bluecore/ode/OPCODE/Ice/IcePoint.cpp
2008-01-16 11:45:17 +00:00

194 lines
7.3 KiB
C++

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains code for 3D vectors.
* \file IcePoint.cpp
* \author Pierre Terdiman
* \date April, 4, 2000
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* 3D point.
*
* The name is "Point" instead of "Vector" since a vector is N-dimensional, whereas a point is an implicit "vector of dimension 3".
* So the choice was between "Point" and "Vector3", the first one looked better (IMHO).
*
* Some people, then, use a typedef to handle both points & vectors using the same class: typedef Point Vector3;
* This is bad since it opens the door to a lot of confusion while reading the code. I know it may sounds weird but check this out:
*
* \code
* Point P0,P1 = some 3D points;
* Point Delta = P1 - P0;
* \endcode
*
* This compiles fine, although you should have written:
*
* \code
* Point P0,P1 = some 3D points;
* Vector3 Delta = P1 - P0;
* \endcode
*
* Subtle things like this are not caught at compile-time, and when you find one in the code, you never know whether it's a mistake
* from the author or something you don't get.
*
* One way to handle it at compile-time would be to use different classes for Point & Vector3, only overloading operator "-" for vectors.
* But then, you get a lot of redundant code in thoses classes, and basically it's really a lot of useless work.
*
* Another way would be to use homogeneous points: w=1 for points, w=0 for vectors. That's why the HPoint class exists. Now, to store
* your model's vertices and in most cases, you really want to use Points to save ram.
*
* \class Point
* \author Pierre Terdiman
* \version 1.0
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Precompiled Header
#include "Stdafx.h"
using namespace IceMaths;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Creates a positive unit random vector.
* \return Self-reference
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
Point& Point::PositiveUnitRandomVector()
{
x = UnitRandomFloat();
y = UnitRandomFloat();
z = UnitRandomFloat();
Normalize();
return *this;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Creates a unit random vector.
* \return Self-reference
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
Point& Point::UnitRandomVector()
{
x = UnitRandomFloat() - 0.5f;
y = UnitRandomFloat() - 0.5f;
z = UnitRandomFloat() - 0.5f;
Normalize();
return *this;
}
// Cast operator
// WARNING: not inlined
Point::operator HPoint() const { return HPoint(x, y, z, 0.0f); }
Point& Point::Refract(const Point& eye, const Point& n, float refractindex, Point& refracted)
{
// Point EyePt = eye position
// Point p = current vertex
// Point n = vertex normal
// Point rv = refracted vector
// Eye vector - doesn't need to be normalized
Point Env;
Env.x = eye.x - x;
Env.y = eye.y - y;
Env.z = eye.z - z;
float NDotE = n|Env;
float NDotN = n|n;
NDotE /= refractindex;
// Refracted vector
refracted = n*NDotE - Env*NDotN;
return *this;
}
Point& Point::ProjectToPlane(const Plane& p)
{
*this-= (p.d + (*this|p.n))*p.n;
return *this;
}
void Point::ProjectToScreen(float halfrenderwidth, float halfrenderheight, const Matrix4x4& mat, HPoint& projected) const
{
projected = HPoint(x, y, z, 1.0f) * mat;
projected.w = 1.0f / projected.w;
projected.x*=projected.w;
projected.y*=projected.w;
projected.z*=projected.w;
projected.x *= halfrenderwidth; projected.x += halfrenderwidth;
projected.y *= -halfrenderheight; projected.y += halfrenderheight;
}
void Point::SetNotUsed()
{
// We use a particular integer pattern : 0xffffffff everywhere. This is a NAN.
IR(x) = 0xffffffff;
IR(y) = 0xffffffff;
IR(z) = 0xffffffff;
}
BOOL Point::IsNotUsed() const
{
if(IR(x)!=0xffffffff) return FALSE;
if(IR(y)!=0xffffffff) return FALSE;
if(IR(z)!=0xffffffff) return FALSE;
return TRUE;
}
Point& Point::Mult(const Matrix3x3& mat, const Point& a)
{
x = a.x * mat.m[0][0] + a.y * mat.m[0][1] + a.z * mat.m[0][2];
y = a.x * mat.m[1][0] + a.y * mat.m[1][1] + a.z * mat.m[1][2];
z = a.x * mat.m[2][0] + a.y * mat.m[2][1] + a.z * mat.m[2][2];
return *this;
}
Point& Point::Mult2(const Matrix3x3& mat1, const Point& a1, const Matrix3x3& mat2, const Point& a2)
{
x = a1.x * mat1.m[0][0] + a1.y * mat1.m[0][1] + a1.z * mat1.m[0][2] + a2.x * mat2.m[0][0] + a2.y * mat2.m[0][1] + a2.z * mat2.m[0][2];
y = a1.x * mat1.m[1][0] + a1.y * mat1.m[1][1] + a1.z * mat1.m[1][2] + a2.x * mat2.m[1][0] + a2.y * mat2.m[1][1] + a2.z * mat2.m[1][2];
z = a1.x * mat1.m[2][0] + a1.y * mat1.m[2][1] + a1.z * mat1.m[2][2] + a2.x * mat2.m[2][0] + a2.y * mat2.m[2][1] + a2.z * mat2.m[2][2];
return *this;
}
Point& Point::Mac(const Matrix3x3& mat, const Point& a)
{
x += a.x * mat.m[0][0] + a.y * mat.m[0][1] + a.z * mat.m[0][2];
y += a.x * mat.m[1][0] + a.y * mat.m[1][1] + a.z * mat.m[1][2];
z += a.x * mat.m[2][0] + a.y * mat.m[2][1] + a.z * mat.m[2][2];
return *this;
}
Point& Point::TransMult(const Matrix3x3& mat, const Point& a)
{
x = a.x * mat.m[0][0] + a.y * mat.m[1][0] + a.z * mat.m[2][0];
y = a.x * mat.m[0][1] + a.y * mat.m[1][1] + a.z * mat.m[2][1];
z = a.x * mat.m[0][2] + a.y * mat.m[1][2] + a.z * mat.m[2][2];
return *this;
}
Point& Point::Transform(const Point& r, const Matrix3x3& rotpos, const Point& linpos)
{
x = r.x * rotpos.m[0][0] + r.y * rotpos.m[0][1] + r.z * rotpos.m[0][2] + linpos.x;
y = r.x * rotpos.m[1][0] + r.y * rotpos.m[1][1] + r.z * rotpos.m[1][2] + linpos.y;
z = r.x * rotpos.m[2][0] + r.y * rotpos.m[2][1] + r.z * rotpos.m[2][2] + linpos.z;
return *this;
}
Point& Point::InvTransform(const Point& r, const Matrix3x3& rotpos, const Point& linpos)
{
float sx = r.x - linpos.x;
float sy = r.y - linpos.y;
float sz = r.z - linpos.z;
x = sx * rotpos.m[0][0] + sy * rotpos.m[1][0] + sz * rotpos.m[2][0];
y = sx * rotpos.m[0][1] + sy * rotpos.m[1][1] + sz * rotpos.m[2][1];
z = sx * rotpos.m[0][2] + sy * rotpos.m[1][2] + sz * rotpos.m[2][2];
return *this;
}