bluecore/ode/OPCODE/OPC_RayCollider.cpp
2008-01-16 11:45:17 +00:00

763 lines
28 KiB
C++

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* OPCODE - Optimized Collision Detection
* Copyright (C) 2001 Pierre Terdiman
* Homepage: http://www.codercorner.com/Opcode.htm
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains code for a ray collider.
* \file OPC_RayCollider.cpp
* \author Pierre Terdiman
* \date June, 2, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains a ray-vs-tree collider.
* This class performs a stabbing query on an AABB tree, i.e. does a ray-mesh collision.
*
* HIGHER DISTANCE BOUND:
*
* If P0 and P1 are two 3D points, let's define:
* - d = distance between P0 and P1
* - Origin = P0
* - Direction = (P1 - P0) / d = normalized direction vector
* - A parameter t such as a point P on the line (P0,P1) is P = Origin + t * Direction
* - t = 0 --> P = P0
* - t = d --> P = P1
*
* Then we can define a general "ray" as:
*
* struct Ray
* {
* Point Origin;
* Point Direction;
* };
*
* But it actually maps three different things:
* - a segment, when 0 <= t <= d
* - a half-line, when 0 <= t < +infinity, or -infinity < t <= d
* - a line, when -infinity < t < +infinity
*
* In Opcode, we support segment queries, which yield half-line queries by setting d = +infinity.
* We don't support line-queries. If you need them, shift the origin along the ray by an appropriate margin.
*
* In short, the lower bound is always 0, and you can setup the higher bound "d" with RayCollider::SetMaxDist().
*
* Query |segment |half-line |line
* --------|-------------------|---------------|----------------
* Usages |-shadow feelers |-raytracing |-
* |-sweep tests |-in/out tests |
*
* FIRST CONTACT:
*
* - You can setup "first contact" mode or "all contacts" mode with RayCollider::SetFirstContact().
* - In "first contact" mode we return as soon as the ray hits one face. If can be useful e.g. for shadow feelers, where
* you want to know whether the path to the light is free or not (a boolean answer is enough).
* - In "all contacts" mode we return all faces hit by the ray.
*
* TEMPORAL COHERENCE:
*
* - You can enable or disable temporal coherence with RayCollider::SetTemporalCoherence().
* - It currently only works in "first contact" mode.
* - If temporal coherence is enabled, the previously hit triangle is cached during the first query. Then, next queries
* start by colliding the ray against the cached triangle. If they still collide, we return immediately.
*
* CLOSEST HIT:
*
* - You can enable or disable "closest hit" with RayCollider::SetClosestHit().
* - It currently only works in "all contacts" mode.
* - If closest hit is enabled, faces are sorted by distance on-the-fly and the closest one only is reported.
*
* BACKFACE CULLING:
*
* - You can enable or disable backface culling with RayCollider::SetCulling().
* - If culling is enabled, ray will not hit back faces (only front faces).
*
*
*
* \class RayCollider
* \author Pierre Terdiman
* \version 1.3
* \date June, 2, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* This class describes a face hit by a ray or segment.
* This is a particular class dedicated to stabbing queries.
*
* \class CollisionFace
* \author Pierre Terdiman
* \version 1.3
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* This class is a dedicated collection of CollisionFace.
*
* \class CollisionFaces
* \author Pierre Terdiman
* \version 1.3
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Precompiled Header
#include "Stdafx.h"
using namespace Opcode;
#include "OPC_RayAABBOverlap.h"
#include "OPC_RayTriOverlap.h"
#define SET_CONTACT(prim_index, flag) \
mNbIntersections++; \
/* Set contact status */ \
mFlags |= flag; \
/* In any case the contact has been found and recorded in mStabbedFace */ \
mStabbedFace.mFaceID = prim_index;
#ifdef OPC_RAYHIT_CALLBACK
#define HANDLE_CONTACT(prim_index, flag) \
SET_CONTACT(prim_index, flag) \
\
if(mHitCallback) (mHitCallback)(mStabbedFace, mUserData);
#define UPDATE_CACHE \
if(cache && GetContactStatus()) \
{ \
*cache = mStabbedFace.mFaceID; \
}
#else
#define HANDLE_CONTACT(prim_index, flag) \
SET_CONTACT(prim_index, flag) \
\
/* Now we can also record it in mStabbedFaces if available */ \
if(mStabbedFaces) \
{ \
/* If we want all faces or if that's the first one we hit */ \
if(!mClosestHit || !mStabbedFaces->GetNbFaces()) \
{ \
mStabbedFaces->AddFace(mStabbedFace); \
} \
else \
{ \
/* We only keep closest hit */ \
CollisionFace* Current = const_cast<CollisionFace*>(mStabbedFaces->GetFaces()); \
if(Current && mStabbedFace.mDistance<Current->mDistance) \
{ \
*Current = mStabbedFace; \
} \
} \
}
#define UPDATE_CACHE \
if(cache && GetContactStatus() && mStabbedFaces) \
{ \
const CollisionFace* Current = mStabbedFaces->GetFaces(); \
if(Current) *cache = Current->mFaceID; \
else *cache = INVALID_ID; \
}
#endif
#define SEGMENT_PRIM(prim_index, flag) \
/* Request vertices from the app */ \
VertexPointers VP; mIMesh->GetTriangle(VP, prim_index); \
\
/* Perform ray-tri overlap test and return */ \
if(RayTriOverlap(*VP.Vertex[0], *VP.Vertex[1], *VP.Vertex[2])) \
{ \
/* Intersection point is valid if dist < segment's length */ \
/* We know dist>0 so we can use integers */ \
if(IR(mStabbedFace.mDistance)<IR(mMaxDist)) \
{ \
HANDLE_CONTACT(prim_index, flag) \
} \
}
#define RAY_PRIM(prim_index, flag) \
/* Request vertices from the app */ \
VertexPointers VP; mIMesh->GetTriangle(VP, prim_index); \
\
/* Perform ray-tri overlap test and return */ \
if(RayTriOverlap(*VP.Vertex[0], *VP.Vertex[1], *VP.Vertex[2])) \
{ \
HANDLE_CONTACT(prim_index, flag) \
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Constructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
RayCollider::RayCollider() :
mNbRayBVTests (0),
mNbRayPrimTests (0),
mNbIntersections (0),
mCulling (true),
#ifdef OPC_RAYHIT_CALLBACK
mHitCallback (null),
mUserData (0),
#else
mClosestHit (false),
mStabbedFaces (null),
#endif
mMaxDist (MAX_FLOAT)
{
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Destructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
RayCollider::~RayCollider()
{
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Validates current settings. You should call this method after all the settings and callbacks have been defined.
* \return null if everything is ok, else a string describing the problem
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
const char* RayCollider::ValidateSettings()
{
if(mMaxDist<0.0f) return "Higher distance bound must be positive!";
if(TemporalCoherenceEnabled() && !FirstContactEnabled()) return "Temporal coherence only works with ""First contact"" mode!";
#ifndef OPC_RAYHIT_CALLBACK
if(mClosestHit && FirstContactEnabled()) return "Closest hit doesn't work with ""First contact"" mode!";
if(TemporalCoherenceEnabled() && mClosestHit) return "Temporal coherence can't guarantee to report closest hit!";
#endif
if(SkipPrimitiveTests()) return "SkipPrimitiveTests not possible for RayCollider ! (not implemented)";
return null;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Generic stabbing query for generic OPCODE models. After the call, access the results:
* - with GetContactStatus()
* - in the user-provided destination array
*
* \param world_ray [in] stabbing ray in world space
* \param model [in] Opcode model to collide with
* \param world [in] model's world matrix, or null
* \param cache [in] a possibly cached face index, or null
* \return true if success
* \warning SCALE NOT SUPPORTED. The matrices must contain rotation & translation parts only.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool RayCollider::Collide(const Ray& world_ray, const Model& model, const Matrix4x4* world, udword* cache)
{
// Checkings
if(!Setup(&model)) return false;
// Init collision query
if(InitQuery(world_ray, world, cache)) return true;
if(!model.HasLeafNodes())
{
if(model.IsQuantized())
{
const AABBQuantizedNoLeafTree* Tree = (const AABBQuantizedNoLeafTree*)model.GetTree();
// Setup dequantization coeffs
mCenterCoeff = Tree->mCenterCoeff;
mExtentsCoeff = Tree->mExtentsCoeff;
// Perform stabbing query
if(IR(mMaxDist)!=IEEE_MAX_FLOAT) _SegmentStab(Tree->GetNodes());
else _RayStab(Tree->GetNodes());
}
else
{
const AABBNoLeafTree* Tree = (const AABBNoLeafTree*)model.GetTree();
// Perform stabbing query
if(IR(mMaxDist)!=IEEE_MAX_FLOAT) _SegmentStab(Tree->GetNodes());
else _RayStab(Tree->GetNodes());
}
}
else
{
if(model.IsQuantized())
{
const AABBQuantizedTree* Tree = (const AABBQuantizedTree*)model.GetTree();
// Setup dequantization coeffs
mCenterCoeff = Tree->mCenterCoeff;
mExtentsCoeff = Tree->mExtentsCoeff;
// Perform stabbing query
if(IR(mMaxDist)!=IEEE_MAX_FLOAT) _SegmentStab(Tree->GetNodes());
else _RayStab(Tree->GetNodes());
}
else
{
const AABBCollisionTree* Tree = (const AABBCollisionTree*)model.GetTree();
// Perform stabbing query
if(IR(mMaxDist)!=IEEE_MAX_FLOAT) _SegmentStab(Tree->GetNodes());
else _RayStab(Tree->GetNodes());
}
}
// Update cache if needed
UPDATE_CACHE
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Initializes a stabbing query :
* - reset stats & contact status
* - compute ray in local space
* - check temporal coherence
*
* \param world_ray [in] stabbing ray in world space
* \param world [in] object's world matrix, or null
* \param face_id [in] index of previously stabbed triangle
* \return TRUE if we can return immediately
* \warning SCALE NOT SUPPORTED. The matrix must contain rotation & translation parts only.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
BOOL RayCollider::InitQuery(const Ray& world_ray, const Matrix4x4* world, udword* face_id)
{
// Reset stats & contact status
Collider::InitQuery();
mNbRayBVTests = 0;
mNbRayPrimTests = 0;
mNbIntersections = 0;
#ifndef OPC_RAYHIT_CALLBACK
if(mStabbedFaces) mStabbedFaces->Reset();
#endif
// Compute ray in local space
// The (Origin/Dir) form is needed for the ray-triangle test anyway (even for segment tests)
if(world)
{
Matrix3x3 InvWorld = *world;
mDir = InvWorld * world_ray.mDir;
Matrix4x4 World;
InvertPRMatrix(World, *world);
mOrigin = world_ray.mOrig * World;
}
else
{
mDir = world_ray.mDir;
mOrigin = world_ray.mOrig;
}
// 4) Special case: 1-triangle meshes [Opcode 1.3]
if(mCurrentModel && mCurrentModel->HasSingleNode())
{
// We simply perform the BV-Prim overlap test each time. We assume single triangle has index 0.
if(!SkipPrimitiveTests())
{
// Perform overlap test between the unique triangle and the ray (and set contact status if needed)
SEGMENT_PRIM(udword(0), OPC_CONTACT)
// Return immediately regardless of status
return TRUE;
}
}
// Check temporal coherence :
// Test previously colliding primitives first
if(TemporalCoherenceEnabled() && FirstContactEnabled() && face_id && *face_id!=INVALID_ID)
{
#ifdef OLD_CODE
#ifndef OPC_RAYHIT_CALLBACK
if(!mClosestHit)
#endif
{
// Request vertices from the app
VertexPointers VP;
mIMesh->GetTriangle(VP, *face_id);
// Perform ray-cached tri overlap test
if(RayTriOverlap(*VP.Vertex[0], *VP.Vertex[1], *VP.Vertex[2]))
{
// Intersection point is valid if:
// - distance is positive (else it can just be a face behind the orig point)
// - distance is smaller than a given max distance (useful for shadow feelers)
// if(mStabbedFace.mDistance>0.0f && mStabbedFace.mDistance<mMaxDist)
if(IR(mStabbedFace.mDistance)<IR(mMaxDist)) // The other test is already performed in RayTriOverlap
{
// Set contact status
mFlags |= OPC_TEMPORAL_CONTACT;
mStabbedFace.mFaceID = *face_id;
#ifndef OPC_RAYHIT_CALLBACK
if(mStabbedFaces) mStabbedFaces->AddFace(mStabbedFace);
#endif
return TRUE;
}
}
}
#else
// New code
// We handle both Segment/ray queries with the same segment code, and a possible infinite limit
SEGMENT_PRIM(*face_id, OPC_TEMPORAL_CONTACT)
// Return immediately if possible
if(GetContactStatus()) return TRUE;
#endif
}
// Precompute data (moved after temporal coherence since only needed for ray-AABB)
if(IR(mMaxDist)!=IEEE_MAX_FLOAT)
{
// For Segment-AABB overlap
mData = 0.5f * mDir * mMaxDist;
mData2 = mOrigin + mData;
// Precompute mFDir;
mFDir.x = fabsf(mData.x);
mFDir.y = fabsf(mData.y);
mFDir.z = fabsf(mData.z);
}
else
{
// For Ray-AABB overlap
// udword x = SIR(mDir.x)-1;
// udword y = SIR(mDir.y)-1;
// udword z = SIR(mDir.z)-1;
// mData.x = FR(x);
// mData.y = FR(y);
// mData.z = FR(z);
// Precompute mFDir;
mFDir.x = fabsf(mDir.x);
mFDir.y = fabsf(mDir.y);
mFDir.z = fabsf(mDir.z);
}
return FALSE;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Stabbing query for vanilla AABB trees.
* \param world_ray [in] stabbing ray in world space
* \param tree [in] AABB tree
* \param box_indices [out] indices of stabbed boxes
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool RayCollider::Collide(const Ray& world_ray, const AABBTree* tree, Container& box_indices)
{
// ### bad design here
// This is typically called for a scene tree, full of -AABBs-, not full of triangles.
// So we don't really have "primitives" to deal with. Hence it doesn't work with
// "FirstContact" + "TemporalCoherence".
ASSERT( !(FirstContactEnabled() && TemporalCoherenceEnabled()) );
// Checkings
if(!tree) return false;
// Init collision query
// Basically this is only called to initialize precomputed data
if(InitQuery(world_ray)) return true;
// Perform stabbing query
if(IR(mMaxDist)!=IEEE_MAX_FLOAT) _SegmentStab(tree, box_indices);
else _RayStab(tree, box_indices);
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive stabbing query for normal AABB trees.
* \param node [in] current collision node
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void RayCollider::_SegmentStab(const AABBCollisionNode* node)
{
// Perform Segment-AABB overlap test
if(!SegmentAABBOverlap(node->mAABB.mCenter, node->mAABB.mExtents)) return;
if(node->IsLeaf())
{
SEGMENT_PRIM(node->GetPrimitive(), OPC_CONTACT)
}
else
{
_SegmentStab(node->GetPos());
if(ContactFound()) return;
_SegmentStab(node->GetNeg());
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive stabbing query for quantized AABB trees.
* \param node [in] current collision node
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void RayCollider::_SegmentStab(const AABBQuantizedNode* node)
{
// Dequantize box
const QuantizedAABB& Box = node->mAABB;
const Point Center(float(Box.mCenter[0]) * mCenterCoeff.x, float(Box.mCenter[1]) * mCenterCoeff.y, float(Box.mCenter[2]) * mCenterCoeff.z);
const Point Extents(float(Box.mExtents[0]) * mExtentsCoeff.x, float(Box.mExtents[1]) * mExtentsCoeff.y, float(Box.mExtents[2]) * mExtentsCoeff.z);
// Perform Segment-AABB overlap test
if(!SegmentAABBOverlap(Center, Extents)) return;
if(node->IsLeaf())
{
SEGMENT_PRIM(node->GetPrimitive(), OPC_CONTACT)
}
else
{
_SegmentStab(node->GetPos());
if(ContactFound()) return;
_SegmentStab(node->GetNeg());
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive stabbing query for no-leaf AABB trees.
* \param node [in] current collision node
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void RayCollider::_SegmentStab(const AABBNoLeafNode* node)
{
// Perform Segment-AABB overlap test
if(!SegmentAABBOverlap(node->mAABB.mCenter, node->mAABB.mExtents)) return;
if(node->HasPosLeaf())
{
SEGMENT_PRIM(node->GetPosPrimitive(), OPC_CONTACT)
}
else _SegmentStab(node->GetPos());
if(ContactFound()) return;
if(node->HasNegLeaf())
{
SEGMENT_PRIM(node->GetNegPrimitive(), OPC_CONTACT)
}
else _SegmentStab(node->GetNeg());
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive stabbing query for quantized no-leaf AABB trees.
* \param node [in] current collision node
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void RayCollider::_SegmentStab(const AABBQuantizedNoLeafNode* node)
{
// Dequantize box
const QuantizedAABB& Box = node->mAABB;
const Point Center(float(Box.mCenter[0]) * mCenterCoeff.x, float(Box.mCenter[1]) * mCenterCoeff.y, float(Box.mCenter[2]) * mCenterCoeff.z);
const Point Extents(float(Box.mExtents[0]) * mExtentsCoeff.x, float(Box.mExtents[1]) * mExtentsCoeff.y, float(Box.mExtents[2]) * mExtentsCoeff.z);
// Perform Segment-AABB overlap test
if(!SegmentAABBOverlap(Center, Extents)) return;
if(node->HasPosLeaf())
{
SEGMENT_PRIM(node->GetPosPrimitive(), OPC_CONTACT)
}
else _SegmentStab(node->GetPos());
if(ContactFound()) return;
if(node->HasNegLeaf())
{
SEGMENT_PRIM(node->GetNegPrimitive(), OPC_CONTACT)
}
else _SegmentStab(node->GetNeg());
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive stabbing query for vanilla AABB trees.
* \param node [in] current collision node
* \param box_indices [out] indices of stabbed boxes
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void RayCollider::_SegmentStab(const AABBTreeNode* node, Container& box_indices)
{
// Test the box against the segment
Point Center, Extents;
node->GetAABB()->GetCenter(Center);
node->GetAABB()->GetExtents(Extents);
if(!SegmentAABBOverlap(Center, Extents)) return;
if(node->IsLeaf())
{
box_indices.Add(node->GetPrimitives(), node->GetNbPrimitives());
}
else
{
_SegmentStab(node->GetPos(), box_indices);
_SegmentStab(node->GetNeg(), box_indices);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive stabbing query for normal AABB trees.
* \param node [in] current collision node
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void RayCollider::_RayStab(const AABBCollisionNode* node)
{
// Perform Ray-AABB overlap test
if(!RayAABBOverlap(node->mAABB.mCenter, node->mAABB.mExtents)) return;
if(node->IsLeaf())
{
RAY_PRIM(node->GetPrimitive(), OPC_CONTACT)
}
else
{
_RayStab(node->GetPos());
if(ContactFound()) return;
_RayStab(node->GetNeg());
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive stabbing query for quantized AABB trees.
* \param node [in] current collision node
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void RayCollider::_RayStab(const AABBQuantizedNode* node)
{
// Dequantize box
const QuantizedAABB& Box = node->mAABB;
const Point Center(float(Box.mCenter[0]) * mCenterCoeff.x, float(Box.mCenter[1]) * mCenterCoeff.y, float(Box.mCenter[2]) * mCenterCoeff.z);
const Point Extents(float(Box.mExtents[0]) * mExtentsCoeff.x, float(Box.mExtents[1]) * mExtentsCoeff.y, float(Box.mExtents[2]) * mExtentsCoeff.z);
// Perform Ray-AABB overlap test
if(!RayAABBOverlap(Center, Extents)) return;
if(node->IsLeaf())
{
RAY_PRIM(node->GetPrimitive(), OPC_CONTACT)
}
else
{
_RayStab(node->GetPos());
if(ContactFound()) return;
_RayStab(node->GetNeg());
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive stabbing query for no-leaf AABB trees.
* \param node [in] current collision node
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void RayCollider::_RayStab(const AABBNoLeafNode* node)
{
// Perform Ray-AABB overlap test
if(!RayAABBOverlap(node->mAABB.mCenter, node->mAABB.mExtents)) return;
if(node->HasPosLeaf())
{
RAY_PRIM(node->GetPosPrimitive(), OPC_CONTACT)
}
else _RayStab(node->GetPos());
if(ContactFound()) return;
if(node->HasNegLeaf())
{
RAY_PRIM(node->GetNegPrimitive(), OPC_CONTACT)
}
else _RayStab(node->GetNeg());
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive stabbing query for quantized no-leaf AABB trees.
* \param node [in] current collision node
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void RayCollider::_RayStab(const AABBQuantizedNoLeafNode* node)
{
// Dequantize box
const QuantizedAABB& Box = node->mAABB;
const Point Center(float(Box.mCenter[0]) * mCenterCoeff.x, float(Box.mCenter[1]) * mCenterCoeff.y, float(Box.mCenter[2]) * mCenterCoeff.z);
const Point Extents(float(Box.mExtents[0]) * mExtentsCoeff.x, float(Box.mExtents[1]) * mExtentsCoeff.y, float(Box.mExtents[2]) * mExtentsCoeff.z);
// Perform Ray-AABB overlap test
if(!RayAABBOverlap(Center, Extents)) return;
if(node->HasPosLeaf())
{
RAY_PRIM(node->GetPosPrimitive(), OPC_CONTACT)
}
else _RayStab(node->GetPos());
if(ContactFound()) return;
if(node->HasNegLeaf())
{
RAY_PRIM(node->GetNegPrimitive(), OPC_CONTACT)
}
else _RayStab(node->GetNeg());
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive stabbing query for vanilla AABB trees.
* \param node [in] current collision node
* \param box_indices [out] indices of stabbed boxes
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void RayCollider::_RayStab(const AABBTreeNode* node, Container& box_indices)
{
// Test the box against the ray
Point Center, Extents;
node->GetAABB()->GetCenter(Center);
node->GetAABB()->GetExtents(Extents);
if(!RayAABBOverlap(Center, Extents)) return;
if(node->IsLeaf())
{
mFlags |= OPC_CONTACT;
box_indices.Add(node->GetPrimitives(), node->GetNbPrimitives());
}
else
{
_RayStab(node->GetPos(), box_indices);
_RayStab(node->GetNeg(), box_indices);
}
}