bluecore/bullet/src/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp

391 lines
12 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btGeneric6DofConstraint.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "LinearMath/btTransformUtil.h"
#include <new>
static const btScalar kSign[] = { btScalar(1.0), btScalar(-1.0), btScalar(1.0) };
static const int kAxisA[] = { 1, 0, 0 };
static const int kAxisB[] = { 2, 2, 1 };
#define GENERIC_D6_DISABLE_WARMSTARTING 1
btGeneric6DofConstraint::btGeneric6DofConstraint()
:btTypedConstraint(D6_CONSTRAINT_TYPE)
{
}
btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB)
: btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB)
, m_frameInA(frameInA)
, m_frameInB(frameInB)
{
//free means upper < lower,
//locked means upper == lower
//limited means upper > lower
//so start all locked
for (int i=0; i<6;++i)
{
m_lowerLimit[i] = btScalar(0.0);
m_upperLimit[i] = btScalar(0.0);
m_accumulatedImpulse[i] = btScalar(0.0);
}
}
void btGeneric6DofConstraint::buildJacobian()
{
btVector3 localNormalInA(0,0,0);
const btVector3& pivotInA = m_frameInA.getOrigin();
const btVector3& pivotInB = m_frameInB.getOrigin();
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform() * m_frameInA.getOrigin();
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform() * m_frameInB.getOrigin();
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
int i;
//linear part
for (i=0;i<3;i++)
{
if (isLimited(i))
{
localNormalInA[i] = 1;
btVector3 normalWorld = m_rbA.getCenterOfMassTransform().getBasis() * localNormalInA;
// Create linear atom
new (&m_jacLinear[i]) btJacobianEntry(
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
m_rbA.getCenterOfMassTransform()*pivotInA - m_rbA.getCenterOfMassPosition(),
m_rbB.getCenterOfMassTransform()*pivotInB - m_rbB.getCenterOfMassPosition(),
normalWorld,
m_rbA.getInvInertiaDiagLocal(),
m_rbA.getInvMass(),
m_rbB.getInvInertiaDiagLocal(),
m_rbB.getInvMass());
//optionally disable warmstarting
#ifdef GENERIC_D6_DISABLE_WARMSTARTING
m_accumulatedImpulse[i] = btScalar(0.);
#endif //GENERIC_D6_DISABLE_WARMSTARTING
// Apply accumulated impulse
btVector3 impulse_vector = m_accumulatedImpulse[i] * normalWorld;
m_rbA.applyImpulse( impulse_vector, rel_pos1);
m_rbB.applyImpulse(-impulse_vector, rel_pos2);
localNormalInA[i] = 0;
}
}
// angular part
for (i=0;i<3;i++)
{
if (isLimited(i+3))
{
btVector3 axisA = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn( kAxisA[i] );
btVector3 axisB = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn( kAxisB[i] );
// Dirk: This is IMO mathematically the correct way, but we should consider axisA and axisB being near parallel maybe
btVector3 axis = kSign[i] * axisA.cross(axisB);
// Create angular atom
new (&m_jacAng[i]) btJacobianEntry(axis,
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
m_rbA.getInvInertiaDiagLocal(),
m_rbB.getInvInertiaDiagLocal());
#ifdef GENERIC_D6_DISABLE_WARMSTARTING
m_accumulatedImpulse[i + 3] = btScalar(0.);
#endif //GENERIC_D6_DISABLE_WARMSTARTING
// Apply accumulated impulse
btVector3 impulse_vector = m_accumulatedImpulse[i + 3] * axis;
m_rbA.applyTorqueImpulse( impulse_vector);
m_rbB.applyTorqueImpulse(-impulse_vector);
}
}
}
btScalar getMatrixElem(const btMatrix3x3& mat,int index)
{
int row = index%3;
int col = index / 3;
return mat[row][col];
}
///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
bool MatrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
{
// rot = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
/// 0..8
if (getMatrixElem(mat,2) < btScalar(1.0))
{
if (getMatrixElem(mat,2) > btScalar(-1.0))
{
xyz[0] = btAtan2(-getMatrixElem(mat,5),getMatrixElem(mat,8));
xyz[1] = btAsin(getMatrixElem(mat,2));
xyz[2] = btAtan2(-getMatrixElem(mat,1),getMatrixElem(mat,0));
return true;
}
else
{
// WARNING. Not unique. XA - ZA = -atan2(r10,r11)
xyz[0] = -btAtan2(getMatrixElem(mat,3),getMatrixElem(mat,4));
xyz[1] = -SIMD_HALF_PI;
xyz[2] = btScalar(0.0);
return false;
}
}
else
{
// WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
xyz[0] = btAtan2(getMatrixElem(mat,3),getMatrixElem(mat,4));
xyz[1] = SIMD_HALF_PI;
xyz[2] = 0.0;
}
return false;
}
void btGeneric6DofConstraint::solveConstraint(btScalar timeStep)
{
btScalar tau = btScalar(0.1);
btScalar damping = btScalar(1.0);
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform() * m_frameInA.getOrigin();
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform() * m_frameInB.getOrigin();
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
btVector3 localNormalInA(0,0,0);
int i;
// linear
for (i=0;i<3;i++)
{
if (isLimited(i))
{
btVector3 angvelA = m_rbA.getCenterOfMassTransform().getBasis().transpose() * m_rbA.getAngularVelocity();
btVector3 angvelB = m_rbB.getCenterOfMassTransform().getBasis().transpose() * m_rbB.getAngularVelocity();
localNormalInA.setValue(0,0,0);
localNormalInA[i] = 1;
btVector3 normalWorld = m_rbA.getCenterOfMassTransform().getBasis() * localNormalInA;
btScalar jacDiagABInv = btScalar(1.) / m_jacLinear[i].getDiagonal();
//velocity error (first order error)
btScalar rel_vel = m_jacLinear[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
m_rbB.getLinearVelocity(),angvelB);
//positional error (zeroth order error)
btScalar depth = -(pivotAInW - pivotBInW).dot(normalWorld);
btScalar lo = btScalar(-1e30);
btScalar hi = btScalar(1e30);
//handle the limits
if (m_lowerLimit[i] < m_upperLimit[i])
{
{
if (depth > m_upperLimit[i])
{
depth -= m_upperLimit[i];
lo = btScalar(0.);
} else
{
if (depth < m_lowerLimit[i])
{
depth -= m_lowerLimit[i];
hi = btScalar(0.);
} else
{
continue;
}
}
}
}
btScalar normalImpulse= (tau*depth/timeStep - damping*rel_vel) * jacDiagABInv;
btScalar oldNormalImpulse = m_accumulatedImpulse[i];
btScalar sum = oldNormalImpulse + normalImpulse;
m_accumulatedImpulse[i] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
normalImpulse = m_accumulatedImpulse[i] - oldNormalImpulse;
btVector3 impulse_vector = normalWorld * normalImpulse;
m_rbA.applyImpulse( impulse_vector, rel_pos1);
m_rbB.applyImpulse(-impulse_vector, rel_pos2);
localNormalInA[i] = 0;
}
}
btVector3 axis;
btScalar angle;
btTransform frameAWorld = m_rbA.getCenterOfMassTransform() * m_frameInA;
btTransform frameBWorld = m_rbB.getCenterOfMassTransform() * m_frameInB;
btTransformUtil::calculateDiffAxisAngle(frameAWorld,frameBWorld,axis,angle);
btQuaternion diff(axis,angle);
btMatrix3x3 diffMat (diff);
btVector3 xyz;
///this is not perfect, we can first check which axis are limited, and choose a more appropriate order
MatrixToEulerXYZ(diffMat,xyz);
// angular
for (i=0;i<3;i++)
{
if (isLimited(i+3))
{
btVector3 angvelA = m_rbA.getCenterOfMassTransform().getBasis().transpose() * m_rbA.getAngularVelocity();
btVector3 angvelB = m_rbB.getCenterOfMassTransform().getBasis().transpose() * m_rbB.getAngularVelocity();
btScalar jacDiagABInv = btScalar(1.) / m_jacAng[i].getDiagonal();
//velocity error (first order error)
btScalar rel_vel = m_jacAng[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
m_rbB.getLinearVelocity(),angvelB);
//positional error (zeroth order error)
btVector3 axisA = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn( kAxisA[i] );
btVector3 axisB = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn( kAxisB[i] );
btScalar rel_pos = kSign[i] * axisA.dot(axisB);
btScalar lo = btScalar(-1e30);
btScalar hi = btScalar(1e30);
//handle the twist limit
if (m_lowerLimit[i+3] < m_upperLimit[i+3])
{
//clamp the values
btScalar loLimit = m_lowerLimit[i+3] > -3.1415 ? m_lowerLimit[i+3] : btScalar(-1e30);
btScalar hiLimit = m_upperLimit[i+3] < 3.1415 ? m_upperLimit[i+3] : btScalar(1e30);
btScalar projAngle = btScalar(-1.)*xyz[i];
if (projAngle < loLimit)
{
hi = btScalar(0.);
rel_pos = (loLimit - projAngle);
} else
{
if (projAngle > hiLimit)
{
lo = btScalar(0.);
rel_pos = (hiLimit - projAngle);
} else
{
continue;
}
}
}
//impulse
btScalar normalImpulse= -(tau*rel_pos/timeStep + damping*rel_vel) * jacDiagABInv;
btScalar oldNormalImpulse = m_accumulatedImpulse[i+3];
btScalar sum = oldNormalImpulse + normalImpulse;
m_accumulatedImpulse[i+3] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
normalImpulse = m_accumulatedImpulse[i+3] - oldNormalImpulse;
// Dirk: Not needed - we could actually project onto Jacobian entry here (same as above)
btVector3 axis = kSign[i] * axisA.cross(axisB);
btVector3 impulse_vector = axis * normalImpulse;
m_rbA.applyTorqueImpulse( impulse_vector);
m_rbB.applyTorqueImpulse(-impulse_vector);
}
}
}
void btGeneric6DofConstraint::updateRHS(btScalar timeStep)
{
(void)timeStep;
}
btScalar btGeneric6DofConstraint::computeAngle(int axis) const
{
btScalar angle = btScalar(0.f);
switch (axis)
{
case 0:
{
btVector3 v1 = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(1);
btVector3 v2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(1);
btVector3 w2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(2);
btScalar s = v1.dot(w2);
btScalar c = v1.dot(v2);
angle = btAtan2( s, c );
}
break;
case 1:
{
btVector3 w1 = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(2);
btVector3 w2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(2);
btVector3 u2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(0);
btScalar s = w1.dot(u2);
btScalar c = w1.dot(w2);
angle = btAtan2( s, c );
}
break;
case 2:
{
btVector3 u1 = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(0);
btVector3 u2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(0);
btVector3 v2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(1);
btScalar s = u1.dot(v2);
btScalar c = u1.dot(u2);
angle = btAtan2( s, c );
}
break;
default:
btAssert ( 0 ) ;
break ;
}
return angle;
}