bluecore/glfw/lib/image.c
2008-01-16 11:45:17 +00:00

632 lines
18 KiB
C

//========================================================================
// GLFW - An OpenGL framework
// File: image.c
// Platform: Any
// API version: 2.6
// WWW: http://glfw.sourceforge.net
//------------------------------------------------------------------------
// Copyright (c) 2002-2006 Camilla Berglund
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would
// be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not
// be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source
// distribution.
//
//------------------------------------------------------------------------
// $Id: image.c,v 1.8 2007/03/15 03:20:19 elmindreda Exp $
//========================================================================
//========================================================================
// Description:
//
// This module acts as an interface for different image file formats (the
// image file format is detected automatically).
//
// By default the loaded image is rescaled (using bilinear interpolation)
// to the next higher 2^N x 2^M resolution, unless it has a valid
// 2^N x 2^M resolution. The interpolation is quite slow, even if the
// routine has been optimized for speed (a 200x200 RGB image is scaled to
// 256x256 in ~30 ms on a P3-500).
//
// Paletted images are converted to RGB/RGBA images.
//
// A convenience function is also included (glfwLoadTexture2D), which
// loads a texture image from a file directly to OpenGL texture memory,
// with an option to generate all mipmap levels. GL_SGIS_generate_mipmap
// is used whenever available, which should give an optimal mipmap
// generation speed (possibly performed in hardware). A software fallback
// method is included when GL_SGIS_generate_mipmap is not supported (it
// generates all mipmaps of a 256x256 RGB texture in ~3 ms on a P3-500).
//
//========================================================================
#include "internal.h"
// We want to support automatic mipmap generation
#ifndef GL_SGIS_generate_mipmap
#define GL_GENERATE_MIPMAP_SGIS 0x8191
#define GL_GENERATE_MIPMAP_HINT_SGIS 0x8192
#define GL_SGIS_generate_mipmap 1
#endif // GL_SGIS_generate_mipmap
//************************************************************************
//**** GLFW internal functions ****
//************************************************************************
//========================================================================
// _glfwUpsampleImage() - Upsample image, from size w1 x h1 to w2 x h2
//========================================================================
static void _glfwUpsampleImage( unsigned char *src, unsigned char *dst,
int w1, int h1, int w2, int h2, int bpp )
{
int m, n, k, x, y, col8;
float dx, dy, xstep, ystep, col, col1, col2;
unsigned char *src1, *src2, *src3, *src4;
// Calculate scaling factor
xstep = (float)(w1-1) / (float)(w2-1);
ystep = (float)(h1-1) / (float)(h2-1);
// Copy source data to destination data with bilinear interpolation
// Note: The rather strange look of this routine is a direct result of
// my attempts at optimizing it. Improvements are welcome!
dy = 0.0f;
y = 0;
for( n = 0; n < h2; n ++ )
{
dx = 0.0f;
src1 = &src[ y*w1*bpp ];
src3 = y < (h1-1) ? src1 + w1*bpp : src1;
src2 = src1 + bpp;
src4 = src3 + bpp;
x = 0;
for( m = 0; m < w2; m ++ )
{
for( k = 0; k < bpp; k ++ )
{
col1 = *src1 ++;
col2 = *src2 ++;
col = col1 + (col2 - col1) * dx;
col1 = *src3 ++;
col2 = *src4 ++;
col2 = col1 + (col2 - col1) * dx;
col += (col2 - col) * dy;
col8 = (int) (col + 0.5);
if( col8 >= 256 ) col8 = 255;
*dst++ = (unsigned char) col8;
}
dx += xstep;
if( dx >= 1.0f )
{
x ++;
dx -= 1.0f;
if( x >= (w1-1) )
{
src2 = src1;
src4 = src3;
}
}
else
{
src1 -= bpp;
src2 -= bpp;
src3 -= bpp;
src4 -= bpp;
}
}
dy += ystep;
if( dy >= 1.0f )
{
y ++;
dy -= 1.0f;
}
}
}
//========================================================================
// _glfwHalveImage() - Build the next mip-map level
//========================================================================
static int _glfwHalveImage( GLubyte *src, int *width, int *height,
int components )
{
int halfwidth, halfheight, m, n, k, idx1, idx2;
GLubyte *dst;
// Last level?
if( *width <= 1 && *height <= 1 )
{
return GL_FALSE;
}
// Calculate new width and height (handle 1D case)
halfwidth = *width > 1 ? *width / 2 : 1;
halfheight = *height > 1 ? *height / 2 : 1;
// Downsample image with a simple box-filter
dst = src;
if( *width == 1 || *height == 1 )
{
// 1D case
for( m = 0; m < halfwidth+halfheight-1; m ++ )
{
for( k = 0; k < components; k ++ )
{
*dst ++ = (GLubyte) (((int)*src +
(int)src[components] + 1) >> 1);
src ++;
}
src += components;
}
}
else
{
// 2D case
idx1 = *width*components;
idx2 = (*width+1)*components;
for( m = 0; m < halfheight; m ++ )
{
for( n = 0; n < halfwidth; n ++ )
{
for( k = 0; k < components; k ++ )
{
*dst ++ = (GLubyte) (((int)*src +
(int)src[components] +
(int)src[idx1] +
(int)src[idx2] + 2) >> 2);
src ++;
}
src += components;
}
src += components * (*width);
}
}
// Return new width and height
*width = halfwidth;
*height = halfheight;
return GL_TRUE;
}
//========================================================================
// _glfwRescaleImage() - Rescales an image into power-of-two dimensions
//========================================================================
static int _glfwRescaleImage( GLFWimage* image )
{
int width, height, log2, newsize;
unsigned char *data;
// Calculate next larger 2^N width
for( log2 = 0, width = image->Width; width > 1; width >>= 1, log2 ++ )
;
width = (int) 1 << log2;
if( width < image->Width )
{
width <<= 1;
}
// Calculate next larger 2^M height
for( log2 = 0, height = image->Height; height > 1; height >>= 1, log2 ++ )
;
height = (int) 1 << log2;
if( height < image->Height )
{
height <<= 1;
}
// Do we really need to rescale?
if( width != image->Width || height != image->Height )
{
// Allocate memory for new (upsampled) image data
newsize = width * height * image->BytesPerPixel;
data = (unsigned char *) malloc( newsize );
if( data == NULL )
{
free( image->Data );
return GL_FALSE;
}
// Copy old image data to new image data with interpolation
_glfwUpsampleImage( image->Data, data, image->Width, image->Height,
width, height, image->BytesPerPixel );
// Free memory for old image data (not needed anymore)
free( image->Data );
// Set pointer to new image data, and set new image dimensions
image->Data = data;
image->Width = width;
image->Height = height;
}
return GL_TRUE;
}
//************************************************************************
//**** GLFW user functions ****
//************************************************************************
//========================================================================
// glfwReadImage() - Read an image from a named file
//========================================================================
GLFWAPI int GLFWAPIENTRY glfwReadImage( const char *name, GLFWimage *img,
int flags )
{
_GLFWstream stream;
// Is GLFW initialized?
if( !_glfwInitialized )
{
return GL_FALSE;
}
// Start with an empty image descriptor
img->Width = 0;
img->Height = 0;
img->BytesPerPixel = 0;
img->Data = NULL;
// Open file
if( !_glfwOpenFileStream( &stream, name, "rb" ) )
{
return GL_FALSE;
}
// We only support TGA files at the moment
if( !_glfwReadTGA( &stream, img, flags ) )
{
_glfwCloseStream( &stream );
return GL_FALSE;
}
// Close stream
_glfwCloseStream( &stream );
// Should we rescale the image to closest 2^N x 2^M resolution?
if( !(flags & GLFW_NO_RESCALE_BIT) )
{
if( !_glfwRescaleImage( img ) )
{
return GL_FALSE;
}
}
// Interpret BytesPerPixel as an OpenGL format
switch( img->BytesPerPixel )
{
default:
case 1:
if( flags & GLFW_ALPHA_MAP_BIT )
{
img->Format = GL_ALPHA;
}
else
{
img->Format = GL_LUMINANCE;
}
break;
case 3:
img->Format = GL_RGB;
break;
case 4:
img->Format = GL_RGBA;
break;
}
return GL_TRUE;
}
//========================================================================
// glfwReadMemoryImage() - Read an image file from a memory buffer
//========================================================================
GLFWAPI int GLFWAPIENTRY glfwReadMemoryImage( const void *data, long size, GLFWimage *img, int flags )
{
_GLFWstream stream;
// Is GLFW initialized?
if( !_glfwInitialized )
{
return GL_FALSE;
}
// Start with an empty image descriptor
img->Width = 0;
img->Height = 0;
img->BytesPerPixel = 0;
img->Data = NULL;
// Open buffer
if( !_glfwOpenBufferStream( &stream, (void*) data, size ) )
{
return GL_FALSE;
}
// We only support TGA files at the moment
if( !_glfwReadTGA( &stream, img, flags ) )
{
_glfwCloseStream( &stream );
return GL_FALSE;
}
// Close stream
_glfwCloseStream( &stream );
// Should we rescale the image to closest 2^N x 2^M resolution?
if( !(flags & GLFW_NO_RESCALE_BIT) )
{
if( !_glfwRescaleImage( img ) )
{
return GL_FALSE;
}
}
// Interpret BytesPerPixel as an OpenGL format
switch( img->BytesPerPixel )
{
default:
case 1:
if( flags & GLFW_ALPHA_MAP_BIT )
{
img->Format = GL_ALPHA;
}
else
{
img->Format = GL_LUMINANCE;
}
break;
case 3:
img->Format = GL_RGB;
break;
case 4:
img->Format = GL_RGBA;
break;
}
return GL_TRUE;
}
//========================================================================
// glfwFreeImage() - Free allocated memory for an image
//========================================================================
GLFWAPI void GLFWAPIENTRY glfwFreeImage( GLFWimage *img )
{
// Is GLFW initialized?
if( !_glfwInitialized )
{
return;
}
// Free memory
if( img->Data != NULL )
{
free( img->Data );
img->Data = NULL;
}
// Clear all fields
img->Width = 0;
img->Height = 0;
img->Format = 0;
img->BytesPerPixel = 0;
}
//========================================================================
// glfwLoadTexture2D() - Read an image from a file, and upload it to
// texture memory
//========================================================================
GLFWAPI int GLFWAPIENTRY glfwLoadTexture2D( const char *name, int flags )
{
GLFWimage img;
// Is GLFW initialized?
if( !_glfwInitialized || !_glfwWin.Opened )
{
return GL_FALSE;
}
// Force rescaling if necessary
if( !_glfwWin.Has_GL_ARB_texture_non_power_of_two )
{
flags &= (~GLFW_NO_RESCALE_BIT);
}
// Read image from file
if( !glfwReadImage( name, &img, flags ) )
{
return GL_FALSE;
}
if( !glfwLoadTextureImage2D( &img, flags ) )
{
return GL_FALSE;
}
// Data buffer is not needed anymore
glfwFreeImage( &img );
return GL_TRUE;
}
//========================================================================
// glfwLoadMemoryTexture2D() - Read an image from a buffer, and upload it to
// texture memory
//========================================================================
GLFWAPI int GLFWAPIENTRY glfwLoadMemoryTexture2D( const void *data, long size, int flags )
{
GLFWimage img;
// Is GLFW initialized?
if( !_glfwInitialized || !_glfwWin.Opened )
{
return GL_FALSE;
}
// Force rescaling if necessary
if( !_glfwWin.Has_GL_ARB_texture_non_power_of_two )
{
flags &= (~GLFW_NO_RESCALE_BIT);
}
// Read image from file
if( !glfwReadMemoryImage( data, size, &img, flags ) )
{
return GL_FALSE;
}
if( !glfwLoadTextureImage2D( &img, flags ) )
{
return GL_FALSE;
}
// Data buffer is not needed anymore
glfwFreeImage( &img );
return GL_TRUE;
}
//========================================================================
// glfwLoadTextureImage2D() - Upload an image object to texture memory
//========================================================================
GLFWAPI int GLFWAPIENTRY glfwLoadTextureImage2D( GLFWimage *img, int flags )
{
GLint UnpackAlignment, GenMipMap;
int level, format, AutoGen, newsize, n;
unsigned char *data, *dataptr;
// Is GLFW initialized?
if( !_glfwInitialized || !_glfwWin.Opened )
{
return GL_FALSE;
}
// TODO: Use GL_MAX_TEXTURE_SIZE or GL_PROXY_TEXTURE_2D to determine
// whether the image size is valid.
// NOTE: May require box filter downsampling routine.
// Do we need to convert the alpha map to RGBA format (OpenGL 1.0)?
if( (_glfwWin.GLVerMajor == 1) && (_glfwWin.GLVerMinor == 0) &&
(img->Format == GL_ALPHA) )
{
// We go to RGBA representation instead
img->BytesPerPixel = 4;
// Allocate memory for new RGBA image data
newsize = img->Width * img->Height * img->BytesPerPixel;
data = (unsigned char *) malloc( newsize );
if( data == NULL )
{
free( img->Data );
return GL_FALSE;
}
// Convert Alpha map to RGBA
dataptr = data;
for( n = 0; n < (img->Width*img->Height); ++ n )
{
*dataptr ++ = 255;
*dataptr ++ = 255;
*dataptr ++ = 255;
*dataptr ++ = img->Data[n];
}
// Free memory for old image data (not needed anymore)
free( img->Data );
// Set pointer to new image data
img->Data = data;
}
// Set unpack alignment to one byte
glGetIntegerv( GL_UNPACK_ALIGNMENT, &UnpackAlignment );
glPixelStorei( GL_UNPACK_ALIGNMENT, 1 );
// Should we use automatic mipmap generation?
AutoGen = ( flags & GLFW_BUILD_MIPMAPS_BIT ) &&
_glfwWin.Has_GL_SGIS_generate_mipmap;
// Enable automatic mipmap generation
if( AutoGen )
{
glGetTexParameteriv( GL_TEXTURE_2D, GL_GENERATE_MIPMAP_SGIS,
&GenMipMap );
glTexParameteri( GL_TEXTURE_2D, GL_GENERATE_MIPMAP_SGIS,
GL_TRUE );
}
// Format specification is different for OpenGL 1.0
if( _glfwWin.GLVerMajor == 1 && _glfwWin.GLVerMinor == 0 )
{
format = img->BytesPerPixel;
}
else
{
format = img->Format;
}
// Upload to texture memeory
level = 0;
do
{
// Upload this mipmap level
glTexImage2D( GL_TEXTURE_2D, level, format,
img->Width, img->Height, 0, format,
GL_UNSIGNED_BYTE, (void*) img->Data );
// Build next mipmap level manually, if required
if( ( flags & GLFW_BUILD_MIPMAPS_BIT ) && !AutoGen )
{
level = _glfwHalveImage( img->Data, &img->Width,
&img->Height, img->BytesPerPixel ) ?
level + 1 : 0;
}
}
while( level != 0 );
// Restore old automatic mipmap generation state
if( AutoGen )
{
glTexParameteri( GL_TEXTURE_2D, GL_GENERATE_MIPMAP_SGIS,
GenMipMap );
}
// Restore old unpack alignment
glPixelStorei( GL_UNPACK_ALIGNMENT, UnpackAlignment );
return GL_TRUE;
}