(depth);
}
/* Expand hull */
for(;iterations<EPA_maxiterations;++iterations)
{
Face* bf = FindBest();
if(bf)
{
GJK::Mkv* w = Support(-bf->n);
const F d(bf->n.dot(w->w)+bf->d);
bestface = bf;
if(d<-accuracy)
{
Face* cf =0;
Face* ff =0;
U nf = 0;
Detach(bf);
bf->mark=++markid;
for(U i=0;i<3;++i) {
nf+=BuildHorizon(markid,w,*bf->f[i],bf->e[i],cf,ff); }
if(nf<=2) { break; }
Link(cf,1,ff,2);
} else break;
} else break;
}
/* Extract contact */
if(bestface)
{
const Vector3 b(GetCoordinates(bestface));
normal = bestface->n;
depth = Max<F>(0,bestface->d);
for(U i=0;i<2;++i)
{
const F s(F(i?-1:1));
for(U j=0;j<3;++j)
{
features[i][j]=gjk->LocalSupport(s*bestface->v[j]->r,i);
}
}
nearest[0] = features[0][0]*b.x()+features[0][1]*b.y()+features[0][2]*b.z();
nearest[1] = features[1][0]*b.x()+features[1][1]*b.y()+features[1][2]*b.z();
} else failed=true;
sa->endBlock(sablock);
return(depth);
}
};
}
//
// Api
//
using namespace gjkepa_impl;
//
bool btGjkEpaSolver::Collide(const btConvexShape *shape0,const btTransform &wtrs0,
const btConvexShape *shape1,const btTransform &wtrs1,
btScalar radialmargin,
btStackAlloc* stackAlloc,
sResults& results)
{
/* Initialize */
results.witnesses[0] =
results.witnesses[1] =
results.normal = Vector3(0,0,0);
results.depth = 0;
results.status = sResults::Separated;
results.epa_iterations = 0;
results.gjk_iterations = 0;
/* Use GJK to locate origin */
GJK gjk(stackAlloc,
wtrs0.getBasis(),wtrs0.getOrigin(),shape0,
wtrs1.getBasis(),wtrs1.getOrigin(),shape1,
radialmargin+EPA_accuracy);
const Z collide(gjk.SearchOrigin());
results.gjk_iterations = gjk.iterations+1;
if(collide)
{
/* Then EPA for penetration depth */
EPA epa(&gjk);
const F pd(epa.EvaluatePD());
results.epa_iterations = epa.iterations+1;
if(pd>0)
{
results.status = sResults::Penetrating;
results.normal = epa.normal;
results.depth = pd;
results.witnesses[0] = epa.nearest[0];
results.witnesses[1] = epa.nearest[1];
return(true);
} else { if(epa.failed) results.status=sResults::EPA_Failed; }
} else { if(gjk.failed) results.status=sResults::GJK_Failed; }
return(false);
}