bluecore/ode/OPCODE/OPC_BoxPruning.cpp

368 lines
13 KiB
C++

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* OPCODE - Optimized Collision Detection
* Copyright (C) 2001 Pierre Terdiman
* Homepage: http://www.codercorner.com/Opcode.htm
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains code for box pruning.
* \file IceBoxPruning.cpp
* \author Pierre Terdiman
* \date January, 29, 2000
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
You could use a complex sweep-and-prune as implemented in I-Collide.
You could use a complex hashing scheme as implemented in V-Clip or recently in ODE it seems.
You could use a "Recursive Dimensional Clustering" algorithm as implemented in GPG2.
Or you could use this.
Faster ? I don't know. Probably not. It would be a shame. But who knows ?
Easier ? Definitely. Enjoy the sheer simplicity.
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Precompiled Header
#include "Stdafx.h"
using namespace Opcode;
inline_ void FindRunningIndex(udword& index, float* array, udword* sorted, int last, float max)
{
int First=index;
while(First<=last)
{
index = (First+last)>>1;
if(max>array[sorted[index]]) First = index+1;
else last = index-1;
}
}
// ### could be log(n) !
// and maybe use cmp integers
// InsertionSort has better coherence, RadixSort is better for one-shot queries.
#define PRUNING_SORTER RadixSort
//#define PRUNING_SORTER InsertionSort
// Static for coherence
static PRUNING_SORTER* gCompletePruningSorter = null;
static PRUNING_SORTER* gBipartitePruningSorter0 = null;
static PRUNING_SORTER* gBipartitePruningSorter1 = null;
inline_ PRUNING_SORTER* GetCompletePruningSorter()
{
if(!gCompletePruningSorter) gCompletePruningSorter = new PRUNING_SORTER;
return gCompletePruningSorter;
}
inline_ PRUNING_SORTER* GetBipartitePruningSorter0()
{
if(!gBipartitePruningSorter0) gBipartitePruningSorter0 = new PRUNING_SORTER;
return gBipartitePruningSorter0;
}
inline_ PRUNING_SORTER* GetBipartitePruningSorter1()
{
if(!gBipartitePruningSorter1) gBipartitePruningSorter1 = new PRUNING_SORTER;
return gBipartitePruningSorter1;
}
void ReleasePruningSorters()
{
DELETESINGLE(gBipartitePruningSorter1);
DELETESINGLE(gBipartitePruningSorter0);
DELETESINGLE(gCompletePruningSorter);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Bipartite box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to a different set.
* \param nb0 [in] number of boxes in the first set
* \param array0 [in] array of boxes for the first set
* \param nb1 [in] number of boxes in the second set
* \param array1 [in] array of boxes for the second set
* \param pairs [out] array of overlapping pairs
* \param axes [in] projection order (0,2,1 is often best)
* \return true if success.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool Opcode::BipartiteBoxPruning(udword nb0, const AABB** array0, udword nb1, const AABB** array1, Pairs& pairs, const Axes& axes)
{
// Checkings
if(!nb0 || !array0 || !nb1 || !array1) return false;
// Catch axes
udword Axis0 = axes.mAxis0;
udword Axis1 = axes.mAxis1;
udword Axis2 = axes.mAxis2;
// Allocate some temporary data
float* MinPosList0 = new float[nb0];
float* MinPosList1 = new float[nb1];
// 1) Build main lists using the primary axis
for(udword i=0;i<nb0;i++) MinPosList0[i] = array0[i]->GetMin(Axis0);
for(udword i=0;i<nb1;i++) MinPosList1[i] = array1[i]->GetMin(Axis0);
// 2) Sort the lists
PRUNING_SORTER* RS0 = GetBipartitePruningSorter0();
PRUNING_SORTER* RS1 = GetBipartitePruningSorter1();
const udword* Sorted0 = RS0->Sort(MinPosList0, nb0).GetRanks();
const udword* Sorted1 = RS1->Sort(MinPosList1, nb1).GetRanks();
// 3) Prune the lists
udword Index0, Index1;
const udword* const LastSorted0 = &Sorted0[nb0];
const udword* const LastSorted1 = &Sorted1[nb1];
const udword* RunningAddress0 = Sorted0;
const udword* RunningAddress1 = Sorted1;
while(RunningAddress1<LastSorted1 && Sorted0<LastSorted0)
{
Index0 = *Sorted0++;
while(RunningAddress1<LastSorted1 && MinPosList1[*RunningAddress1]<MinPosList0[Index0]) RunningAddress1++;
const udword* RunningAddress2_1 = RunningAddress1;
while(RunningAddress2_1<LastSorted1 && MinPosList1[Index1 = *RunningAddress2_1++]<=array0[Index0]->GetMax(Axis0))
{
if(array0[Index0]->Intersect(*array1[Index1], Axis1))
{
if(array0[Index0]->Intersect(*array1[Index1], Axis2))
{
pairs.AddPair(Index0, Index1);
}
}
}
}
////
while(RunningAddress0<LastSorted0 && Sorted1<LastSorted1)
{
Index0 = *Sorted1++;
while(RunningAddress0<LastSorted0 && MinPosList0[*RunningAddress0]<=MinPosList1[Index0]) RunningAddress0++;
const udword* RunningAddress2_0 = RunningAddress0;
while(RunningAddress2_0<LastSorted0 && MinPosList0[Index1 = *RunningAddress2_0++]<=array1[Index0]->GetMax(Axis0))
{
if(array0[Index1]->Intersect(*array1[Index0], Axis1))
{
if(array0[Index1]->Intersect(*array1[Index0], Axis2))
{
pairs.AddPair(Index1, Index0);
}
}
}
}
DELETEARRAY(MinPosList1);
DELETEARRAY(MinPosList0);
return true;
}
#define ORIGINAL_VERSION
//#define JOAKIM
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Complete box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to the same set.
* \param nb [in] number of boxes
* \param array [in] array of boxes
* \param pairs [out] array of overlapping pairs
* \param axes [in] projection order (0,2,1 is often best)
* \return true if success.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool Opcode::CompleteBoxPruning(udword nb, const AABB** array, Pairs& pairs, const Axes& axes)
{
// Checkings
if(!nb || !array) return false;
// Catch axes
udword Axis0 = axes.mAxis0;
udword Axis1 = axes.mAxis1;
udword Axis2 = axes.mAxis2;
#ifdef ORIGINAL_VERSION
// Allocate some temporary data
// float* PosList = new float[nb];
float* PosList = new float[nb+1];
// 1) Build main list using the primary axis
for(udword i=0;i<nb;i++) PosList[i] = array[i]->GetMin(Axis0);
PosList[nb++] = MAX_FLOAT;
// 2) Sort the list
PRUNING_SORTER* RS = GetCompletePruningSorter();
const udword* Sorted = RS->Sort(PosList, nb).GetRanks();
// 3) Prune the list
const udword* const LastSorted = &Sorted[nb];
const udword* RunningAddress = Sorted;
udword Index0, Index1;
while(RunningAddress<LastSorted && Sorted<LastSorted)
{
Index0 = *Sorted++;
// while(RunningAddress<LastSorted && PosList[*RunningAddress++]<PosList[Index0]);
while(PosList[*RunningAddress++]<PosList[Index0]);
if(RunningAddress<LastSorted)
{
const udword* RunningAddress2 = RunningAddress;
// while(RunningAddress2<LastSorted && PosList[Index1 = *RunningAddress2++]<=array[Index0]->GetMax(Axis0))
while(PosList[Index1 = *RunningAddress2++]<=array[Index0]->GetMax(Axis0))
{
// if(Index0!=Index1)
// {
if(array[Index0]->Intersect(*array[Index1], Axis1))
{
if(array[Index0]->Intersect(*array[Index1], Axis2))
{
pairs.AddPair(Index0, Index1);
}
}
// }
}
}
}
DELETEARRAY(PosList);
#endif
#ifdef JOAKIM
// Allocate some temporary data
// float* PosList = new float[nb];
float* MinList = new float[nb+1];
// 1) Build main list using the primary axis
for(udword i=0;i<nb;i++) MinList[i] = array[i]->GetMin(Axis0);
MinList[nb] = MAX_FLOAT;
// 2) Sort the list
PRUNING_SORTER* RS = GetCompletePruningSorter();
udword* Sorted = RS->Sort(MinList, nb+1).GetRanks();
// 3) Prune the list
// const udword* const LastSorted = &Sorted[nb];
// const udword* const LastSorted = &Sorted[nb-1];
const udword* RunningAddress = Sorted;
udword Index0, Index1;
// while(RunningAddress<LastSorted && Sorted<LastSorted)
// while(RunningAddress<LastSorted)
while(RunningAddress<&Sorted[nb])
// while(Sorted<LastSorted)
{
// Index0 = *Sorted++;
Index0 = *RunningAddress++;
// while(RunningAddress<LastSorted && PosList[*RunningAddress++]<PosList[Index0]);
// while(PosList[*RunningAddress++]<PosList[Index0]);
//RunningAddress = Sorted;
// if(RunningAddress<LastSorted)
{
const udword* RunningAddress2 = RunningAddress;
// while(RunningAddress2<LastSorted && PosList[Index1 = *RunningAddress2++]<=array[Index0]->GetMax(Axis0))
// float CurrentMin = array[Index0]->GetMin(Axis0);
float CurrentMax = array[Index0]->GetMax(Axis0);
while(MinList[Index1 = *RunningAddress2] <= CurrentMax)
// while(PosList[Index1 = *RunningAddress] <= CurrentMax)
{
// if(Index0!=Index1)
// {
if(array[Index0]->Intersect(*array[Index1], Axis1))
{
if(array[Index0]->Intersect(*array[Index1], Axis2))
{
pairs.AddPair(Index0, Index1);
}
}
// }
RunningAddress2++;
// RunningAddress++;
}
}
}
DELETEARRAY(MinList);
#endif
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Brute-force versions are kept:
// - to check the optimized versions return the correct list of intersections
// - to check the speed of the optimized code against the brute-force one
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Brute-force bipartite box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to a different set.
* \param nb0 [in] number of boxes in the first set
* \param array0 [in] array of boxes for the first set
* \param nb1 [in] number of boxes in the second set
* \param array1 [in] array of boxes for the second set
* \param pairs [out] array of overlapping pairs
* \return true if success.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool Opcode::BruteForceBipartiteBoxTest(udword nb0, const AABB** array0, udword nb1, const AABB** array1, Pairs& pairs)
{
// Checkings
if(!nb0 || !array0 || !nb1 || !array1) return false;
// Brute-force nb0*nb1 overlap tests
for(udword i=0;i<nb0;i++)
{
for(udword j=0;j<nb1;j++)
{
if(array0[i]->Intersect(*array1[j])) pairs.AddPair(i, j);
}
}
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Complete box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to the same set.
* \param nb [in] number of boxes
* \param array [in] array of boxes
* \param pairs [out] array of overlapping pairs
* \return true if success.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool Opcode::BruteForceCompleteBoxTest(udword nb, const AABB** array, Pairs& pairs)
{
// Checkings
if(!nb || !array) return false;
// Brute-force n(n-1)/2 overlap tests
for(udword i=0;i<nb;i++)
{
for(udword j=i+1;j<nb;j++)
{
if(array[i]->Intersect(*array[j])) pairs.AddPair(i, j);
}
}
return true;
}