Simple game engine with complete export to scripting language
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

680 lines
17 KiB

//Bullet Continuous Collision Detection and Physics Library
//Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
//
// btAxisSweep3
//
// Copyright (c) 2006 Simon Hobbs
//
// This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
#include "btAxisSweep3.h"
#include <assert.h>
#ifdef DEBUG_BROADPHASE
#include <stdio.h>
void btAxisSweep3::debugPrintAxis(int axis, bool checkCardinality)
{
int numEdges = m_pHandles[0].m_maxEdges[axis];
printf("SAP Axis %d, numEdges=%d\n",axis,numEdges);
int i;
for (i=0;i<numEdges+1;i++)
{
Edge* pEdge = m_pEdges[axis] + i;
Handle* pHandlePrev = getHandle(pEdge->m_handle);
int handleIndex = pEdge->IsMax()? pHandlePrev->m_maxEdges[axis] : pHandlePrev->m_minEdges[axis];
char beginOrEnd;
beginOrEnd=pEdge->IsMax()?'E':'B';
printf(" [%c,h=%d,p=%x,i=%d]\n",beginOrEnd,pEdge->m_handle,pEdge->m_pos,handleIndex);
}
if (checkCardinality)
assert(numEdges == m_numHandles*2+1);
}
#endif //DEBUG_BROADPHASE
btBroadphaseProxy* btAxisSweep3::createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr,short int collisionFilterGroup,short int collisionFilterMask)
{
(void)shapeType;
BP_FP_INT_TYPE handleId = addHandle(aabbMin,aabbMax, userPtr,collisionFilterGroup,collisionFilterMask);
Handle* handle = getHandle(handleId);
return handle;
}
void btAxisSweep3::destroyProxy(btBroadphaseProxy* proxy)
{
Handle* handle = static_cast<Handle*>(proxy);
removeHandle(handle->m_handleId);
}
void btAxisSweep3::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax)
{
Handle* handle = static_cast<Handle*>(proxy);
updateHandle(handle->m_handleId,aabbMin,aabbMax);
}
btAxisSweep3::btAxisSweep3(const btPoint3& worldAabbMin,const btPoint3& worldAabbMax, int maxHandles, btOverlappingPairCache* pairCache)
:m_invalidPair(0),
m_pairCache(pairCache),
m_ownsPairCache(false)
{
if (!m_pairCache)
{
m_pairCache = new btOverlappingPairCache();
m_ownsPairCache = true;
}
//assert(bounds.HasVolume());
// 1 handle is reserved as sentinel
btAssert(maxHandles > 1 && maxHandles < BP_MAX_HANDLES);
// init bounds
m_worldAabbMin = worldAabbMin;
m_worldAabbMax = worldAabbMax;
btVector3 aabbSize = m_worldAabbMax - m_worldAabbMin;
BP_FP_INT_TYPE maxInt = BP_HANDLE_SENTINEL;
m_quantize = btVector3(btScalar(maxInt),btScalar(maxInt),btScalar(maxInt)) / aabbSize;
// allocate handles buffer and put all handles on free list
m_pHandles = new Handle[maxHandles];
m_maxHandles = maxHandles;
m_numHandles = 0;
// handle 0 is reserved as the null index, and is also used as the sentinel
m_firstFreeHandle = 1;
{
for (BP_FP_INT_TYPE i = m_firstFreeHandle; i < maxHandles; i++)
m_pHandles[i].SetNextFree(i + 1);
m_pHandles[maxHandles - 1].SetNextFree(0);
}
{
// allocate edge buffers
for (int i = 0; i < 3; i++)
m_pEdges[i] = new Edge[maxHandles * 2];
}
//removed overlap management
// make boundary sentinels
m_pHandles[0].m_clientObject = 0;
for (int axis = 0; axis < 3; axis++)
{
m_pHandles[0].m_minEdges[axis] = 0;
m_pHandles[0].m_maxEdges[axis] = 1;
m_pEdges[axis][0].m_pos = 0;
m_pEdges[axis][0].m_handle = 0;
m_pEdges[axis][1].m_pos = BP_HANDLE_SENTINEL;
m_pEdges[axis][1].m_handle = 0;
#ifdef DEBUG_BROADPHASE
debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE
}
}
btAxisSweep3::~btAxisSweep3()
{
for (int i = 2; i >= 0; i--)
delete[] m_pEdges[i];
delete[] m_pHandles;
if (m_ownsPairCache)
{
delete m_pairCache;
}
}
void btAxisSweep3::quantize(BP_FP_INT_TYPE* out, const btPoint3& point, int isMax) const
{
btPoint3 clampedPoint(point);
clampedPoint.setMax(m_worldAabbMin);
clampedPoint.setMin(m_worldAabbMax);
btVector3 v = (clampedPoint - m_worldAabbMin) * m_quantize;
out[0] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getX() & BP_HANDLE_MASK) | isMax);
out[1] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getY() & BP_HANDLE_MASK) | isMax);
out[2] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getZ() & BP_HANDLE_MASK) | isMax);
}
BP_FP_INT_TYPE btAxisSweep3::allocHandle()
{
assert(m_firstFreeHandle);
BP_FP_INT_TYPE handle = m_firstFreeHandle;
m_firstFreeHandle = getHandle(handle)->GetNextFree();
m_numHandles++;
return handle;
}
void btAxisSweep3::freeHandle(BP_FP_INT_TYPE handle)
{
assert(handle > 0 && handle < m_maxHandles);
getHandle(handle)->SetNextFree(m_firstFreeHandle);
m_firstFreeHandle = handle;
m_numHandles--;
}
BP_FP_INT_TYPE btAxisSweep3::addHandle(const btPoint3& aabbMin,const btPoint3& aabbMax, void* pOwner,short int collisionFilterGroup,short int collisionFilterMask)
{
// quantize the bounds
BP_FP_INT_TYPE min[3], max[3];
quantize(min, aabbMin, 0);
quantize(max, aabbMax, 1);
// allocate a handle
BP_FP_INT_TYPE handle = allocHandle();
assert(handle!= 0xcdcd);
Handle* pHandle = getHandle(handle);
pHandle->m_handleId = handle;
//pHandle->m_pOverlaps = 0;
pHandle->m_clientObject = pOwner;
pHandle->m_collisionFilterGroup = collisionFilterGroup;
pHandle->m_collisionFilterMask = collisionFilterMask;
// compute current limit of edge arrays
BP_FP_INT_TYPE limit = m_numHandles * 2;
// insert new edges just inside the max boundary edge
for (BP_FP_INT_TYPE axis = 0; axis < 3; axis++)
{
m_pHandles[0].m_maxEdges[axis] += 2;
m_pEdges[axis][limit + 1] = m_pEdges[axis][limit - 1];
m_pEdges[axis][limit - 1].m_pos = min[axis];
m_pEdges[axis][limit - 1].m_handle = handle;
m_pEdges[axis][limit].m_pos = max[axis];
m_pEdges[axis][limit].m_handle = handle;
pHandle->m_minEdges[axis] = limit - 1;
pHandle->m_maxEdges[axis] = limit;
}
// now sort the new edges to their correct position
sortMinDown(0, pHandle->m_minEdges[0], false);
sortMaxDown(0, pHandle->m_maxEdges[0], false);
sortMinDown(1, pHandle->m_minEdges[1], false);
sortMaxDown(1, pHandle->m_maxEdges[1], false);
sortMinDown(2, pHandle->m_minEdges[2], true);
sortMaxDown(2, pHandle->m_maxEdges[2], true);
return handle;
}
void btAxisSweep3::removeHandle(BP_FP_INT_TYPE handle)
{
Handle* pHandle = getHandle(handle);
//explicitly remove the pairs containing the proxy
//we could do it also in the sortMinUp (passing true)
//todo: compare performance
m_pairCache->removeOverlappingPairsContainingProxy(pHandle);
// compute current limit of edge arrays
int limit = m_numHandles * 2;
int axis;
for (axis = 0;axis<3;axis++)
{
m_pHandles[0].m_maxEdges[axis] -= 2;
}
// remove the edges by sorting them up to the end of the list
for ( axis = 0; axis < 3; axis++)
{
Edge* pEdges = m_pEdges[axis];
BP_FP_INT_TYPE max = pHandle->m_maxEdges[axis];
pEdges[max].m_pos = BP_HANDLE_SENTINEL;
sortMaxUp(axis,max,false);
BP_FP_INT_TYPE i = pHandle->m_minEdges[axis];
pEdges[i].m_pos = BP_HANDLE_SENTINEL;
sortMinUp(axis,i,false);
pEdges[limit-1].m_handle = 0;
pEdges[limit-1].m_pos = BP_HANDLE_SENTINEL;
#ifdef DEBUG_BROADPHASE
debugPrintAxis(axis,false);
#endif //DEBUG_BROADPHASE
}
// free the handle
freeHandle(handle);
}
extern int gOverlappingPairs;
void btAxisSweep3::calculateOverlappingPairs()
{
if (m_ownsPairCache)
{
btBroadphasePairArray& overlappingPairArray = m_pairCache->getOverlappingPairArray();
//perform a sort, to find duplicates and to sort 'invalid' pairs to the end
overlappingPairArray.heapSort(btBroadphasePairSortPredicate());
overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
m_invalidPair = 0;
int i;
btBroadphasePair previousPair;
previousPair.m_pProxy0 = 0;
previousPair.m_pProxy1 = 0;
previousPair.m_algorithm = 0;
for (i=0;i<overlappingPairArray.size();i++)
{
btBroadphasePair& pair = overlappingPairArray[i];
bool isDuplicate = (pair == previousPair);
previousPair = pair;
bool needsRemoval = false;
if (!isDuplicate)
{
bool hasOverlap = testAabbOverlap(pair.m_pProxy0,pair.m_pProxy1);
if (hasOverlap)
{
needsRemoval = false;//callback->processOverlap(pair);
} else
{
needsRemoval = true;
}
} else
{
//remove duplicate
needsRemoval = true;
//should have no algorithm
btAssert(!pair.m_algorithm);
}
if (needsRemoval)
{
m_pairCache->cleanOverlappingPair(pair);
// m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
// m_overlappingPairArray.pop_back();
pair.m_pProxy0 = 0;
pair.m_pProxy1 = 0;
m_invalidPair++;
gOverlappingPairs--;
}
}
///if you don't like to skip the invalid pairs in the array, execute following code:
#define CLEAN_INVALID_PAIRS 1
#ifdef CLEAN_INVALID_PAIRS
//perform a sort, to sort 'invalid' pairs to the end
overlappingPairArray.heapSort(btBroadphasePairSortPredicate());
overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
m_invalidPair = 0;
#endif//CLEAN_INVALID_PAIRS
}
}
bool btAxisSweep3::testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
{
const Handle* pHandleA = static_cast<Handle*>(proxy0);
const Handle* pHandleB = static_cast<Handle*>(proxy1);
//optimization 1: check the array index (memory address), instead of the m_pos
for (int axis = 0; axis < 3; axis++)
{
if (pHandleA->m_maxEdges[axis] < pHandleB->m_minEdges[axis] ||
pHandleB->m_maxEdges[axis] < pHandleA->m_minEdges[axis])
{
return false;
}
}
return true;
}
bool btAxisSweep3::testOverlap(int ignoreAxis,const Handle* pHandleA, const Handle* pHandleB)
{
//optimization 1: check the array index (memory address), instead of the m_pos
for (int axis = 0; axis < 3; axis++)
{
if (axis != ignoreAxis)
{
if (pHandleA->m_maxEdges[axis] < pHandleB->m_minEdges[axis] ||
pHandleB->m_maxEdges[axis] < pHandleA->m_minEdges[axis])
{
return false;
}
}
}
//optimization 2: only 2 axis need to be tested (conflicts with 'delayed removal' optimization)
/*for (int axis = 0; axis < 3; axis++)
{
if (m_pEdges[axis][pHandleA->m_maxEdges[axis]].m_pos < m_pEdges[axis][pHandleB->m_minEdges[axis]].m_pos ||
m_pEdges[axis][pHandleB->m_maxEdges[axis]].m_pos < m_pEdges[axis][pHandleA->m_minEdges[axis]].m_pos)
{
return false;
}
}
*/
return true;
}
void btAxisSweep3::updateHandle(BP_FP_INT_TYPE handle, const btPoint3& aabbMin,const btPoint3& aabbMax)
{
// assert(bounds.IsFinite());
//assert(bounds.HasVolume());
Handle* pHandle = getHandle(handle);
// quantize the new bounds
BP_FP_INT_TYPE min[3], max[3];
quantize(min, aabbMin, 0);
quantize(max, aabbMax, 1);
// update changed edges
for (int axis = 0; axis < 3; axis++)
{
BP_FP_INT_TYPE emin = pHandle->m_minEdges[axis];
BP_FP_INT_TYPE emax = pHandle->m_maxEdges[axis];
int dmin = (int)min[axis] - (int)m_pEdges[axis][emin].m_pos;
int dmax = (int)max[axis] - (int)m_pEdges[axis][emax].m_pos;
m_pEdges[axis][emin].m_pos = min[axis];
m_pEdges[axis][emax].m_pos = max[axis];
// expand (only adds overlaps)
if (dmin < 0)
sortMinDown(axis, emin);
if (dmax > 0)
sortMaxUp(axis, emax);
// shrink (only removes overlaps)
if (dmin > 0)
sortMinUp(axis, emin);
if (dmax < 0)
sortMaxDown(axis, emax);
#ifdef DEBUG_BROADPHASE
debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE
}
}
// sorting a min edge downwards can only ever *add* overlaps
void btAxisSweep3::sortMinDown(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pPrev = pEdge - 1;
Handle* pHandleEdge = getHandle(pEdge->m_handle);
while (pEdge->m_pos < pPrev->m_pos)
{
Handle* pHandlePrev = getHandle(pPrev->m_handle);
if (pPrev->IsMax())
{
// if previous edge is a maximum check the bounds and add an overlap if necessary
if (updateOverlaps && testOverlap(axis,pHandleEdge, pHandlePrev))
{
m_pairCache->addOverlappingPair(pHandleEdge,pHandlePrev);
//AddOverlap(pEdge->m_handle, pPrev->m_handle);
}
// update edge reference in other handle
pHandlePrev->m_maxEdges[axis]++;
}
else
pHandlePrev->m_minEdges[axis]++;
pHandleEdge->m_minEdges[axis]--;
// swap the edges
Edge swap = *pEdge;
*pEdge = *pPrev;
*pPrev = swap;
// decrement
pEdge--;
pPrev--;
}
#ifdef DEBUG_BROADPHASE
debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE
}
// sorting a min edge upwards can only ever *remove* overlaps
void btAxisSweep3::sortMinUp(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pNext = pEdge + 1;
Handle* pHandleEdge = getHandle(pEdge->m_handle);
while (pNext->m_handle && (pEdge->m_pos >= pNext->m_pos))
{
Handle* pHandleNext = getHandle(pNext->m_handle);
if (pNext->IsMax())
{
// if next edge is maximum remove any overlap between the two handles
if (updateOverlaps)
{
/*
Handle* handle0 = getHandle(pEdge->m_handle);
Handle* handle1 = getHandle(pNext->m_handle);
btBroadphasePair tmpPair(*handle0,*handle1);
removeOverlappingPair(tmpPair);
*/
}
// update edge reference in other handle
pHandleNext->m_maxEdges[axis]--;
}
else
pHandleNext->m_minEdges[axis]--;
pHandleEdge->m_minEdges[axis]++;
// swap the edges
Edge swap = *pEdge;
*pEdge = *pNext;
*pNext = swap;
// increment
pEdge++;
pNext++;
}
}
// sorting a max edge downwards can only ever *remove* overlaps
void btAxisSweep3::sortMaxDown(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pPrev = pEdge - 1;
Handle* pHandleEdge = getHandle(pEdge->m_handle);
while (pEdge->m_pos < pPrev->m_pos)
{
Handle* pHandlePrev = getHandle(pPrev->m_handle);
if (!pPrev->IsMax())
{
// if previous edge was a minimum remove any overlap between the two handles
if (updateOverlaps)
{
//this is done during the overlappingpairarray iteration/narrowphase collision
/*
Handle* handle0 = getHandle(pEdge->m_handle);
Handle* handle1 = getHandle(pPrev->m_handle);
btBroadphasePair* pair = findPair(handle0,handle1);
//assert(pair);
if (pair)
{
removeOverlappingPair(*pair);
}
*/
}
// update edge reference in other handle
pHandlePrev->m_minEdges[axis]++;;
}
else
pHandlePrev->m_maxEdges[axis]++;
pHandleEdge->m_maxEdges[axis]--;
// swap the edges
Edge swap = *pEdge;
*pEdge = *pPrev;
*pPrev = swap;
// decrement
pEdge--;
pPrev--;
}
#ifdef DEBUG_BROADPHASE
debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE
}
// sorting a max edge upwards can only ever *add* overlaps
void btAxisSweep3::sortMaxUp(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pNext = pEdge + 1;
Handle* pHandleEdge = getHandle(pEdge->m_handle);
while (pNext->m_handle && (pEdge->m_pos >= pNext->m_pos))
{
Handle* pHandleNext = getHandle(pNext->m_handle);
if (!pNext->IsMax())
{
// if next edge is a minimum check the bounds and add an overlap if necessary
if (updateOverlaps && testOverlap(axis, pHandleEdge, pHandleNext))
{
Handle* handle0 = getHandle(pEdge->m_handle);
Handle* handle1 = getHandle(pNext->m_handle);
m_pairCache->addOverlappingPair(handle0,handle1);
}
// update edge reference in other handle
pHandleNext->m_minEdges[axis]--;
}
else
pHandleNext->m_maxEdges[axis]--;
pHandleEdge->m_maxEdges[axis]++;
// swap the edges
Edge swap = *pEdge;
*pEdge = *pNext;
*pNext = swap;
// increment
pEdge++;
pNext++;
}
}