/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btCollisionDispatcher.h" #include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h" #include "BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.h" #include "BulletCollision/CollisionDispatch/btEmptyCollisionAlgorithm.h" #include "BulletCollision/CollisionDispatch/btConvexConcaveCollisionAlgorithm.h" #include "BulletCollision/CollisionDispatch/btCompoundCollisionAlgorithm.h" #include "BulletCollision/CollisionShapes/btCollisionShape.h" #include "BulletCollision/CollisionDispatch/btCollisionObject.h" #include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h" int gNumManifold = 0; #include btCollisionDispatcher::btCollisionDispatcher(bool noDefaultAlgorithms): m_count(0), m_useIslands(true), m_convexConvexCreateFunc(0), m_convexConcaveCreateFunc(0), m_swappedConvexConcaveCreateFunc(0), m_compoundCreateFunc(0), m_swappedCompoundCreateFunc(0), m_emptyCreateFunc(0) { (void)noDefaultAlgorithms; int i; setNearCallback(defaultNearCallback); m_emptyCreateFunc = new btEmptyAlgorithm::CreateFunc; for (i=0;iclearManifold(); } void btCollisionDispatcher::releaseManifold(btPersistentManifold* manifold) { gNumManifold--; //printf("releaseManifold: gNumManifold %d\n",gNumManifold); clearManifold(manifold); ///todo: this can be improved a lot, linear search might be slow part! int findIndex = m_manifoldsPtr.findLinearSearch(manifold); if (findIndex < m_manifoldsPtr.size()) { m_manifoldsPtr.swap(findIndex,m_manifoldsPtr.size()-1); m_manifoldsPtr.pop_back(); delete manifold; } } btCollisionAlgorithm* btCollisionDispatcher::findAlgorithm(btCollisionObject* body0,btCollisionObject* body1,btPersistentManifold* sharedManifold) { #ifdef USE_DISPATCH_REGISTRY_ARRAY btCollisionAlgorithmConstructionInfo ci; ci.m_dispatcher = this; ci.m_manifold = sharedManifold; btCollisionAlgorithm* algo = m_doubleDispatch[body0->getCollisionShape()->getShapeType()][body1->getCollisionShape()->getShapeType()] ->CreateCollisionAlgorithm(ci,body0,body1); #else btCollisionAlgorithm* algo = internalFindAlgorithm(body0,body1); #endif //USE_DISPATCH_REGISTRY_ARRAY return algo; } #ifndef BT_EXCLUDE_DEFAULT_COLLISIONALGORITHM_REGISTRATION btCollisionAlgorithmCreateFunc* btCollisionDispatcher::internalFindCreateFunc(int proxyType0,int proxyType1) { if (btBroadphaseProxy::isConvex(proxyType0) && btBroadphaseProxy::isConvex(proxyType1)) { return m_convexConvexCreateFunc; } if (btBroadphaseProxy::isConvex(proxyType0) && btBroadphaseProxy::isConcave(proxyType1)) { return m_convexConcaveCreateFunc; } if (btBroadphaseProxy::isConvex(proxyType1) && btBroadphaseProxy::isConcave(proxyType0)) { return m_swappedConvexConcaveCreateFunc; } if (btBroadphaseProxy::isCompound(proxyType0)) { return m_compoundCreateFunc; } else { if (btBroadphaseProxy::isCompound(proxyType1)) { return m_swappedCompoundCreateFunc; } } //failed to find an algorithm return m_emptyCreateFunc; } #endif //BT_EXCLUDE_DEFAULT_COLLISIONALGORITHM_REGISTRATION #ifndef USE_DISPATCH_REGISTRY_ARRAY btCollisionAlgorithm* btCollisionDispatcher::internalFindAlgorithm(btCollisionObject* body0,btCollisionObject* body1,btPersistentManifold* sharedManifold) { m_count++; btCollisionAlgorithmConstructionInfo ci; ci.m_dispatcher = this; if (body0->getCollisionShape()->isConvex() && body1->getCollisionShape()->isConvex() ) { return new btConvexConvexAlgorithm(sharedManifold,ci,body0,body1); } if (body0->getCollisionShape()->isConvex() && body1->getCollisionShape()->isConcave()) { return new btConvexConcaveCollisionAlgorithm(ci,body0,body1,false); } if (body1->getCollisionShape()->isConvex() && body0->getCollisionShape()->isConcave()) { return new btConvexConcaveCollisionAlgorithm(ci,body0,body1,true); } if (body0->getCollisionShape()->isCompound()) { return new btCompoundCollisionAlgorithm(ci,body0,body1,false); } else { if (body1->getCollisionShape()->isCompound()) { return new btCompoundCollisionAlgorithm(ci,body0,body1,true); } } //failed to find an algorithm return new btEmptyAlgorithm(ci); } #endif //USE_DISPATCH_REGISTRY_ARRAY bool btCollisionDispatcher::needsResponse(btCollisionObject* body0,btCollisionObject* body1) { //here you can do filtering bool hasResponse = (body0->hasContactResponse() && body1->hasContactResponse()); //no response between two static/kinematic bodies: hasResponse = hasResponse && ((!body0->isStaticOrKinematicObject()) ||(! body1->isStaticOrKinematicObject())); return hasResponse; } bool btCollisionDispatcher::needsCollision(btCollisionObject* body0,btCollisionObject* body1) { assert(body0); assert(body1); bool needsCollision = true; //broadphase filtering already deals with this if ((body0->isStaticObject() || body0->isKinematicObject()) && (body1->isStaticObject() || body1->isKinematicObject())) { printf("warning btCollisionDispatcher::needsCollision: static-static collision!\n"); } if ((!body0->isActive()) && (!body1->isActive())) needsCollision = false; else if (!body0->checkCollideWith(body1)) needsCollision = false; return needsCollision ; } ///interface for iterating all overlapping collision pairs, no matter how those pairs are stored (array, set, map etc) ///this is useful for the collision dispatcher. class btCollisionPairCallback : public btOverlapCallback { btDispatcherInfo& m_dispatchInfo; btCollisionDispatcher* m_dispatcher; public: btCollisionPairCallback(btDispatcherInfo& dispatchInfo,btCollisionDispatcher* dispatcher) :m_dispatchInfo(dispatchInfo), m_dispatcher(dispatcher) { } btCollisionPairCallback& operator=(btCollisionPairCallback& other) { m_dispatchInfo = other.m_dispatchInfo; m_dispatcher = other.m_dispatcher; return *this; } virtual ~btCollisionPairCallback() {} virtual bool processOverlap(btBroadphasePair& pair) { (*m_dispatcher->getNearCallback())(pair,*m_dispatcher,m_dispatchInfo); return false; } }; void btCollisionDispatcher::dispatchAllCollisionPairs(btOverlappingPairCache* pairCache,btDispatcherInfo& dispatchInfo) { //m_blockedForChanges = true; btCollisionPairCallback collisionCallback(dispatchInfo,this); pairCache->processAllOverlappingPairs(&collisionCallback); //m_blockedForChanges = false; } //by default, Bullet will use this near callback void btCollisionDispatcher::defaultNearCallback(btBroadphasePair& collisionPair, btCollisionDispatcher& dispatcher, btDispatcherInfo& dispatchInfo) { btCollisionObject* colObj0 = (btCollisionObject*)collisionPair.m_pProxy0->m_clientObject; btCollisionObject* colObj1 = (btCollisionObject*)collisionPair.m_pProxy1->m_clientObject; if (dispatcher.needsCollision(colObj0,colObj1)) { //dispatcher will keep algorithms persistent in the collision pair if (!collisionPair.m_algorithm) { collisionPair.m_algorithm = dispatcher.findAlgorithm(colObj0,colObj1); } if (collisionPair.m_algorithm) { btManifoldResult contactPointResult(colObj0,colObj1); if (dispatchInfo.m_dispatchFunc == btDispatcherInfo::DISPATCH_DISCRETE) { //discrete collision detection query collisionPair.m_algorithm->processCollision(colObj0,colObj1,dispatchInfo,&contactPointResult); } else { //continuous collision detection query, time of impact (toi) btScalar toi = collisionPair.m_algorithm->calculateTimeOfImpact(colObj0,colObj1,dispatchInfo,&contactPointResult); if (dispatchInfo.m_timeOfImpact > toi) dispatchInfo.m_timeOfImpact = toi; } } } }