bluecore/bullet/src/BulletCollision/NarrowPhaseCollision/btGjkConvexCast.cpp

175 lines
4.5 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btGjkConvexCast.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h"
#include "btGjkPairDetector.h"
#include "btPointCollector.h"
btGjkConvexCast::btGjkConvexCast(const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver)
:m_simplexSolver(simplexSolver),
m_convexA(convexA),
m_convexB(convexB)
{
}
bool btGjkConvexCast::calcTimeOfImpact(
const btTransform& fromA,
const btTransform& toA,
const btTransform& fromB,
const btTransform& toB,
CastResult& result)
{
btMinkowskiSumShape combi(m_convexA,m_convexB);
btMinkowskiSumShape* convex = &combi;
btTransform rayFromLocalA;
btTransform rayToLocalA;
rayFromLocalA = fromA.inverse()* fromB;
rayToLocalA = toA.inverse()* toB;
btTransform trA,trB;
trA = btTransform(fromA);
trB = btTransform(fromB);
trA.setOrigin(btPoint3(0,0,0));
trB.setOrigin(btPoint3(0,0,0));
convex->setTransformA(trA);
convex->setTransformB(trB);
btScalar radius = btScalar(0.01);
btScalar lambda = btScalar(0.);
btVector3 s = rayFromLocalA.getOrigin();
btVector3 r = rayToLocalA.getOrigin()-rayFromLocalA.getOrigin();
btVector3 x = s;
btVector3 n;
n.setValue(0,0,0);
bool hasResult = false;
btVector3 c;
btScalar lastLambda = lambda;
//first solution, using GJK
//no penetration support for now, perhaps pass a pointer when we really want it
btConvexPenetrationDepthSolver* penSolverPtr = 0;
btTransform identityTrans;
identityTrans.setIdentity();
btSphereShape raySphere(btScalar(0.0));
raySphere.setMargin(btScalar(0.));
btTransform sphereTr;
sphereTr.setIdentity();
sphereTr.setOrigin( rayFromLocalA.getOrigin());
result.drawCoordSystem(sphereTr);
{
btPointCollector pointCollector1;
btGjkPairDetector gjk(&raySphere,convex,m_simplexSolver,penSolverPtr);
btGjkPairDetector::ClosestPointInput input;
input.m_transformA = sphereTr;
input.m_transformB = identityTrans;
gjk.getClosestPoints(input,pointCollector1,0);
hasResult = pointCollector1.m_hasResult;
c = pointCollector1.m_pointInWorld;
n = pointCollector1.m_normalOnBInWorld;
}
if (hasResult)
{
btScalar dist;
dist = (c-x).length();
if (dist < radius)
{
//penetration
lastLambda = btScalar(1.);
}
//not close enough
while (dist > radius)
{
n = x - c;
btScalar nDotr = n.dot(r);
if (nDotr >= -(SIMD_EPSILON*SIMD_EPSILON))
return false;
lambda = lambda - n.dot(n) / nDotr;
if (lambda <= lastLambda)
break;
lastLambda = lambda;
x = s + lambda * r;
sphereTr.setOrigin( x );
result.drawCoordSystem(sphereTr);
btPointCollector pointCollector;
btGjkPairDetector gjk(&raySphere,convex,m_simplexSolver,penSolverPtr);
btGjkPairDetector::ClosestPointInput input;
input.m_transformA = sphereTr;
input.m_transformB = identityTrans;
gjk.getClosestPoints(input,pointCollector,0);
if (pointCollector.m_hasResult)
{
if (pointCollector.m_distance < btScalar(0.))
{
//degeneracy, report a hit
result.m_fraction = lastLambda;
result.m_normal = n;
return true;
}
c = pointCollector.m_pointInWorld;
dist = (c-x).length();
} else
{
//??
return false;
}
}
if (lastLambda < btScalar(1.))
{
result.m_fraction = lastLambda;
result.m_normal = n;
return true;
}
}
return false;
}