initial commit
This commit is contained in:
@ -0,0 +1,287 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
btConeTwistConstraint is Copyright (c) 2007 Starbreeze Studios
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
Written by: Marcus Hennix
|
||||
*/
|
||||
|
||||
|
||||
#include "btConeTwistConstraint.h"
|
||||
#include "BulletDynamics/Dynamics/btRigidBody.h"
|
||||
#include "LinearMath/btTransformUtil.h"
|
||||
#include "LinearMath/btSimdMinMax.h"
|
||||
#include <new>
|
||||
|
||||
btConeTwistConstraint::btConeTwistConstraint()
|
||||
:btTypedConstraint(CONETWIST_CONSTRAINT_TYPE)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,btRigidBody& rbB,
|
||||
const btTransform& rbAFrame,const btTransform& rbBFrame)
|
||||
:btTypedConstraint(CONETWIST_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame),
|
||||
m_angularOnly(false)
|
||||
{
|
||||
// flip axis for correct angles
|
||||
m_rbBFrame.getBasis()[1][0] *= btScalar(-1.);
|
||||
m_rbBFrame.getBasis()[1][1] *= btScalar(-1.);
|
||||
m_rbBFrame.getBasis()[1][2] *= btScalar(-1.);
|
||||
|
||||
m_swingSpan1 = btScalar(1e30);
|
||||
m_swingSpan2 = btScalar(1e30);
|
||||
m_twistSpan = btScalar(1e30);
|
||||
m_biasFactor = 0.3f;
|
||||
m_relaxationFactor = 1.0f;
|
||||
|
||||
m_solveTwistLimit = false;
|
||||
m_solveSwingLimit = false;
|
||||
|
||||
}
|
||||
|
||||
btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,const btTransform& rbAFrame)
|
||||
:btTypedConstraint(CONETWIST_CONSTRAINT_TYPE,rbA),m_rbAFrame(rbAFrame),
|
||||
m_angularOnly(false)
|
||||
{
|
||||
m_rbBFrame = m_rbAFrame;
|
||||
|
||||
// flip axis for correct angles
|
||||
m_rbBFrame.getBasis()[1][0] *= btScalar(-1.);
|
||||
m_rbBFrame.getBasis()[1][1] *= btScalar(-1.);
|
||||
m_rbBFrame.getBasis()[1][2] *= btScalar(-1.);
|
||||
|
||||
m_rbBFrame.getBasis()[2][0] *= btScalar(-1.);
|
||||
m_rbBFrame.getBasis()[2][1] *= btScalar(-1.);
|
||||
m_rbBFrame.getBasis()[2][2] *= btScalar(-1.);
|
||||
|
||||
m_swingSpan1 = btScalar(1e30);
|
||||
m_swingSpan2 = btScalar(1e30);
|
||||
m_twistSpan = btScalar(1e30);
|
||||
m_biasFactor = 0.3f;
|
||||
m_relaxationFactor = 1.0f;
|
||||
|
||||
m_solveTwistLimit = false;
|
||||
m_solveSwingLimit = false;
|
||||
|
||||
}
|
||||
|
||||
void btConeTwistConstraint::buildJacobian()
|
||||
{
|
||||
m_appliedImpulse = btScalar(0.);
|
||||
|
||||
//set bias, sign, clear accumulator
|
||||
m_swingCorrection = btScalar(0.);
|
||||
m_twistLimitSign = btScalar(0.);
|
||||
m_solveTwistLimit = false;
|
||||
m_solveSwingLimit = false;
|
||||
m_accTwistLimitImpulse = btScalar(0.);
|
||||
m_accSwingLimitImpulse = btScalar(0.);
|
||||
|
||||
if (!m_angularOnly)
|
||||
{
|
||||
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
|
||||
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
|
||||
btVector3 relPos = pivotBInW - pivotAInW;
|
||||
|
||||
btVector3 normal[3];
|
||||
if (relPos.length2() > SIMD_EPSILON)
|
||||
{
|
||||
normal[0] = relPos.normalized();
|
||||
}
|
||||
else
|
||||
{
|
||||
normal[0].setValue(btScalar(1.0),0,0);
|
||||
}
|
||||
|
||||
btPlaneSpace1(normal[0], normal[1], normal[2]);
|
||||
|
||||
for (int i=0;i<3;i++)
|
||||
{
|
||||
new (&m_jac[i]) btJacobianEntry(
|
||||
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
||||
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
||||
pivotAInW - m_rbA.getCenterOfMassPosition(),
|
||||
pivotBInW - m_rbB.getCenterOfMassPosition(),
|
||||
normal[i],
|
||||
m_rbA.getInvInertiaDiagLocal(),
|
||||
m_rbA.getInvMass(),
|
||||
m_rbB.getInvInertiaDiagLocal(),
|
||||
m_rbB.getInvMass());
|
||||
}
|
||||
}
|
||||
|
||||
btVector3 b1Axis1,b1Axis2,b1Axis3;
|
||||
btVector3 b2Axis1,b2Axis2;
|
||||
|
||||
b1Axis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(0);
|
||||
b2Axis1 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(0);
|
||||
|
||||
btScalar swing1=btScalar(0.),swing2 = btScalar(0.);
|
||||
|
||||
// Get Frame into world space
|
||||
if (m_swingSpan1 >= btScalar(0.05f))
|
||||
{
|
||||
b1Axis2 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(1);
|
||||
swing1 = btAtan2Fast( b2Axis1.dot(b1Axis2),b2Axis1.dot(b1Axis1) );
|
||||
}
|
||||
|
||||
if (m_swingSpan2 >= btScalar(0.05f))
|
||||
{
|
||||
b1Axis3 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(2);
|
||||
swing2 = btAtan2Fast( b2Axis1.dot(b1Axis3),b2Axis1.dot(b1Axis1) );
|
||||
}
|
||||
|
||||
btScalar RMaxAngle1Sq = 1.0f / (m_swingSpan1*m_swingSpan1);
|
||||
btScalar RMaxAngle2Sq = 1.0f / (m_swingSpan2*m_swingSpan2);
|
||||
btScalar EllipseAngle = btFabs(swing1)* RMaxAngle1Sq + btFabs(swing2) * RMaxAngle2Sq;
|
||||
|
||||
if (EllipseAngle > 1.0f)
|
||||
{
|
||||
m_swingCorrection = EllipseAngle-1.0f;
|
||||
m_solveSwingLimit = true;
|
||||
|
||||
// Calculate necessary axis & factors
|
||||
m_swingAxis = b2Axis1.cross(b1Axis2* b2Axis1.dot(b1Axis2) + b1Axis3* b2Axis1.dot(b1Axis3));
|
||||
m_swingAxis.normalize();
|
||||
|
||||
btScalar swingAxisSign = (b2Axis1.dot(b1Axis1) >= 0.0f) ? 1.0f : -1.0f;
|
||||
m_swingAxis *= swingAxisSign;
|
||||
|
||||
m_kSwing = btScalar(1.) / (getRigidBodyA().computeAngularImpulseDenominator(m_swingAxis) +
|
||||
getRigidBodyB().computeAngularImpulseDenominator(m_swingAxis));
|
||||
|
||||
}
|
||||
|
||||
// Twist limits
|
||||
if (m_twistSpan >= btScalar(0.))
|
||||
{
|
||||
btVector3 b2Axis2 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(1);
|
||||
btQuaternion rotationArc = shortestArcQuat(b2Axis1,b1Axis1);
|
||||
btVector3 TwistRef = quatRotate(rotationArc,b2Axis2);
|
||||
btScalar twist = btAtan2Fast( TwistRef.dot(b1Axis3), TwistRef.dot(b1Axis2) );
|
||||
|
||||
btScalar lockedFreeFactor = (m_twistSpan > btScalar(0.05f)) ? m_limitSoftness : btScalar(0.);
|
||||
if (twist <= -m_twistSpan*lockedFreeFactor)
|
||||
{
|
||||
m_twistCorrection = -(twist + m_twistSpan);
|
||||
m_solveTwistLimit = true;
|
||||
|
||||
m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f;
|
||||
m_twistAxis.normalize();
|
||||
m_twistAxis *= -1.0f;
|
||||
|
||||
m_kTwist = btScalar(1.) / (getRigidBodyA().computeAngularImpulseDenominator(m_twistAxis) +
|
||||
getRigidBodyB().computeAngularImpulseDenominator(m_twistAxis));
|
||||
|
||||
} else
|
||||
if (twist > m_twistSpan*lockedFreeFactor)
|
||||
{
|
||||
m_twistCorrection = (twist - m_twistSpan);
|
||||
m_solveTwistLimit = true;
|
||||
|
||||
m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f;
|
||||
m_twistAxis.normalize();
|
||||
|
||||
m_kTwist = btScalar(1.) / (getRigidBodyA().computeAngularImpulseDenominator(m_twistAxis) +
|
||||
getRigidBodyB().computeAngularImpulseDenominator(m_twistAxis));
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void btConeTwistConstraint::solveConstraint(btScalar timeStep)
|
||||
{
|
||||
|
||||
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
|
||||
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
|
||||
|
||||
btScalar tau = btScalar(0.3);
|
||||
btScalar damping = btScalar(1.);
|
||||
|
||||
//linear part
|
||||
if (!m_angularOnly)
|
||||
{
|
||||
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
|
||||
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
|
||||
|
||||
btVector3 vel1 = m_rbA.getVelocityInLocalPoint(rel_pos1);
|
||||
btVector3 vel2 = m_rbB.getVelocityInLocalPoint(rel_pos2);
|
||||
btVector3 vel = vel1 - vel2;
|
||||
|
||||
for (int i=0;i<3;i++)
|
||||
{
|
||||
const btVector3& normal = m_jac[i].m_linearJointAxis;
|
||||
btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();
|
||||
|
||||
btScalar rel_vel;
|
||||
rel_vel = normal.dot(vel);
|
||||
//positional error (zeroth order error)
|
||||
btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
|
||||
btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv;
|
||||
m_appliedImpulse += impulse;
|
||||
btVector3 impulse_vector = normal * impulse;
|
||||
m_rbA.applyImpulse(impulse_vector, pivotAInW - m_rbA.getCenterOfMassPosition());
|
||||
m_rbB.applyImpulse(-impulse_vector, pivotBInW - m_rbB.getCenterOfMassPosition());
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
///solve angular part
|
||||
const btVector3& angVelA = getRigidBodyA().getAngularVelocity();
|
||||
const btVector3& angVelB = getRigidBodyB().getAngularVelocity();
|
||||
|
||||
// solve swing limit
|
||||
if (m_solveSwingLimit)
|
||||
{
|
||||
btScalar amplitude = ((angVelB - angVelA).dot( m_swingAxis )*m_relaxationFactor*m_relaxationFactor + m_swingCorrection*(btScalar(1.)/timeStep)*m_biasFactor);
|
||||
btScalar impulseMag = amplitude * m_kSwing;
|
||||
|
||||
// Clamp the accumulated impulse
|
||||
btScalar temp = m_accSwingLimitImpulse;
|
||||
m_accSwingLimitImpulse = btMax(m_accSwingLimitImpulse + impulseMag, 0.0f );
|
||||
impulseMag = m_accSwingLimitImpulse - temp;
|
||||
|
||||
btVector3 impulse = m_swingAxis * impulseMag;
|
||||
|
||||
m_rbA.applyTorqueImpulse(impulse);
|
||||
m_rbB.applyTorqueImpulse(-impulse);
|
||||
|
||||
}
|
||||
|
||||
// solve twist limit
|
||||
if (m_solveTwistLimit)
|
||||
{
|
||||
btScalar amplitude = ((angVelB - angVelA).dot( m_twistAxis )*m_relaxationFactor*m_relaxationFactor + m_twistCorrection*(btScalar(1.)/timeStep)*m_biasFactor );
|
||||
btScalar impulseMag = amplitude * m_kTwist;
|
||||
|
||||
// Clamp the accumulated impulse
|
||||
btScalar temp = m_accTwistLimitImpulse;
|
||||
m_accTwistLimitImpulse = btMax(m_accTwistLimitImpulse + impulseMag, 0.0f );
|
||||
impulseMag = m_accTwistLimitImpulse - temp;
|
||||
|
||||
btVector3 impulse = m_twistAxis * impulseMag;
|
||||
|
||||
m_rbA.applyTorqueImpulse(impulse);
|
||||
m_rbB.applyTorqueImpulse(-impulse);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void btConeTwistConstraint::updateRHS(btScalar timeStep)
|
||||
{
|
||||
(void)timeStep;
|
||||
|
||||
}
|
@ -0,0 +1,126 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
btConeTwistConstraint is Copyright (c) 2007 Starbreeze Studios
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
Written by: Marcus Hennix
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#ifndef CONETWISTCONSTRAINT_H
|
||||
#define CONETWISTCONSTRAINT_H
|
||||
|
||||
#include "../../LinearMath/btVector3.h"
|
||||
#include "btJacobianEntry.h"
|
||||
#include "btTypedConstraint.h"
|
||||
|
||||
class btRigidBody;
|
||||
|
||||
|
||||
///btConeTwistConstraint can be used to simulate ragdoll joints (upper arm, leg etc)
|
||||
class btConeTwistConstraint : public btTypedConstraint
|
||||
{
|
||||
#ifdef IN_PARALLELL_SOLVER
|
||||
public:
|
||||
#endif
|
||||
btJacobianEntry m_jac[3]; //3 orthogonal linear constraints
|
||||
|
||||
btTransform m_rbAFrame;
|
||||
btTransform m_rbBFrame;
|
||||
|
||||
btScalar m_limitSoftness;
|
||||
btScalar m_biasFactor;
|
||||
btScalar m_relaxationFactor;
|
||||
|
||||
btScalar m_swingSpan1;
|
||||
btScalar m_swingSpan2;
|
||||
btScalar m_twistSpan;
|
||||
|
||||
btVector3 m_swingAxis;
|
||||
btVector3 m_twistAxis;
|
||||
|
||||
btScalar m_kSwing;
|
||||
btScalar m_kTwist;
|
||||
|
||||
btScalar m_twistLimitSign;
|
||||
btScalar m_swingCorrection;
|
||||
btScalar m_twistCorrection;
|
||||
|
||||
btScalar m_accSwingLimitImpulse;
|
||||
btScalar m_accTwistLimitImpulse;
|
||||
|
||||
bool m_angularOnly;
|
||||
bool m_solveTwistLimit;
|
||||
bool m_solveSwingLimit;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
btConeTwistConstraint(btRigidBody& rbA,btRigidBody& rbB,const btTransform& rbAFrame, const btTransform& rbBFrame);
|
||||
|
||||
btConeTwistConstraint(btRigidBody& rbA,const btTransform& rbAFrame);
|
||||
|
||||
btConeTwistConstraint();
|
||||
|
||||
virtual void buildJacobian();
|
||||
|
||||
virtual void solveConstraint(btScalar timeStep);
|
||||
|
||||
void updateRHS(btScalar timeStep);
|
||||
|
||||
const btRigidBody& getRigidBodyA() const
|
||||
{
|
||||
return m_rbA;
|
||||
}
|
||||
const btRigidBody& getRigidBodyB() const
|
||||
{
|
||||
return m_rbB;
|
||||
}
|
||||
|
||||
void setAngularOnly(bool angularOnly)
|
||||
{
|
||||
m_angularOnly = angularOnly;
|
||||
}
|
||||
|
||||
void setLimit(btScalar _swingSpan1,btScalar _swingSpan2,btScalar _twistSpan, btScalar _softness = 0.8f, btScalar _biasFactor = 0.3f, btScalar _relaxationFactor = 1.0f)
|
||||
{
|
||||
m_swingSpan1 = _swingSpan1;
|
||||
m_swingSpan2 = _swingSpan2;
|
||||
m_twistSpan = _twistSpan;
|
||||
|
||||
m_limitSoftness = _softness;
|
||||
m_biasFactor = _biasFactor;
|
||||
m_relaxationFactor = _relaxationFactor;
|
||||
}
|
||||
|
||||
const btTransform& getAFrame() { return m_rbAFrame; };
|
||||
const btTransform& getBFrame() { return m_rbBFrame; };
|
||||
|
||||
inline int getSolveTwistLimit()
|
||||
{
|
||||
return m_solveTwistLimit;
|
||||
}
|
||||
|
||||
inline int getSolveSwingLimit()
|
||||
{
|
||||
return m_solveTwistLimit;
|
||||
}
|
||||
|
||||
inline btScalar getTwistLimitSign()
|
||||
{
|
||||
return m_twistLimitSign;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif //CONETWISTCONSTRAINT_H
|
@ -0,0 +1,52 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef CONSTRAINT_SOLVER_H
|
||||
#define CONSTRAINT_SOLVER_H
|
||||
|
||||
#include "LinearMath/btScalar.h"
|
||||
|
||||
class btPersistentManifold;
|
||||
class btRigidBody;
|
||||
class btCollisionObject;
|
||||
class btTypedConstraint;
|
||||
struct btContactSolverInfo;
|
||||
struct btBroadphaseProxy;
|
||||
class btIDebugDraw;
|
||||
class btStackAlloc;
|
||||
|
||||
/// btConstraintSolver provides solver interface
|
||||
class btConstraintSolver
|
||||
{
|
||||
|
||||
public:
|
||||
|
||||
virtual ~btConstraintSolver() {}
|
||||
|
||||
virtual void prepareSolve (int numBodies, int numManifolds) {;}
|
||||
|
||||
///solve a group of constraints
|
||||
virtual btScalar solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints, const btContactSolverInfo& info,class btIDebugDraw* debugDrawer, btStackAlloc* stackAlloc) = 0;
|
||||
|
||||
virtual void allSolved (const btContactSolverInfo& info,class btIDebugDraw* debugDrawer, btStackAlloc* stackAlloc) {;}
|
||||
|
||||
///clear internal cached data and reset random seed
|
||||
virtual void reset() = 0;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
#endif //CONSTRAINT_SOLVER_H
|
@ -0,0 +1,417 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
|
||||
#include "btContactConstraint.h"
|
||||
#include "BulletDynamics/Dynamics/btRigidBody.h"
|
||||
#include "LinearMath/btVector3.h"
|
||||
#include "btJacobianEntry.h"
|
||||
#include "btContactSolverInfo.h"
|
||||
#include "LinearMath/btMinMax.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h"
|
||||
|
||||
#define ASSERT2 assert
|
||||
|
||||
#define USE_INTERNAL_APPLY_IMPULSE 1
|
||||
|
||||
|
||||
//bilateral constraint between two dynamic objects
|
||||
void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1,
|
||||
btRigidBody& body2, const btVector3& pos2,
|
||||
btScalar distance, const btVector3& normal,btScalar& impulse ,btScalar timeStep)
|
||||
{
|
||||
(void)timeStep;
|
||||
(void)distance;
|
||||
|
||||
|
||||
btScalar normalLenSqr = normal.length2();
|
||||
ASSERT2(btFabs(normalLenSqr) < btScalar(1.1));
|
||||
if (normalLenSqr > btScalar(1.1))
|
||||
{
|
||||
impulse = btScalar(0.);
|
||||
return;
|
||||
}
|
||||
btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition();
|
||||
btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
|
||||
//this jacobian entry could be re-used for all iterations
|
||||
|
||||
btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
|
||||
btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
|
||||
btVector3 vel = vel1 - vel2;
|
||||
|
||||
|
||||
btJacobianEntry jac(body1.getCenterOfMassTransform().getBasis().transpose(),
|
||||
body2.getCenterOfMassTransform().getBasis().transpose(),
|
||||
rel_pos1,rel_pos2,normal,body1.getInvInertiaDiagLocal(),body1.getInvMass(),
|
||||
body2.getInvInertiaDiagLocal(),body2.getInvMass());
|
||||
|
||||
btScalar jacDiagAB = jac.getDiagonal();
|
||||
btScalar jacDiagABInv = btScalar(1.) / jacDiagAB;
|
||||
|
||||
btScalar rel_vel = jac.getRelativeVelocity(
|
||||
body1.getLinearVelocity(),
|
||||
body1.getCenterOfMassTransform().getBasis().transpose() * body1.getAngularVelocity(),
|
||||
body2.getLinearVelocity(),
|
||||
body2.getCenterOfMassTransform().getBasis().transpose() * body2.getAngularVelocity());
|
||||
btScalar a;
|
||||
a=jacDiagABInv;
|
||||
|
||||
|
||||
rel_vel = normal.dot(vel);
|
||||
|
||||
//todo: move this into proper structure
|
||||
btScalar contactDamping = btScalar(0.2);
|
||||
|
||||
#ifdef ONLY_USE_LINEAR_MASS
|
||||
btScalar massTerm = btScalar(1.) / (body1.getInvMass() + body2.getInvMass());
|
||||
impulse = - contactDamping * rel_vel * massTerm;
|
||||
#else
|
||||
btScalar velocityImpulse = -contactDamping * rel_vel * jacDiagABInv;
|
||||
impulse = velocityImpulse;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
|
||||
//response between two dynamic objects with friction
|
||||
btScalar resolveSingleCollision(
|
||||
btRigidBody& body1,
|
||||
btRigidBody& body2,
|
||||
btManifoldPoint& contactPoint,
|
||||
const btContactSolverInfo& solverInfo)
|
||||
{
|
||||
|
||||
const btVector3& pos1_ = contactPoint.getPositionWorldOnA();
|
||||
const btVector3& pos2_ = contactPoint.getPositionWorldOnB();
|
||||
const btVector3& normal = contactPoint.m_normalWorldOnB;
|
||||
|
||||
//constant over all iterations
|
||||
btVector3 rel_pos1 = pos1_ - body1.getCenterOfMassPosition();
|
||||
btVector3 rel_pos2 = pos2_ - body2.getCenterOfMassPosition();
|
||||
|
||||
btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
|
||||
btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
|
||||
btVector3 vel = vel1 - vel2;
|
||||
btScalar rel_vel;
|
||||
rel_vel = normal.dot(vel);
|
||||
|
||||
btScalar Kfps = btScalar(1.) / solverInfo.m_timeStep ;
|
||||
|
||||
// btScalar damping = solverInfo.m_damping ;
|
||||
btScalar Kerp = solverInfo.m_erp;
|
||||
btScalar Kcor = Kerp *Kfps;
|
||||
|
||||
btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData;
|
||||
assert(cpd);
|
||||
btScalar distance = cpd->m_penetration;
|
||||
btScalar positionalError = Kcor *-distance;
|
||||
btScalar velocityError = cpd->m_restitution - rel_vel;// * damping;
|
||||
|
||||
btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv;
|
||||
|
||||
btScalar velocityImpulse = velocityError * cpd->m_jacDiagABInv;
|
||||
|
||||
btScalar normalImpulse = penetrationImpulse+velocityImpulse;
|
||||
|
||||
// See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse
|
||||
btScalar oldNormalImpulse = cpd->m_appliedImpulse;
|
||||
btScalar sum = oldNormalImpulse + normalImpulse;
|
||||
cpd->m_appliedImpulse = btScalar(0.) > sum ? btScalar(0.): sum;
|
||||
|
||||
normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse;
|
||||
|
||||
#ifdef USE_INTERNAL_APPLY_IMPULSE
|
||||
if (body1.getInvMass())
|
||||
{
|
||||
body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse);
|
||||
}
|
||||
if (body2.getInvMass())
|
||||
{
|
||||
body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse);
|
||||
}
|
||||
#else //USE_INTERNAL_APPLY_IMPULSE
|
||||
body1.applyImpulse(normal*(normalImpulse), rel_pos1);
|
||||
body2.applyImpulse(-normal*(normalImpulse), rel_pos2);
|
||||
#endif //USE_INTERNAL_APPLY_IMPULSE
|
||||
|
||||
return normalImpulse;
|
||||
}
|
||||
|
||||
|
||||
btScalar resolveSingleFriction(
|
||||
btRigidBody& body1,
|
||||
btRigidBody& body2,
|
||||
btManifoldPoint& contactPoint,
|
||||
const btContactSolverInfo& solverInfo)
|
||||
{
|
||||
|
||||
(void)solverInfo;
|
||||
|
||||
const btVector3& pos1 = contactPoint.getPositionWorldOnA();
|
||||
const btVector3& pos2 = contactPoint.getPositionWorldOnB();
|
||||
|
||||
btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition();
|
||||
btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
|
||||
|
||||
btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData;
|
||||
assert(cpd);
|
||||
|
||||
btScalar combinedFriction = cpd->m_friction;
|
||||
|
||||
btScalar limit = cpd->m_appliedImpulse * combinedFriction;
|
||||
|
||||
if (cpd->m_appliedImpulse>btScalar(0.))
|
||||
//friction
|
||||
{
|
||||
//apply friction in the 2 tangential directions
|
||||
|
||||
// 1st tangent
|
||||
btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
|
||||
btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
|
||||
btVector3 vel = vel1 - vel2;
|
||||
|
||||
btScalar j1,j2;
|
||||
|
||||
{
|
||||
|
||||
btScalar vrel = cpd->m_frictionWorldTangential0.dot(vel);
|
||||
|
||||
// calculate j that moves us to zero relative velocity
|
||||
j1 = -vrel * cpd->m_jacDiagABInvTangent0;
|
||||
btScalar oldTangentImpulse = cpd->m_accumulatedTangentImpulse0;
|
||||
cpd->m_accumulatedTangentImpulse0 = oldTangentImpulse + j1;
|
||||
GEN_set_min(cpd->m_accumulatedTangentImpulse0, limit);
|
||||
GEN_set_max(cpd->m_accumulatedTangentImpulse0, -limit);
|
||||
j1 = cpd->m_accumulatedTangentImpulse0 - oldTangentImpulse;
|
||||
|
||||
}
|
||||
{
|
||||
// 2nd tangent
|
||||
|
||||
btScalar vrel = cpd->m_frictionWorldTangential1.dot(vel);
|
||||
|
||||
// calculate j that moves us to zero relative velocity
|
||||
j2 = -vrel * cpd->m_jacDiagABInvTangent1;
|
||||
btScalar oldTangentImpulse = cpd->m_accumulatedTangentImpulse1;
|
||||
cpd->m_accumulatedTangentImpulse1 = oldTangentImpulse + j2;
|
||||
GEN_set_min(cpd->m_accumulatedTangentImpulse1, limit);
|
||||
GEN_set_max(cpd->m_accumulatedTangentImpulse1, -limit);
|
||||
j2 = cpd->m_accumulatedTangentImpulse1 - oldTangentImpulse;
|
||||
}
|
||||
|
||||
#ifdef USE_INTERNAL_APPLY_IMPULSE
|
||||
if (body1.getInvMass())
|
||||
{
|
||||
body1.internalApplyImpulse(cpd->m_frictionWorldTangential0*body1.getInvMass(),cpd->m_frictionAngularComponent0A,j1);
|
||||
body1.internalApplyImpulse(cpd->m_frictionWorldTangential1*body1.getInvMass(),cpd->m_frictionAngularComponent1A,j2);
|
||||
}
|
||||
if (body2.getInvMass())
|
||||
{
|
||||
body2.internalApplyImpulse(cpd->m_frictionWorldTangential0*body2.getInvMass(),cpd->m_frictionAngularComponent0B,-j1);
|
||||
body2.internalApplyImpulse(cpd->m_frictionWorldTangential1*body2.getInvMass(),cpd->m_frictionAngularComponent1B,-j2);
|
||||
}
|
||||
#else //USE_INTERNAL_APPLY_IMPULSE
|
||||
body1.applyImpulse((j1 * cpd->m_frictionWorldTangential0)+(j2 * cpd->m_frictionWorldTangential1), rel_pos1);
|
||||
body2.applyImpulse((j1 * -cpd->m_frictionWorldTangential0)+(j2 * -cpd->m_frictionWorldTangential1), rel_pos2);
|
||||
#endif //USE_INTERNAL_APPLY_IMPULSE
|
||||
|
||||
|
||||
}
|
||||
return cpd->m_appliedImpulse;
|
||||
}
|
||||
|
||||
|
||||
btScalar resolveSingleFrictionOriginal(
|
||||
btRigidBody& body1,
|
||||
btRigidBody& body2,
|
||||
btManifoldPoint& contactPoint,
|
||||
const btContactSolverInfo& solverInfo)
|
||||
{
|
||||
|
||||
(void)solverInfo;
|
||||
|
||||
const btVector3& pos1 = contactPoint.getPositionWorldOnA();
|
||||
const btVector3& pos2 = contactPoint.getPositionWorldOnB();
|
||||
|
||||
btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition();
|
||||
btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
|
||||
|
||||
btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData;
|
||||
assert(cpd);
|
||||
|
||||
btScalar combinedFriction = cpd->m_friction;
|
||||
|
||||
btScalar limit = cpd->m_appliedImpulse * combinedFriction;
|
||||
//if (contactPoint.m_appliedImpulse>btScalar(0.))
|
||||
//friction
|
||||
{
|
||||
//apply friction in the 2 tangential directions
|
||||
|
||||
{
|
||||
// 1st tangent
|
||||
btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
|
||||
btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
|
||||
btVector3 vel = vel1 - vel2;
|
||||
|
||||
btScalar vrel = cpd->m_frictionWorldTangential0.dot(vel);
|
||||
|
||||
// calculate j that moves us to zero relative velocity
|
||||
btScalar j = -vrel * cpd->m_jacDiagABInvTangent0;
|
||||
btScalar total = cpd->m_accumulatedTangentImpulse0 + j;
|
||||
GEN_set_min(total, limit);
|
||||
GEN_set_max(total, -limit);
|
||||
j = total - cpd->m_accumulatedTangentImpulse0;
|
||||
cpd->m_accumulatedTangentImpulse0 = total;
|
||||
body1.applyImpulse(j * cpd->m_frictionWorldTangential0, rel_pos1);
|
||||
body2.applyImpulse(j * -cpd->m_frictionWorldTangential0, rel_pos2);
|
||||
}
|
||||
|
||||
|
||||
{
|
||||
// 2nd tangent
|
||||
btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
|
||||
btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
|
||||
btVector3 vel = vel1 - vel2;
|
||||
|
||||
btScalar vrel = cpd->m_frictionWorldTangential1.dot(vel);
|
||||
|
||||
// calculate j that moves us to zero relative velocity
|
||||
btScalar j = -vrel * cpd->m_jacDiagABInvTangent1;
|
||||
btScalar total = cpd->m_accumulatedTangentImpulse1 + j;
|
||||
GEN_set_min(total, limit);
|
||||
GEN_set_max(total, -limit);
|
||||
j = total - cpd->m_accumulatedTangentImpulse1;
|
||||
cpd->m_accumulatedTangentImpulse1 = total;
|
||||
body1.applyImpulse(j * cpd->m_frictionWorldTangential1, rel_pos1);
|
||||
body2.applyImpulse(j * -cpd->m_frictionWorldTangential1, rel_pos2);
|
||||
}
|
||||
}
|
||||
return cpd->m_appliedImpulse;
|
||||
}
|
||||
|
||||
|
||||
//velocity + friction
|
||||
//response between two dynamic objects with friction
|
||||
btScalar resolveSingleCollisionCombined(
|
||||
btRigidBody& body1,
|
||||
btRigidBody& body2,
|
||||
btManifoldPoint& contactPoint,
|
||||
const btContactSolverInfo& solverInfo)
|
||||
{
|
||||
|
||||
const btVector3& pos1 = contactPoint.getPositionWorldOnA();
|
||||
const btVector3& pos2 = contactPoint.getPositionWorldOnB();
|
||||
const btVector3& normal = contactPoint.m_normalWorldOnB;
|
||||
|
||||
btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition();
|
||||
btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
|
||||
|
||||
btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
|
||||
btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
|
||||
btVector3 vel = vel1 - vel2;
|
||||
btScalar rel_vel;
|
||||
rel_vel = normal.dot(vel);
|
||||
|
||||
btScalar Kfps = btScalar(1.) / solverInfo.m_timeStep ;
|
||||
|
||||
//btScalar damping = solverInfo.m_damping ;
|
||||
btScalar Kerp = solverInfo.m_erp;
|
||||
btScalar Kcor = Kerp *Kfps;
|
||||
|
||||
btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData;
|
||||
assert(cpd);
|
||||
btScalar distance = cpd->m_penetration;
|
||||
btScalar positionalError = Kcor *-distance;
|
||||
btScalar velocityError = cpd->m_restitution - rel_vel;// * damping;
|
||||
|
||||
btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv;
|
||||
|
||||
btScalar velocityImpulse = velocityError * cpd->m_jacDiagABInv;
|
||||
|
||||
btScalar normalImpulse = penetrationImpulse+velocityImpulse;
|
||||
|
||||
// See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse
|
||||
btScalar oldNormalImpulse = cpd->m_appliedImpulse;
|
||||
btScalar sum = oldNormalImpulse + normalImpulse;
|
||||
cpd->m_appliedImpulse = btScalar(0.) > sum ? btScalar(0.): sum;
|
||||
|
||||
normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse;
|
||||
|
||||
|
||||
#ifdef USE_INTERNAL_APPLY_IMPULSE
|
||||
if (body1.getInvMass())
|
||||
{
|
||||
body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse);
|
||||
}
|
||||
if (body2.getInvMass())
|
||||
{
|
||||
body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse);
|
||||
}
|
||||
#else //USE_INTERNAL_APPLY_IMPULSE
|
||||
body1.applyImpulse(normal*(normalImpulse), rel_pos1);
|
||||
body2.applyImpulse(-normal*(normalImpulse), rel_pos2);
|
||||
#endif //USE_INTERNAL_APPLY_IMPULSE
|
||||
|
||||
{
|
||||
//friction
|
||||
btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
|
||||
btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
|
||||
btVector3 vel = vel1 - vel2;
|
||||
|
||||
rel_vel = normal.dot(vel);
|
||||
|
||||
|
||||
btVector3 lat_vel = vel - normal * rel_vel;
|
||||
btScalar lat_rel_vel = lat_vel.length();
|
||||
|
||||
btScalar combinedFriction = cpd->m_friction;
|
||||
|
||||
if (cpd->m_appliedImpulse > 0)
|
||||
if (lat_rel_vel > SIMD_EPSILON)
|
||||
{
|
||||
lat_vel /= lat_rel_vel;
|
||||
btVector3 temp1 = body1.getInvInertiaTensorWorld() * rel_pos1.cross(lat_vel);
|
||||
btVector3 temp2 = body2.getInvInertiaTensorWorld() * rel_pos2.cross(lat_vel);
|
||||
btScalar friction_impulse = lat_rel_vel /
|
||||
(body1.getInvMass() + body2.getInvMass() + lat_vel.dot(temp1.cross(rel_pos1) + temp2.cross(rel_pos2)));
|
||||
btScalar normal_impulse = cpd->m_appliedImpulse * combinedFriction;
|
||||
|
||||
GEN_set_min(friction_impulse, normal_impulse);
|
||||
GEN_set_max(friction_impulse, -normal_impulse);
|
||||
body1.applyImpulse(lat_vel * -friction_impulse, rel_pos1);
|
||||
body2.applyImpulse(lat_vel * friction_impulse, rel_pos2);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
return normalImpulse;
|
||||
}
|
||||
|
||||
btScalar resolveSingleFrictionEmpty(
|
||||
btRigidBody& body1,
|
||||
btRigidBody& body2,
|
||||
btManifoldPoint& contactPoint,
|
||||
const btContactSolverInfo& solverInfo)
|
||||
{
|
||||
(void)contactPoint;
|
||||
(void)body1;
|
||||
(void)body2;
|
||||
(void)solverInfo;
|
||||
|
||||
|
||||
return btScalar(0.);
|
||||
};
|
||||
|
122
bullet/src/BulletDynamics/ConstraintSolver/btContactConstraint.h
Normal file
122
bullet/src/BulletDynamics/ConstraintSolver/btContactConstraint.h
Normal file
@ -0,0 +1,122 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef CONTACT_CONSTRAINT_H
|
||||
#define CONTACT_CONSTRAINT_H
|
||||
|
||||
//todo: make into a proper class working with the iterative constraint solver
|
||||
|
||||
class btRigidBody;
|
||||
#include "LinearMath/btVector3.h"
|
||||
#include "LinearMath/btScalar.h"
|
||||
struct btContactSolverInfo;
|
||||
class btManifoldPoint;
|
||||
|
||||
enum {
|
||||
DEFAULT_CONTACT_SOLVER_TYPE=0,
|
||||
CONTACT_SOLVER_TYPE1,
|
||||
CONTACT_SOLVER_TYPE2,
|
||||
USER_CONTACT_SOLVER_TYPE1,
|
||||
MAX_CONTACT_SOLVER_TYPES
|
||||
};
|
||||
|
||||
|
||||
typedef btScalar (*ContactSolverFunc)(btRigidBody& body1,
|
||||
btRigidBody& body2,
|
||||
class btManifoldPoint& contactPoint,
|
||||
const btContactSolverInfo& info);
|
||||
|
||||
///stores some extra information to each contact point. It is not in the contact point, because that want to keep the collision detection independent from the constraint solver.
|
||||
struct btConstraintPersistentData
|
||||
{
|
||||
inline btConstraintPersistentData()
|
||||
:m_appliedImpulse(btScalar(0.)),
|
||||
m_prevAppliedImpulse(btScalar(0.)),
|
||||
m_accumulatedTangentImpulse0(btScalar(0.)),
|
||||
m_accumulatedTangentImpulse1(btScalar(0.)),
|
||||
m_jacDiagABInv(btScalar(0.)),
|
||||
m_persistentLifeTime(0),
|
||||
m_restitution(btScalar(0.)),
|
||||
m_friction(btScalar(0.)),
|
||||
m_penetration(btScalar(0.)),
|
||||
m_contactSolverFunc(0),
|
||||
m_frictionSolverFunc(0)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
/// total applied impulse during most recent frame
|
||||
btScalar m_appliedImpulse;
|
||||
btScalar m_prevAppliedImpulse;
|
||||
btScalar m_accumulatedTangentImpulse0;
|
||||
btScalar m_accumulatedTangentImpulse1;
|
||||
|
||||
btScalar m_jacDiagABInv;
|
||||
btScalar m_jacDiagABInvTangent0;
|
||||
btScalar m_jacDiagABInvTangent1;
|
||||
int m_persistentLifeTime;
|
||||
btScalar m_restitution;
|
||||
btScalar m_friction;
|
||||
btScalar m_penetration;
|
||||
btVector3 m_frictionWorldTangential0;
|
||||
btVector3 m_frictionWorldTangential1;
|
||||
|
||||
btVector3 m_frictionAngularComponent0A;
|
||||
btVector3 m_frictionAngularComponent0B;
|
||||
btVector3 m_frictionAngularComponent1A;
|
||||
btVector3 m_frictionAngularComponent1B;
|
||||
|
||||
//some data doesn't need to be persistent over frames: todo: clean/reuse this
|
||||
btVector3 m_angularComponentA;
|
||||
btVector3 m_angularComponentB;
|
||||
|
||||
ContactSolverFunc m_contactSolverFunc;
|
||||
ContactSolverFunc m_frictionSolverFunc;
|
||||
|
||||
};
|
||||
|
||||
///bilateral constraint between two dynamic objects
|
||||
///positive distance = separation, negative distance = penetration
|
||||
void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1,
|
||||
btRigidBody& body2, const btVector3& pos2,
|
||||
btScalar distance, const btVector3& normal,btScalar& impulse ,btScalar timeStep);
|
||||
|
||||
|
||||
///contact constraint resolution:
|
||||
///calculate and apply impulse to satisfy non-penetration and non-negative relative velocity constraint
|
||||
///positive distance = separation, negative distance = penetration
|
||||
btScalar resolveSingleCollision(
|
||||
btRigidBody& body1,
|
||||
btRigidBody& body2,
|
||||
btManifoldPoint& contactPoint,
|
||||
const btContactSolverInfo& info);
|
||||
|
||||
btScalar resolveSingleFriction(
|
||||
btRigidBody& body1,
|
||||
btRigidBody& body2,
|
||||
btManifoldPoint& contactPoint,
|
||||
const btContactSolverInfo& solverInfo
|
||||
);
|
||||
|
||||
|
||||
|
||||
btScalar resolveSingleCollisionCombined(
|
||||
btRigidBody& body1,
|
||||
btRigidBody& body2,
|
||||
btManifoldPoint& contactPoint,
|
||||
const btContactSolverInfo& solverInfo
|
||||
);
|
||||
|
||||
#endif //CONTACT_CONSTRAINT_H
|
@ -0,0 +1,51 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef CONTACT_SOLVER_INFO
|
||||
#define CONTACT_SOLVER_INFO
|
||||
|
||||
struct btContactSolverInfoData
|
||||
{
|
||||
btScalar m_tau;
|
||||
btScalar m_damping;
|
||||
btScalar m_friction;
|
||||
btScalar m_timeStep;
|
||||
btScalar m_restitution;
|
||||
int m_numIterations;
|
||||
btScalar m_maxErrorReduction;
|
||||
btScalar m_sor;
|
||||
btScalar m_erp;
|
||||
|
||||
};
|
||||
|
||||
struct btContactSolverInfo : public btContactSolverInfoData
|
||||
{
|
||||
|
||||
inline btContactSolverInfo()
|
||||
{
|
||||
m_tau = btScalar(0.6);
|
||||
m_damping = btScalar(1.0);
|
||||
m_friction = btScalar(0.3);
|
||||
m_restitution = btScalar(0.);
|
||||
m_maxErrorReduction = btScalar(20.);
|
||||
m_numIterations = 10;
|
||||
m_erp = btScalar(0.4);
|
||||
m_sor = btScalar(1.3);
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
#endif //CONTACT_SOLVER_INFO
|
@ -0,0 +1,390 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
|
||||
#include "btGeneric6DofConstraint.h"
|
||||
#include "BulletDynamics/Dynamics/btRigidBody.h"
|
||||
#include "LinearMath/btTransformUtil.h"
|
||||
#include <new>
|
||||
|
||||
static const btScalar kSign[] = { btScalar(1.0), btScalar(-1.0), btScalar(1.0) };
|
||||
static const int kAxisA[] = { 1, 0, 0 };
|
||||
static const int kAxisB[] = { 2, 2, 1 };
|
||||
#define GENERIC_D6_DISABLE_WARMSTARTING 1
|
||||
|
||||
btGeneric6DofConstraint::btGeneric6DofConstraint()
|
||||
:btTypedConstraint(D6_CONSTRAINT_TYPE)
|
||||
{
|
||||
}
|
||||
|
||||
btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB)
|
||||
: btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB)
|
||||
, m_frameInA(frameInA)
|
||||
, m_frameInB(frameInB)
|
||||
{
|
||||
//free means upper < lower,
|
||||
//locked means upper == lower
|
||||
//limited means upper > lower
|
||||
//so start all locked
|
||||
for (int i=0; i<6;++i)
|
||||
{
|
||||
m_lowerLimit[i] = btScalar(0.0);
|
||||
m_upperLimit[i] = btScalar(0.0);
|
||||
m_accumulatedImpulse[i] = btScalar(0.0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void btGeneric6DofConstraint::buildJacobian()
|
||||
{
|
||||
btVector3 localNormalInA(0,0,0);
|
||||
|
||||
const btVector3& pivotInA = m_frameInA.getOrigin();
|
||||
const btVector3& pivotInB = m_frameInB.getOrigin();
|
||||
|
||||
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform() * m_frameInA.getOrigin();
|
||||
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform() * m_frameInB.getOrigin();
|
||||
|
||||
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
|
||||
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
|
||||
|
||||
int i;
|
||||
//linear part
|
||||
for (i=0;i<3;i++)
|
||||
{
|
||||
if (isLimited(i))
|
||||
{
|
||||
localNormalInA[i] = 1;
|
||||
btVector3 normalWorld = m_rbA.getCenterOfMassTransform().getBasis() * localNormalInA;
|
||||
|
||||
|
||||
// Create linear atom
|
||||
new (&m_jacLinear[i]) btJacobianEntry(
|
||||
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
||||
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
||||
m_rbA.getCenterOfMassTransform()*pivotInA - m_rbA.getCenterOfMassPosition(),
|
||||
m_rbB.getCenterOfMassTransform()*pivotInB - m_rbB.getCenterOfMassPosition(),
|
||||
normalWorld,
|
||||
m_rbA.getInvInertiaDiagLocal(),
|
||||
m_rbA.getInvMass(),
|
||||
m_rbB.getInvInertiaDiagLocal(),
|
||||
m_rbB.getInvMass());
|
||||
|
||||
//optionally disable warmstarting
|
||||
#ifdef GENERIC_D6_DISABLE_WARMSTARTING
|
||||
m_accumulatedImpulse[i] = btScalar(0.);
|
||||
#endif //GENERIC_D6_DISABLE_WARMSTARTING
|
||||
|
||||
// Apply accumulated impulse
|
||||
btVector3 impulse_vector = m_accumulatedImpulse[i] * normalWorld;
|
||||
|
||||
m_rbA.applyImpulse( impulse_vector, rel_pos1);
|
||||
m_rbB.applyImpulse(-impulse_vector, rel_pos2);
|
||||
|
||||
localNormalInA[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// angular part
|
||||
for (i=0;i<3;i++)
|
||||
{
|
||||
if (isLimited(i+3))
|
||||
{
|
||||
btVector3 axisA = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn( kAxisA[i] );
|
||||
btVector3 axisB = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn( kAxisB[i] );
|
||||
|
||||
// Dirk: This is IMO mathematically the correct way, but we should consider axisA and axisB being near parallel maybe
|
||||
btVector3 axis = kSign[i] * axisA.cross(axisB);
|
||||
|
||||
// Create angular atom
|
||||
new (&m_jacAng[i]) btJacobianEntry(axis,
|
||||
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
||||
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
||||
m_rbA.getInvInertiaDiagLocal(),
|
||||
m_rbB.getInvInertiaDiagLocal());
|
||||
|
||||
#ifdef GENERIC_D6_DISABLE_WARMSTARTING
|
||||
m_accumulatedImpulse[i + 3] = btScalar(0.);
|
||||
#endif //GENERIC_D6_DISABLE_WARMSTARTING
|
||||
|
||||
// Apply accumulated impulse
|
||||
btVector3 impulse_vector = m_accumulatedImpulse[i + 3] * axis;
|
||||
|
||||
m_rbA.applyTorqueImpulse( impulse_vector);
|
||||
m_rbB.applyTorqueImpulse(-impulse_vector);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
btScalar getMatrixElem(const btMatrix3x3& mat,int index)
|
||||
{
|
||||
int row = index%3;
|
||||
int col = index / 3;
|
||||
return mat[row][col];
|
||||
}
|
||||
|
||||
///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
|
||||
bool MatrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
|
||||
{
|
||||
// rot = cy*cz -cy*sz sy
|
||||
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
|
||||
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
|
||||
|
||||
/// 0..8
|
||||
|
||||
if (getMatrixElem(mat,2) < btScalar(1.0))
|
||||
{
|
||||
if (getMatrixElem(mat,2) > btScalar(-1.0))
|
||||
{
|
||||
xyz[0] = btAtan2(-getMatrixElem(mat,5),getMatrixElem(mat,8));
|
||||
xyz[1] = btAsin(getMatrixElem(mat,2));
|
||||
xyz[2] = btAtan2(-getMatrixElem(mat,1),getMatrixElem(mat,0));
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
// WARNING. Not unique. XA - ZA = -atan2(r10,r11)
|
||||
xyz[0] = -btAtan2(getMatrixElem(mat,3),getMatrixElem(mat,4));
|
||||
xyz[1] = -SIMD_HALF_PI;
|
||||
xyz[2] = btScalar(0.0);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
|
||||
xyz[0] = btAtan2(getMatrixElem(mat,3),getMatrixElem(mat,4));
|
||||
xyz[1] = SIMD_HALF_PI;
|
||||
xyz[2] = 0.0;
|
||||
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
void btGeneric6DofConstraint::solveConstraint(btScalar timeStep)
|
||||
{
|
||||
btScalar tau = btScalar(0.1);
|
||||
btScalar damping = btScalar(1.0);
|
||||
|
||||
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform() * m_frameInA.getOrigin();
|
||||
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform() * m_frameInB.getOrigin();
|
||||
|
||||
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
|
||||
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
|
||||
|
||||
btVector3 localNormalInA(0,0,0);
|
||||
int i;
|
||||
|
||||
// linear
|
||||
for (i=0;i<3;i++)
|
||||
{
|
||||
if (isLimited(i))
|
||||
{
|
||||
btVector3 angvelA = m_rbA.getCenterOfMassTransform().getBasis().transpose() * m_rbA.getAngularVelocity();
|
||||
btVector3 angvelB = m_rbB.getCenterOfMassTransform().getBasis().transpose() * m_rbB.getAngularVelocity();
|
||||
|
||||
localNormalInA.setValue(0,0,0);
|
||||
localNormalInA[i] = 1;
|
||||
btVector3 normalWorld = m_rbA.getCenterOfMassTransform().getBasis() * localNormalInA;
|
||||
|
||||
btScalar jacDiagABInv = btScalar(1.) / m_jacLinear[i].getDiagonal();
|
||||
|
||||
//velocity error (first order error)
|
||||
btScalar rel_vel = m_jacLinear[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
|
||||
m_rbB.getLinearVelocity(),angvelB);
|
||||
|
||||
//positional error (zeroth order error)
|
||||
btScalar depth = -(pivotAInW - pivotBInW).dot(normalWorld);
|
||||
btScalar lo = btScalar(-1e30);
|
||||
btScalar hi = btScalar(1e30);
|
||||
|
||||
//handle the limits
|
||||
if (m_lowerLimit[i] < m_upperLimit[i])
|
||||
{
|
||||
{
|
||||
if (depth > m_upperLimit[i])
|
||||
{
|
||||
depth -= m_upperLimit[i];
|
||||
lo = btScalar(0.);
|
||||
|
||||
} else
|
||||
{
|
||||
if (depth < m_lowerLimit[i])
|
||||
{
|
||||
depth -= m_lowerLimit[i];
|
||||
hi = btScalar(0.);
|
||||
} else
|
||||
{
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
btScalar normalImpulse= (tau*depth/timeStep - damping*rel_vel) * jacDiagABInv;
|
||||
btScalar oldNormalImpulse = m_accumulatedImpulse[i];
|
||||
btScalar sum = oldNormalImpulse + normalImpulse;
|
||||
m_accumulatedImpulse[i] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
|
||||
normalImpulse = m_accumulatedImpulse[i] - oldNormalImpulse;
|
||||
|
||||
btVector3 impulse_vector = normalWorld * normalImpulse;
|
||||
m_rbA.applyImpulse( impulse_vector, rel_pos1);
|
||||
m_rbB.applyImpulse(-impulse_vector, rel_pos2);
|
||||
|
||||
localNormalInA[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
btVector3 axis;
|
||||
btScalar angle;
|
||||
btTransform frameAWorld = m_rbA.getCenterOfMassTransform() * m_frameInA;
|
||||
btTransform frameBWorld = m_rbB.getCenterOfMassTransform() * m_frameInB;
|
||||
|
||||
btTransformUtil::calculateDiffAxisAngle(frameAWorld,frameBWorld,axis,angle);
|
||||
btQuaternion diff(axis,angle);
|
||||
btMatrix3x3 diffMat (diff);
|
||||
btVector3 xyz;
|
||||
///this is not perfect, we can first check which axis are limited, and choose a more appropriate order
|
||||
MatrixToEulerXYZ(diffMat,xyz);
|
||||
|
||||
// angular
|
||||
for (i=0;i<3;i++)
|
||||
{
|
||||
if (isLimited(i+3))
|
||||
{
|
||||
btVector3 angvelA = m_rbA.getCenterOfMassTransform().getBasis().transpose() * m_rbA.getAngularVelocity();
|
||||
btVector3 angvelB = m_rbB.getCenterOfMassTransform().getBasis().transpose() * m_rbB.getAngularVelocity();
|
||||
|
||||
btScalar jacDiagABInv = btScalar(1.) / m_jacAng[i].getDiagonal();
|
||||
|
||||
//velocity error (first order error)
|
||||
btScalar rel_vel = m_jacAng[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
|
||||
m_rbB.getLinearVelocity(),angvelB);
|
||||
|
||||
//positional error (zeroth order error)
|
||||
btVector3 axisA = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn( kAxisA[i] );
|
||||
btVector3 axisB = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn( kAxisB[i] );
|
||||
|
||||
btScalar rel_pos = kSign[i] * axisA.dot(axisB);
|
||||
|
||||
btScalar lo = btScalar(-1e30);
|
||||
btScalar hi = btScalar(1e30);
|
||||
|
||||
//handle the twist limit
|
||||
if (m_lowerLimit[i+3] < m_upperLimit[i+3])
|
||||
{
|
||||
//clamp the values
|
||||
btScalar loLimit = m_lowerLimit[i+3] > -3.1415 ? m_lowerLimit[i+3] : btScalar(-1e30);
|
||||
btScalar hiLimit = m_upperLimit[i+3] < 3.1415 ? m_upperLimit[i+3] : btScalar(1e30);
|
||||
|
||||
btScalar projAngle = btScalar(-1.)*xyz[i];
|
||||
|
||||
if (projAngle < loLimit)
|
||||
{
|
||||
hi = btScalar(0.);
|
||||
rel_pos = (loLimit - projAngle);
|
||||
} else
|
||||
{
|
||||
if (projAngle > hiLimit)
|
||||
{
|
||||
lo = btScalar(0.);
|
||||
rel_pos = (hiLimit - projAngle);
|
||||
} else
|
||||
{
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//impulse
|
||||
|
||||
btScalar normalImpulse= -(tau*rel_pos/timeStep + damping*rel_vel) * jacDiagABInv;
|
||||
btScalar oldNormalImpulse = m_accumulatedImpulse[i+3];
|
||||
btScalar sum = oldNormalImpulse + normalImpulse;
|
||||
m_accumulatedImpulse[i+3] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
|
||||
normalImpulse = m_accumulatedImpulse[i+3] - oldNormalImpulse;
|
||||
|
||||
// Dirk: Not needed - we could actually project onto Jacobian entry here (same as above)
|
||||
btVector3 axis = kSign[i] * axisA.cross(axisB);
|
||||
btVector3 impulse_vector = axis * normalImpulse;
|
||||
|
||||
m_rbA.applyTorqueImpulse( impulse_vector);
|
||||
m_rbB.applyTorqueImpulse(-impulse_vector);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void btGeneric6DofConstraint::updateRHS(btScalar timeStep)
|
||||
{
|
||||
(void)timeStep;
|
||||
|
||||
}
|
||||
|
||||
btScalar btGeneric6DofConstraint::computeAngle(int axis) const
|
||||
{
|
||||
btScalar angle = btScalar(0.f);
|
||||
|
||||
switch (axis)
|
||||
{
|
||||
case 0:
|
||||
{
|
||||
btVector3 v1 = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(1);
|
||||
btVector3 v2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(1);
|
||||
btVector3 w2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(2);
|
||||
|
||||
btScalar s = v1.dot(w2);
|
||||
btScalar c = v1.dot(v2);
|
||||
|
||||
angle = btAtan2( s, c );
|
||||
}
|
||||
break;
|
||||
|
||||
case 1:
|
||||
{
|
||||
btVector3 w1 = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(2);
|
||||
btVector3 w2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(2);
|
||||
btVector3 u2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(0);
|
||||
|
||||
btScalar s = w1.dot(u2);
|
||||
btScalar c = w1.dot(w2);
|
||||
|
||||
angle = btAtan2( s, c );
|
||||
}
|
||||
break;
|
||||
|
||||
case 2:
|
||||
{
|
||||
btVector3 u1 = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(0);
|
||||
btVector3 u2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(0);
|
||||
btVector3 v2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(1);
|
||||
|
||||
btScalar s = u1.dot(v2);
|
||||
btScalar c = u1.dot(u2);
|
||||
|
||||
angle = btAtan2( s, c );
|
||||
}
|
||||
break;
|
||||
default:
|
||||
btAssert ( 0 ) ;
|
||||
|
||||
break ;
|
||||
}
|
||||
|
||||
return angle;
|
||||
}
|
||||
|
@ -0,0 +1,120 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef GENERIC_6DOF_CONSTRAINT_H
|
||||
#define GENERIC_6DOF_CONSTRAINT_H
|
||||
|
||||
#include "LinearMath/btVector3.h"
|
||||
#include "btJacobianEntry.h"
|
||||
#include "btTypedConstraint.h"
|
||||
|
||||
class btRigidBody;
|
||||
|
||||
|
||||
|
||||
/// btGeneric6DofConstraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space
|
||||
/// btGeneric6DofConstraint can leave any of the 6 degree of freedom 'free' or 'locked'
|
||||
/// Work in progress (is still a Hinge actually)
|
||||
class btGeneric6DofConstraint : public btTypedConstraint
|
||||
{
|
||||
btJacobianEntry m_jacLinear[3]; // 3 orthogonal linear constraints
|
||||
btJacobianEntry m_jacAng[3]; // 3 orthogonal angular constraints
|
||||
|
||||
btTransform m_frameInA; // the constraint space w.r.t body A
|
||||
btTransform m_frameInB; // the constraint space w.r.t body B
|
||||
|
||||
btScalar m_lowerLimit[6]; // the constraint lower limits
|
||||
btScalar m_upperLimit[6]; // the constraint upper limits
|
||||
|
||||
btScalar m_accumulatedImpulse[6];
|
||||
|
||||
btGeneric6DofConstraint& operator=(btGeneric6DofConstraint& other)
|
||||
{
|
||||
btAssert(0);
|
||||
(void) other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
public:
|
||||
btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB );
|
||||
|
||||
btGeneric6DofConstraint();
|
||||
|
||||
|
||||
virtual void buildJacobian();
|
||||
|
||||
virtual void solveConstraint(btScalar timeStep);
|
||||
|
||||
void updateRHS(btScalar timeStep);
|
||||
|
||||
btScalar computeAngle(int axis) const;
|
||||
|
||||
void setLinearLowerLimit(const btVector3& linearLower)
|
||||
{
|
||||
m_lowerLimit[0] = linearLower.getX();
|
||||
m_lowerLimit[1] = linearLower.getY();
|
||||
m_lowerLimit[2] = linearLower.getZ();
|
||||
}
|
||||
|
||||
void setLinearUpperLimit(const btVector3& linearUpper)
|
||||
{
|
||||
m_upperLimit[0] = linearUpper.getX();
|
||||
m_upperLimit[1] = linearUpper.getY();
|
||||
m_upperLimit[2] = linearUpper.getZ();
|
||||
}
|
||||
|
||||
void setAngularLowerLimit(const btVector3& angularLower)
|
||||
{
|
||||
m_lowerLimit[3] = angularLower.getX();
|
||||
m_lowerLimit[4] = angularLower.getY();
|
||||
m_lowerLimit[5] = angularLower.getZ();
|
||||
}
|
||||
|
||||
void setAngularUpperLimit(const btVector3& angularUpper)
|
||||
{
|
||||
m_upperLimit[3] = angularUpper.getX();
|
||||
m_upperLimit[4] = angularUpper.getY();
|
||||
m_upperLimit[5] = angularUpper.getZ();
|
||||
}
|
||||
|
||||
//first 3 are linear, next 3 are angular
|
||||
void SetLimit(int axis, btScalar lo, btScalar hi)
|
||||
{
|
||||
m_lowerLimit[axis] = lo;
|
||||
m_upperLimit[axis] = hi;
|
||||
}
|
||||
|
||||
//free means upper < lower,
|
||||
//locked means upper == lower
|
||||
//limited means upper > lower
|
||||
//limitIndex: first 3 are linear, next 3 are angular
|
||||
bool isLimited(int limitIndex)
|
||||
{
|
||||
return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
|
||||
}
|
||||
|
||||
const btRigidBody& getRigidBodyA() const
|
||||
{
|
||||
return m_rbA;
|
||||
}
|
||||
const btRigidBody& getRigidBodyB() const
|
||||
{
|
||||
return m_rbB;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
#endif //GENERIC_6DOF_CONSTRAINT_H
|
398
bullet/src/BulletDynamics/ConstraintSolver/btHingeConstraint.cpp
Normal file
398
bullet/src/BulletDynamics/ConstraintSolver/btHingeConstraint.cpp
Normal file
@ -0,0 +1,398 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
|
||||
#include "btHingeConstraint.h"
|
||||
#include "BulletDynamics/Dynamics/btRigidBody.h"
|
||||
#include "LinearMath/btTransformUtil.h"
|
||||
#include "LinearMath/btSimdMinMax.h"
|
||||
#include <new>
|
||||
|
||||
|
||||
btHingeConstraint::btHingeConstraint()
|
||||
: btTypedConstraint (HINGE_CONSTRAINT_TYPE),
|
||||
m_enableAngularMotor(false)
|
||||
{
|
||||
}
|
||||
|
||||
btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB,
|
||||
btVector3& axisInA,btVector3& axisInB)
|
||||
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),
|
||||
m_angularOnly(false),
|
||||
m_enableAngularMotor(false)
|
||||
{
|
||||
m_rbAFrame.getOrigin() = pivotInA;
|
||||
|
||||
// since no frame is given, assume this to be zero angle and just pick rb transform axis
|
||||
btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0);
|
||||
btScalar projection = rbAxisA1.dot(axisInA);
|
||||
if (projection > SIMD_EPSILON)
|
||||
rbAxisA1 = rbAxisA1*projection - axisInA;
|
||||
else
|
||||
rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);
|
||||
|
||||
btVector3 rbAxisA2 = rbAxisA1.cross(axisInA);
|
||||
|
||||
m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
|
||||
rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
|
||||
rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );
|
||||
|
||||
btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
|
||||
btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1);
|
||||
btVector3 rbAxisB2 = rbAxisB1.cross(axisInB);
|
||||
|
||||
|
||||
m_rbBFrame.getOrigin() = pivotInB;
|
||||
m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),-axisInB.getX(),
|
||||
rbAxisB1.getY(),rbAxisB2.getY(),-axisInB.getY(),
|
||||
rbAxisB1.getZ(),rbAxisB2.getZ(),-axisInB.getZ() );
|
||||
|
||||
//start with free
|
||||
m_lowerLimit = btScalar(1e30);
|
||||
m_upperLimit = btScalar(-1e30);
|
||||
m_biasFactor = 0.3f;
|
||||
m_relaxationFactor = 1.0f;
|
||||
m_limitSoftness = 0.9f;
|
||||
m_solveLimit = false;
|
||||
|
||||
}
|
||||
|
||||
|
||||
btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,btVector3& axisInA)
|
||||
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_angularOnly(false), m_enableAngularMotor(false)
|
||||
{
|
||||
|
||||
// since no frame is given, assume this to be zero angle and just pick rb transform axis
|
||||
// fixed axis in worldspace
|
||||
btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0);
|
||||
btScalar projection = rbAxisA1.dot(axisInA);
|
||||
if (projection > SIMD_EPSILON)
|
||||
rbAxisA1 = rbAxisA1*projection - axisInA;
|
||||
else
|
||||
rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);
|
||||
|
||||
btVector3 rbAxisA2 = axisInA.cross(rbAxisA1);
|
||||
|
||||
m_rbAFrame.getOrigin() = pivotInA;
|
||||
m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
|
||||
rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
|
||||
rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );
|
||||
|
||||
|
||||
btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * -axisInA;
|
||||
|
||||
btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
|
||||
btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1);
|
||||
btVector3 rbAxisB2 = axisInB.cross(rbAxisB1);
|
||||
|
||||
|
||||
m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA);
|
||||
m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(),
|
||||
rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(),
|
||||
rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() );
|
||||
|
||||
//start with free
|
||||
m_lowerLimit = btScalar(1e30);
|
||||
m_upperLimit = btScalar(-1e30);
|
||||
m_biasFactor = 0.3f;
|
||||
m_relaxationFactor = 1.0f;
|
||||
m_limitSoftness = 0.9f;
|
||||
m_solveLimit = false;
|
||||
}
|
||||
|
||||
btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB,
|
||||
const btTransform& rbAFrame, const btTransform& rbBFrame)
|
||||
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame),
|
||||
m_angularOnly(false),
|
||||
m_enableAngularMotor(false)
|
||||
{
|
||||
// flip axis
|
||||
m_rbBFrame.getBasis()[0][2] *= btScalar(-1.);
|
||||
m_rbBFrame.getBasis()[1][2] *= btScalar(-1.);
|
||||
m_rbBFrame.getBasis()[2][2] *= btScalar(-1.);
|
||||
|
||||
//start with free
|
||||
m_lowerLimit = btScalar(1e30);
|
||||
m_upperLimit = btScalar(-1e30);
|
||||
m_biasFactor = 0.3f;
|
||||
m_relaxationFactor = 1.0f;
|
||||
m_limitSoftness = 0.9f;
|
||||
m_solveLimit = false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame)
|
||||
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),m_rbAFrame(rbAFrame),m_rbBFrame(rbAFrame),
|
||||
m_angularOnly(false),
|
||||
m_enableAngularMotor(false)
|
||||
{
|
||||
// flip axis
|
||||
m_rbBFrame.getBasis()[0][2] *= btScalar(-1.);
|
||||
m_rbBFrame.getBasis()[1][2] *= btScalar(-1.);
|
||||
m_rbBFrame.getBasis()[2][2] *= btScalar(-1.);
|
||||
|
||||
|
||||
//start with free
|
||||
m_lowerLimit = btScalar(1e30);
|
||||
m_upperLimit = btScalar(-1e30);
|
||||
m_biasFactor = 0.3f;
|
||||
m_relaxationFactor = 1.0f;
|
||||
m_limitSoftness = 0.9f;
|
||||
m_solveLimit = false;
|
||||
}
|
||||
|
||||
void btHingeConstraint::buildJacobian()
|
||||
{
|
||||
m_appliedImpulse = btScalar(0.);
|
||||
|
||||
if (!m_angularOnly)
|
||||
{
|
||||
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
|
||||
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
|
||||
btVector3 relPos = pivotBInW - pivotAInW;
|
||||
|
||||
btVector3 normal[3];
|
||||
if (relPos.length2() > SIMD_EPSILON)
|
||||
{
|
||||
normal[0] = relPos.normalized();
|
||||
}
|
||||
else
|
||||
{
|
||||
normal[0].setValue(btScalar(1.0),0,0);
|
||||
}
|
||||
|
||||
btPlaneSpace1(normal[0], normal[1], normal[2]);
|
||||
|
||||
for (int i=0;i<3;i++)
|
||||
{
|
||||
new (&m_jac[i]) btJacobianEntry(
|
||||
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
||||
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
||||
pivotAInW - m_rbA.getCenterOfMassPosition(),
|
||||
pivotBInW - m_rbB.getCenterOfMassPosition(),
|
||||
normal[i],
|
||||
m_rbA.getInvInertiaDiagLocal(),
|
||||
m_rbA.getInvMass(),
|
||||
m_rbB.getInvInertiaDiagLocal(),
|
||||
m_rbB.getInvMass());
|
||||
}
|
||||
}
|
||||
|
||||
//calculate two perpendicular jointAxis, orthogonal to hingeAxis
|
||||
//these two jointAxis require equal angular velocities for both bodies
|
||||
|
||||
//this is unused for now, it's a todo
|
||||
btVector3 jointAxis0local;
|
||||
btVector3 jointAxis1local;
|
||||
|
||||
btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local);
|
||||
|
||||
getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
|
||||
btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local;
|
||||
btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local;
|
||||
btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
|
||||
|
||||
new (&m_jacAng[0]) btJacobianEntry(jointAxis0,
|
||||
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
||||
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
||||
m_rbA.getInvInertiaDiagLocal(),
|
||||
m_rbB.getInvInertiaDiagLocal());
|
||||
|
||||
new (&m_jacAng[1]) btJacobianEntry(jointAxis1,
|
||||
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
||||
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
||||
m_rbA.getInvInertiaDiagLocal(),
|
||||
m_rbB.getInvInertiaDiagLocal());
|
||||
|
||||
new (&m_jacAng[2]) btJacobianEntry(hingeAxisWorld,
|
||||
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
||||
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
||||
m_rbA.getInvInertiaDiagLocal(),
|
||||
m_rbB.getInvInertiaDiagLocal());
|
||||
|
||||
|
||||
// Compute limit information
|
||||
btScalar hingeAngle = getHingeAngle();
|
||||
|
||||
//set bias, sign, clear accumulator
|
||||
m_correction = btScalar(0.);
|
||||
m_limitSign = btScalar(0.);
|
||||
m_solveLimit = false;
|
||||
m_accLimitImpulse = btScalar(0.);
|
||||
|
||||
if (m_lowerLimit < m_upperLimit)
|
||||
{
|
||||
if (hingeAngle <= m_lowerLimit*m_limitSoftness)
|
||||
{
|
||||
m_correction = (m_lowerLimit - hingeAngle);
|
||||
m_limitSign = 1.0f;
|
||||
m_solveLimit = true;
|
||||
}
|
||||
else if (hingeAngle >= m_upperLimit*m_limitSoftness)
|
||||
{
|
||||
m_correction = m_upperLimit - hingeAngle;
|
||||
m_limitSign = -1.0f;
|
||||
m_solveLimit = true;
|
||||
}
|
||||
}
|
||||
|
||||
//Compute K = J*W*J' for hinge axis
|
||||
btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
|
||||
m_kHinge = 1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) +
|
||||
getRigidBodyB().computeAngularImpulseDenominator(axisA));
|
||||
|
||||
}
|
||||
|
||||
void btHingeConstraint::solveConstraint(btScalar timeStep)
|
||||
{
|
||||
|
||||
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
|
||||
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
|
||||
|
||||
btScalar tau = btScalar(0.3);
|
||||
btScalar damping = btScalar(1.);
|
||||
|
||||
//linear part
|
||||
if (!m_angularOnly)
|
||||
{
|
||||
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
|
||||
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
|
||||
|
||||
btVector3 vel1 = m_rbA.getVelocityInLocalPoint(rel_pos1);
|
||||
btVector3 vel2 = m_rbB.getVelocityInLocalPoint(rel_pos2);
|
||||
btVector3 vel = vel1 - vel2;
|
||||
|
||||
for (int i=0;i<3;i++)
|
||||
{
|
||||
const btVector3& normal = m_jac[i].m_linearJointAxis;
|
||||
btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();
|
||||
|
||||
btScalar rel_vel;
|
||||
rel_vel = normal.dot(vel);
|
||||
//positional error (zeroth order error)
|
||||
btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
|
||||
btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv;
|
||||
m_appliedImpulse += impulse;
|
||||
btVector3 impulse_vector = normal * impulse;
|
||||
m_rbA.applyImpulse(impulse_vector, pivotAInW - m_rbA.getCenterOfMassPosition());
|
||||
m_rbB.applyImpulse(-impulse_vector, pivotBInW - m_rbB.getCenterOfMassPosition());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
{
|
||||
///solve angular part
|
||||
|
||||
// get axes in world space
|
||||
btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
|
||||
btVector3 axisB = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(2);
|
||||
|
||||
const btVector3& angVelA = getRigidBodyA().getAngularVelocity();
|
||||
const btVector3& angVelB = getRigidBodyB().getAngularVelocity();
|
||||
|
||||
btVector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA);
|
||||
btVector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB);
|
||||
|
||||
btVector3 angAorthog = angVelA - angVelAroundHingeAxisA;
|
||||
btVector3 angBorthog = angVelB - angVelAroundHingeAxisB;
|
||||
btVector3 velrelOrthog = angAorthog-angBorthog;
|
||||
{
|
||||
//solve orthogonal angular velocity correction
|
||||
btScalar relaxation = btScalar(1.);
|
||||
btScalar len = velrelOrthog.length();
|
||||
if (len > btScalar(0.00001))
|
||||
{
|
||||
btVector3 normal = velrelOrthog.normalized();
|
||||
btScalar denom = getRigidBodyA().computeAngularImpulseDenominator(normal) +
|
||||
getRigidBodyB().computeAngularImpulseDenominator(normal);
|
||||
// scale for mass and relaxation
|
||||
//todo: expose this 0.9 factor to developer
|
||||
velrelOrthog *= (btScalar(1.)/denom) * m_relaxationFactor;
|
||||
}
|
||||
|
||||
//solve angular positional correction
|
||||
btVector3 angularError = -axisA.cross(axisB) *(btScalar(1.)/timeStep);
|
||||
btScalar len2 = angularError.length();
|
||||
if (len2>btScalar(0.00001))
|
||||
{
|
||||
btVector3 normal2 = angularError.normalized();
|
||||
btScalar denom2 = getRigidBodyA().computeAngularImpulseDenominator(normal2) +
|
||||
getRigidBodyB().computeAngularImpulseDenominator(normal2);
|
||||
angularError *= (btScalar(1.)/denom2) * relaxation;
|
||||
}
|
||||
|
||||
m_rbA.applyTorqueImpulse(-velrelOrthog+angularError);
|
||||
m_rbB.applyTorqueImpulse(velrelOrthog-angularError);
|
||||
|
||||
// solve limit
|
||||
if (m_solveLimit)
|
||||
{
|
||||
btScalar amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (btScalar(1.)/timeStep)*m_biasFactor ) * m_limitSign;
|
||||
|
||||
btScalar impulseMag = amplitude * m_kHinge;
|
||||
|
||||
// Clamp the accumulated impulse
|
||||
btScalar temp = m_accLimitImpulse;
|
||||
m_accLimitImpulse = btMax(m_accLimitImpulse + impulseMag, btScalar(0) );
|
||||
impulseMag = m_accLimitImpulse - temp;
|
||||
|
||||
|
||||
btVector3 impulse = axisA * impulseMag * m_limitSign;
|
||||
m_rbA.applyTorqueImpulse(impulse);
|
||||
m_rbB.applyTorqueImpulse(-impulse);
|
||||
}
|
||||
}
|
||||
|
||||
//apply motor
|
||||
if (m_enableAngularMotor)
|
||||
{
|
||||
//todo: add limits too
|
||||
btVector3 angularLimit(0,0,0);
|
||||
|
||||
btVector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB;
|
||||
btScalar projRelVel = velrel.dot(axisA);
|
||||
|
||||
btScalar desiredMotorVel = m_motorTargetVelocity;
|
||||
btScalar motor_relvel = desiredMotorVel - projRelVel;
|
||||
|
||||
btScalar unclippedMotorImpulse = m_kHinge * motor_relvel;;
|
||||
//todo: should clip against accumulated impulse
|
||||
btScalar clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse;
|
||||
clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse;
|
||||
btVector3 motorImp = clippedMotorImpulse * axisA;
|
||||
|
||||
m_rbA.applyTorqueImpulse(motorImp+angularLimit);
|
||||
m_rbB.applyTorqueImpulse(-motorImp-angularLimit);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void btHingeConstraint::updateRHS(btScalar timeStep)
|
||||
{
|
||||
(void)timeStep;
|
||||
|
||||
}
|
||||
|
||||
btScalar btHingeConstraint::getHingeAngle()
|
||||
{
|
||||
const btVector3 refAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(0);
|
||||
const btVector3 refAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(1);
|
||||
const btVector3 swingAxis = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(1);
|
||||
|
||||
return btAtan2Fast( swingAxis.dot(refAxis0), swingAxis.dot(refAxis1) );
|
||||
}
|
130
bullet/src/BulletDynamics/ConstraintSolver/btHingeConstraint.h
Normal file
130
bullet/src/BulletDynamics/ConstraintSolver/btHingeConstraint.h
Normal file
@ -0,0 +1,130 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
/* Hinge Constraint by Dirk Gregorius. Limits added by Marcus Hennix at Starbreeze Studios */
|
||||
|
||||
#ifndef HINGECONSTRAINT_H
|
||||
#define HINGECONSTRAINT_H
|
||||
|
||||
#include "LinearMath/btVector3.h"
|
||||
#include "btJacobianEntry.h"
|
||||
#include "btTypedConstraint.h"
|
||||
|
||||
class btRigidBody;
|
||||
|
||||
/// hinge constraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space
|
||||
/// axis defines the orientation of the hinge axis
|
||||
class btHingeConstraint : public btTypedConstraint
|
||||
{
|
||||
#ifdef IN_PARALLELL_SOLVER
|
||||
public:
|
||||
#endif
|
||||
btJacobianEntry m_jac[3]; //3 orthogonal linear constraints
|
||||
btJacobianEntry m_jacAng[3]; //2 orthogonal angular constraints+ 1 for limit/motor
|
||||
|
||||
btTransform m_rbAFrame; // constraint axii. Assumes z is hinge axis.
|
||||
btTransform m_rbBFrame;
|
||||
|
||||
btScalar m_motorTargetVelocity;
|
||||
btScalar m_maxMotorImpulse;
|
||||
|
||||
btScalar m_limitSoftness;
|
||||
btScalar m_biasFactor;
|
||||
btScalar m_relaxationFactor;
|
||||
|
||||
btScalar m_lowerLimit;
|
||||
btScalar m_upperLimit;
|
||||
|
||||
btScalar m_kHinge;
|
||||
|
||||
btScalar m_limitSign;
|
||||
btScalar m_correction;
|
||||
|
||||
btScalar m_accLimitImpulse;
|
||||
|
||||
bool m_angularOnly;
|
||||
bool m_enableAngularMotor;
|
||||
bool m_solveLimit;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB, btVector3& axisInA,btVector3& axisInB);
|
||||
|
||||
btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,btVector3& axisInA);
|
||||
|
||||
btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btTransform& rbAFrame, const btTransform& rbBFrame);
|
||||
|
||||
btHingeConstraint(btRigidBody& rbA,const btTransform& rbAFrame);
|
||||
|
||||
btHingeConstraint();
|
||||
|
||||
virtual void buildJacobian();
|
||||
|
||||
virtual void solveConstraint(btScalar timeStep);
|
||||
|
||||
void updateRHS(btScalar timeStep);
|
||||
|
||||
const btRigidBody& getRigidBodyA() const
|
||||
{
|
||||
return m_rbA;
|
||||
}
|
||||
const btRigidBody& getRigidBodyB() const
|
||||
{
|
||||
return m_rbB;
|
||||
}
|
||||
|
||||
void setAngularOnly(bool angularOnly)
|
||||
{
|
||||
m_angularOnly = angularOnly;
|
||||
}
|
||||
|
||||
void enableAngularMotor(bool enableMotor,btScalar targetVelocity,btScalar maxMotorImpulse)
|
||||
{
|
||||
m_enableAngularMotor = enableMotor;
|
||||
m_motorTargetVelocity = targetVelocity;
|
||||
m_maxMotorImpulse = maxMotorImpulse;
|
||||
}
|
||||
|
||||
void setLimit(btScalar low,btScalar high,btScalar _softness = 0.9f, btScalar _biasFactor = 0.3f, btScalar _relaxationFactor = 1.0f)
|
||||
{
|
||||
m_lowerLimit = low;
|
||||
m_upperLimit = high;
|
||||
|
||||
m_limitSoftness = _softness;
|
||||
m_biasFactor = _biasFactor;
|
||||
m_relaxationFactor = _relaxationFactor;
|
||||
|
||||
}
|
||||
|
||||
btScalar getHingeAngle();
|
||||
|
||||
|
||||
const btTransform& getAFrame() { return m_rbAFrame; };
|
||||
const btTransform& getBFrame() { return m_rbBFrame; };
|
||||
|
||||
inline int getSolveLimit()
|
||||
{
|
||||
return m_solveLimit;
|
||||
}
|
||||
|
||||
inline btScalar getLimitSign()
|
||||
{
|
||||
return m_limitSign;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif //HINGECONSTRAINT_H
|
156
bullet/src/BulletDynamics/ConstraintSolver/btJacobianEntry.h
Normal file
156
bullet/src/BulletDynamics/ConstraintSolver/btJacobianEntry.h
Normal file
@ -0,0 +1,156 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef JACOBIAN_ENTRY_H
|
||||
#define JACOBIAN_ENTRY_H
|
||||
|
||||
#include "LinearMath/btVector3.h"
|
||||
#include "BulletDynamics/Dynamics/btRigidBody.h"
|
||||
|
||||
|
||||
//notes:
|
||||
// Another memory optimization would be to store m_1MinvJt in the remaining 3 w components
|
||||
// which makes the btJacobianEntry memory layout 16 bytes
|
||||
// if you only are interested in angular part, just feed massInvA and massInvB zero
|
||||
|
||||
/// Jacobian entry is an abstraction that allows to describe constraints
|
||||
/// it can be used in combination with a constraint solver
|
||||
/// Can be used to relate the effect of an impulse to the constraint error
|
||||
class btJacobianEntry
|
||||
{
|
||||
public:
|
||||
btJacobianEntry() {};
|
||||
//constraint between two different rigidbodies
|
||||
btJacobianEntry(
|
||||
const btMatrix3x3& world2A,
|
||||
const btMatrix3x3& world2B,
|
||||
const btVector3& rel_pos1,const btVector3& rel_pos2,
|
||||
const btVector3& jointAxis,
|
||||
const btVector3& inertiaInvA,
|
||||
const btScalar massInvA,
|
||||
const btVector3& inertiaInvB,
|
||||
const btScalar massInvB)
|
||||
:m_linearJointAxis(jointAxis)
|
||||
{
|
||||
m_aJ = world2A*(rel_pos1.cross(m_linearJointAxis));
|
||||
m_bJ = world2B*(rel_pos2.cross(-m_linearJointAxis));
|
||||
m_0MinvJt = inertiaInvA * m_aJ;
|
||||
m_1MinvJt = inertiaInvB * m_bJ;
|
||||
m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
|
||||
|
||||
btAssert(m_Adiag > btScalar(0.0));
|
||||
}
|
||||
|
||||
//angular constraint between two different rigidbodies
|
||||
btJacobianEntry(const btVector3& jointAxis,
|
||||
const btMatrix3x3& world2A,
|
||||
const btMatrix3x3& world2B,
|
||||
const btVector3& inertiaInvA,
|
||||
const btVector3& inertiaInvB)
|
||||
:m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.)))
|
||||
{
|
||||
m_aJ= world2A*jointAxis;
|
||||
m_bJ = world2B*-jointAxis;
|
||||
m_0MinvJt = inertiaInvA * m_aJ;
|
||||
m_1MinvJt = inertiaInvB * m_bJ;
|
||||
m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
|
||||
|
||||
btAssert(m_Adiag > btScalar(0.0));
|
||||
}
|
||||
|
||||
//angular constraint between two different rigidbodies
|
||||
btJacobianEntry(const btVector3& axisInA,
|
||||
const btVector3& axisInB,
|
||||
const btVector3& inertiaInvA,
|
||||
const btVector3& inertiaInvB)
|
||||
: m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.)))
|
||||
, m_aJ(axisInA)
|
||||
, m_bJ(-axisInB)
|
||||
{
|
||||
m_0MinvJt = inertiaInvA * m_aJ;
|
||||
m_1MinvJt = inertiaInvB * m_bJ;
|
||||
m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
|
||||
|
||||
btAssert(m_Adiag > btScalar(0.0));
|
||||
}
|
||||
|
||||
//constraint on one rigidbody
|
||||
btJacobianEntry(
|
||||
const btMatrix3x3& world2A,
|
||||
const btVector3& rel_pos1,const btVector3& rel_pos2,
|
||||
const btVector3& jointAxis,
|
||||
const btVector3& inertiaInvA,
|
||||
const btScalar massInvA)
|
||||
:m_linearJointAxis(jointAxis)
|
||||
{
|
||||
m_aJ= world2A*(rel_pos1.cross(jointAxis));
|
||||
m_bJ = world2A*(rel_pos2.cross(-jointAxis));
|
||||
m_0MinvJt = inertiaInvA * m_aJ;
|
||||
m_1MinvJt = btVector3(btScalar(0.),btScalar(0.),btScalar(0.));
|
||||
m_Adiag = massInvA + m_0MinvJt.dot(m_aJ);
|
||||
|
||||
btAssert(m_Adiag > btScalar(0.0));
|
||||
}
|
||||
|
||||
btScalar getDiagonal() const { return m_Adiag; }
|
||||
|
||||
// for two constraints on the same rigidbody (for example vehicle friction)
|
||||
btScalar getNonDiagonal(const btJacobianEntry& jacB, const btScalar massInvA) const
|
||||
{
|
||||
const btJacobianEntry& jacA = *this;
|
||||
btScalar lin = massInvA * jacA.m_linearJointAxis.dot(jacB.m_linearJointAxis);
|
||||
btScalar ang = jacA.m_0MinvJt.dot(jacB.m_aJ);
|
||||
return lin + ang;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// for two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies)
|
||||
btScalar getNonDiagonal(const btJacobianEntry& jacB,const btScalar massInvA,const btScalar massInvB) const
|
||||
{
|
||||
const btJacobianEntry& jacA = *this;
|
||||
btVector3 lin = jacA.m_linearJointAxis * jacB.m_linearJointAxis;
|
||||
btVector3 ang0 = jacA.m_0MinvJt * jacB.m_aJ;
|
||||
btVector3 ang1 = jacA.m_1MinvJt * jacB.m_bJ;
|
||||
btVector3 lin0 = massInvA * lin ;
|
||||
btVector3 lin1 = massInvB * lin;
|
||||
btVector3 sum = ang0+ang1+lin0+lin1;
|
||||
return sum[0]+sum[1]+sum[2];
|
||||
}
|
||||
|
||||
btScalar getRelativeVelocity(const btVector3& linvelA,const btVector3& angvelA,const btVector3& linvelB,const btVector3& angvelB)
|
||||
{
|
||||
btVector3 linrel = linvelA - linvelB;
|
||||
btVector3 angvela = angvelA * m_aJ;
|
||||
btVector3 angvelb = angvelB * m_bJ;
|
||||
linrel *= m_linearJointAxis;
|
||||
angvela += angvelb;
|
||||
angvela += linrel;
|
||||
btScalar rel_vel2 = angvela[0]+angvela[1]+angvela[2];
|
||||
return rel_vel2 + SIMD_EPSILON;
|
||||
}
|
||||
//private:
|
||||
|
||||
btVector3 m_linearJointAxis;
|
||||
btVector3 m_aJ;
|
||||
btVector3 m_bJ;
|
||||
btVector3 m_0MinvJt;
|
||||
btVector3 m_1MinvJt;
|
||||
//Optimization: can be stored in the w/last component of one of the vectors
|
||||
btScalar m_Adiag;
|
||||
|
||||
};
|
||||
|
||||
#endif //JACOBIAN_ENTRY_H
|
@ -0,0 +1,117 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
|
||||
#include "btPoint2PointConstraint.h"
|
||||
#include "BulletDynamics/Dynamics/btRigidBody.h"
|
||||
#include <new>
|
||||
|
||||
|
||||
|
||||
btPoint2PointConstraint::btPoint2PointConstraint()
|
||||
:btTypedConstraint(POINT2POINT_CONSTRAINT_TYPE)
|
||||
{
|
||||
}
|
||||
|
||||
btPoint2PointConstraint::btPoint2PointConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB)
|
||||
:btTypedConstraint(POINT2POINT_CONSTRAINT_TYPE,rbA,rbB),m_pivotInA(pivotInA),m_pivotInB(pivotInB)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
|
||||
btPoint2PointConstraint::btPoint2PointConstraint(btRigidBody& rbA,const btVector3& pivotInA)
|
||||
:btTypedConstraint(POINT2POINT_CONSTRAINT_TYPE,rbA),m_pivotInA(pivotInA),m_pivotInB(rbA.getCenterOfMassTransform()(pivotInA))
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
void btPoint2PointConstraint::buildJacobian()
|
||||
{
|
||||
m_appliedImpulse = btScalar(0.);
|
||||
|
||||
btVector3 normal(0,0,0);
|
||||
|
||||
for (int i=0;i<3;i++)
|
||||
{
|
||||
normal[i] = 1;
|
||||
new (&m_jac[i]) btJacobianEntry(
|
||||
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
||||
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
||||
m_rbA.getCenterOfMassTransform()*m_pivotInA - m_rbA.getCenterOfMassPosition(),
|
||||
m_rbB.getCenterOfMassTransform()*m_pivotInB - m_rbB.getCenterOfMassPosition(),
|
||||
normal,
|
||||
m_rbA.getInvInertiaDiagLocal(),
|
||||
m_rbA.getInvMass(),
|
||||
m_rbB.getInvInertiaDiagLocal(),
|
||||
m_rbB.getInvMass());
|
||||
normal[i] = 0;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void btPoint2PointConstraint::solveConstraint(btScalar timeStep)
|
||||
{
|
||||
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_pivotInA;
|
||||
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_pivotInB;
|
||||
|
||||
|
||||
btVector3 normal(0,0,0);
|
||||
|
||||
|
||||
// btVector3 angvelA = m_rbA.getCenterOfMassTransform().getBasis().transpose() * m_rbA.getAngularVelocity();
|
||||
// btVector3 angvelB = m_rbB.getCenterOfMassTransform().getBasis().transpose() * m_rbB.getAngularVelocity();
|
||||
|
||||
for (int i=0;i<3;i++)
|
||||
{
|
||||
normal[i] = 1;
|
||||
btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();
|
||||
|
||||
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
|
||||
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
|
||||
//this jacobian entry could be re-used for all iterations
|
||||
|
||||
btVector3 vel1 = m_rbA.getVelocityInLocalPoint(rel_pos1);
|
||||
btVector3 vel2 = m_rbB.getVelocityInLocalPoint(rel_pos2);
|
||||
btVector3 vel = vel1 - vel2;
|
||||
|
||||
btScalar rel_vel;
|
||||
rel_vel = normal.dot(vel);
|
||||
|
||||
/*
|
||||
//velocity error (first order error)
|
||||
btScalar rel_vel = m_jac[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
|
||||
m_rbB.getLinearVelocity(),angvelB);
|
||||
*/
|
||||
|
||||
//positional error (zeroth order error)
|
||||
btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
|
||||
|
||||
btScalar impulse = depth*m_setting.m_tau/timeStep * jacDiagABInv - m_setting.m_damping * rel_vel * jacDiagABInv;
|
||||
m_appliedImpulse+=impulse;
|
||||
btVector3 impulse_vector = normal * impulse;
|
||||
m_rbA.applyImpulse(impulse_vector, pivotAInW - m_rbA.getCenterOfMassPosition());
|
||||
m_rbB.applyImpulse(-impulse_vector, pivotBInW - m_rbB.getCenterOfMassPosition());
|
||||
|
||||
normal[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void btPoint2PointConstraint::updateRHS(btScalar timeStep)
|
||||
{
|
||||
(void)timeStep;
|
||||
|
||||
}
|
||||
|
@ -0,0 +1,80 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef POINT2POINTCONSTRAINT_H
|
||||
#define POINT2POINTCONSTRAINT_H
|
||||
|
||||
#include "LinearMath/btVector3.h"
|
||||
#include "btJacobianEntry.h"
|
||||
#include "btTypedConstraint.h"
|
||||
|
||||
class btRigidBody;
|
||||
|
||||
struct btConstraintSetting
|
||||
{
|
||||
btConstraintSetting() :
|
||||
m_tau(btScalar(0.3)),
|
||||
m_damping(btScalar(1.))
|
||||
{
|
||||
}
|
||||
btScalar m_tau;
|
||||
btScalar m_damping;
|
||||
};
|
||||
|
||||
/// point to point constraint between two rigidbodies each with a pivotpoint that descibes the 'ballsocket' location in local space
|
||||
class btPoint2PointConstraint : public btTypedConstraint
|
||||
{
|
||||
#ifdef IN_PARALLELL_SOLVER
|
||||
public:
|
||||
#endif
|
||||
btJacobianEntry m_jac[3]; //3 orthogonal linear constraints
|
||||
|
||||
btVector3 m_pivotInA;
|
||||
btVector3 m_pivotInB;
|
||||
|
||||
|
||||
|
||||
public:
|
||||
|
||||
btConstraintSetting m_setting;
|
||||
|
||||
btPoint2PointConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB);
|
||||
|
||||
btPoint2PointConstraint(btRigidBody& rbA,const btVector3& pivotInA);
|
||||
|
||||
btPoint2PointConstraint();
|
||||
|
||||
virtual void buildJacobian();
|
||||
|
||||
|
||||
virtual void solveConstraint(btScalar timeStep);
|
||||
|
||||
void updateRHS(btScalar timeStep);
|
||||
|
||||
void setPivotA(const btVector3& pivotA)
|
||||
{
|
||||
m_pivotInA = pivotA;
|
||||
}
|
||||
|
||||
void setPivotB(const btVector3& pivotB)
|
||||
{
|
||||
m_pivotInB = pivotB;
|
||||
}
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
#endif //POINT2POINTCONSTRAINT_H
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,114 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
|
||||
#define SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
|
||||
|
||||
#include "btConstraintSolver.h"
|
||||
class btIDebugDraw;
|
||||
#include "btContactConstraint.h"
|
||||
|
||||
|
||||
|
||||
/// btSequentialImpulseConstraintSolver uses a Propagation Method and Sequentially applies impulses
|
||||
/// The approach is the 3D version of Erin Catto's GDC 2006 tutorial. See http://www.gphysics.com
|
||||
/// Although Sequential Impulse is more intuitive, it is mathematically equivalent to Projected Successive Overrelaxation (iterative LCP)
|
||||
/// Applies impulses for combined restitution and penetration recovery and to simulate friction
|
||||
class btSequentialImpulseConstraintSolver : public btConstraintSolver
|
||||
{
|
||||
|
||||
protected:
|
||||
btScalar solve(btRigidBody* body0,btRigidBody* body1, btManifoldPoint& cp, const btContactSolverInfo& info,int iter,btIDebugDraw* debugDrawer);
|
||||
btScalar solveFriction(btRigidBody* body0,btRigidBody* body1, btManifoldPoint& cp, const btContactSolverInfo& info,int iter,btIDebugDraw* debugDrawer);
|
||||
void prepareConstraints(btPersistentManifold* manifoldPtr, const btContactSolverInfo& info,btIDebugDraw* debugDrawer);
|
||||
|
||||
ContactSolverFunc m_contactDispatch[MAX_CONTACT_SOLVER_TYPES][MAX_CONTACT_SOLVER_TYPES];
|
||||
ContactSolverFunc m_frictionDispatch[MAX_CONTACT_SOLVER_TYPES][MAX_CONTACT_SOLVER_TYPES];
|
||||
|
||||
//choose between several modes, different friction model etc.
|
||||
int m_solverMode;
|
||||
///m_btSeed2 is used for re-arranging the constraint rows. improves convergence/quality of friction
|
||||
unsigned long m_btSeed2;
|
||||
|
||||
public:
|
||||
|
||||
enum eSolverMode
|
||||
{
|
||||
SOLVER_RANDMIZE_ORDER = 1,
|
||||
SOLVER_FRICTION_SEPARATE = 2,
|
||||
SOLVER_USE_WARMSTARTING = 4,
|
||||
SOLVER_CACHE_FRIENDLY = 8
|
||||
};
|
||||
|
||||
btSequentialImpulseConstraintSolver();
|
||||
|
||||
///Advanced: Override the default contact solving function for contacts, for certain types of rigidbody
|
||||
///See btRigidBody::m_contactSolverType and btRigidBody::m_frictionSolverType
|
||||
void setContactSolverFunc(ContactSolverFunc func,int type0,int type1)
|
||||
{
|
||||
m_contactDispatch[type0][type1] = func;
|
||||
}
|
||||
|
||||
///Advanced: Override the default friction solving function for contacts, for certain types of rigidbody
|
||||
///See btRigidBody::m_contactSolverType and btRigidBody::m_frictionSolverType
|
||||
void SetFrictionSolverFunc(ContactSolverFunc func,int type0,int type1)
|
||||
{
|
||||
m_frictionDispatch[type0][type1] = func;
|
||||
}
|
||||
|
||||
virtual ~btSequentialImpulseConstraintSolver() {}
|
||||
|
||||
virtual btScalar solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer, btStackAlloc* stackAlloc);
|
||||
|
||||
virtual btScalar solveGroupCacheFriendly(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc);
|
||||
|
||||
///clear internal cached data and reset random seed
|
||||
virtual void reset();
|
||||
|
||||
btScalar solveCombinedContactFriction(btRigidBody* body0,btRigidBody* body1, btManifoldPoint& cp, const btContactSolverInfo& info,int iter,btIDebugDraw* debugDrawer);
|
||||
|
||||
|
||||
void setSolverMode(int mode)
|
||||
{
|
||||
m_solverMode = mode;
|
||||
}
|
||||
|
||||
int getSolverMode() const
|
||||
{
|
||||
return m_solverMode;
|
||||
}
|
||||
|
||||
unsigned long btRand2();
|
||||
|
||||
int btRandInt2 (int n);
|
||||
|
||||
void setRandSeed(unsigned long seed)
|
||||
{
|
||||
m_btSeed2 = seed;
|
||||
}
|
||||
unsigned long getRandSeed() const
|
||||
{
|
||||
return m_btSeed2;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#ifndef BT_PREFER_SIMD
|
||||
typedef btSequentialImpulseConstraintSolver btSequentialImpulseConstraintSolverPrefered;
|
||||
#endif
|
||||
|
||||
|
||||
#endif //SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
|
||||
|
@ -0,0 +1,255 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include "btSolve2LinearConstraint.h"
|
||||
|
||||
#include "BulletDynamics/Dynamics/btRigidBody.h"
|
||||
#include "LinearMath/btVector3.h"
|
||||
#include "btJacobianEntry.h"
|
||||
|
||||
|
||||
void btSolve2LinearConstraint::resolveUnilateralPairConstraint(
|
||||
btRigidBody* body1,
|
||||
btRigidBody* body2,
|
||||
|
||||
const btMatrix3x3& world2A,
|
||||
const btMatrix3x3& world2B,
|
||||
|
||||
const btVector3& invInertiaADiag,
|
||||
const btScalar invMassA,
|
||||
const btVector3& linvelA,const btVector3& angvelA,
|
||||
const btVector3& rel_posA1,
|
||||
const btVector3& invInertiaBDiag,
|
||||
const btScalar invMassB,
|
||||
const btVector3& linvelB,const btVector3& angvelB,
|
||||
const btVector3& rel_posA2,
|
||||
|
||||
btScalar depthA, const btVector3& normalA,
|
||||
const btVector3& rel_posB1,const btVector3& rel_posB2,
|
||||
btScalar depthB, const btVector3& normalB,
|
||||
btScalar& imp0,btScalar& imp1)
|
||||
{
|
||||
(void)linvelA;
|
||||
(void)linvelB;
|
||||
(void)angvelB;
|
||||
(void)angvelA;
|
||||
|
||||
|
||||
|
||||
imp0 = btScalar(0.);
|
||||
imp1 = btScalar(0.);
|
||||
|
||||
btScalar len = btFabs(normalA.length()) - btScalar(1.);
|
||||
if (btFabs(len) >= SIMD_EPSILON)
|
||||
return;
|
||||
|
||||
btAssert(len < SIMD_EPSILON);
|
||||
|
||||
|
||||
//this jacobian entry could be re-used for all iterations
|
||||
btJacobianEntry jacA(world2A,world2B,rel_posA1,rel_posA2,normalA,invInertiaADiag,invMassA,
|
||||
invInertiaBDiag,invMassB);
|
||||
btJacobianEntry jacB(world2A,world2B,rel_posB1,rel_posB2,normalB,invInertiaADiag,invMassA,
|
||||
invInertiaBDiag,invMassB);
|
||||
|
||||
//const btScalar vel0 = jacA.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);
|
||||
//const btScalar vel1 = jacB.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);
|
||||
|
||||
const btScalar vel0 = normalA.dot(body1->getVelocityInLocalPoint(rel_posA1)-body2->getVelocityInLocalPoint(rel_posA1));
|
||||
const btScalar vel1 = normalB.dot(body1->getVelocityInLocalPoint(rel_posB1)-body2->getVelocityInLocalPoint(rel_posB1));
|
||||
|
||||
// btScalar penetrationImpulse = (depth*contactTau*timeCorrection) * massTerm;//jacDiagABInv
|
||||
btScalar massTerm = btScalar(1.) / (invMassA + invMassB);
|
||||
|
||||
|
||||
// calculate rhs (or error) terms
|
||||
const btScalar dv0 = depthA * m_tau * massTerm - vel0 * m_damping;
|
||||
const btScalar dv1 = depthB * m_tau * massTerm - vel1 * m_damping;
|
||||
|
||||
|
||||
// dC/dv * dv = -C
|
||||
|
||||
// jacobian * impulse = -error
|
||||
//
|
||||
|
||||
//impulse = jacobianInverse * -error
|
||||
|
||||
// inverting 2x2 symmetric system (offdiagonal are equal!)
|
||||
//
|
||||
|
||||
|
||||
btScalar nonDiag = jacA.getNonDiagonal(jacB,invMassA,invMassB);
|
||||
btScalar invDet = btScalar(1.0) / (jacA.getDiagonal() * jacB.getDiagonal() - nonDiag * nonDiag );
|
||||
|
||||
//imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
|
||||
//imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * - nonDiag * invDet;
|
||||
|
||||
imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
|
||||
imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * - nonDiag * invDet;
|
||||
|
||||
//[a b] [d -c]
|
||||
//[c d] inverse = (1 / determinant) * [-b a] where determinant is (ad - bc)
|
||||
|
||||
//[jA nD] * [imp0] = [dv0]
|
||||
//[nD jB] [imp1] [dv1]
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
void btSolve2LinearConstraint::resolveBilateralPairConstraint(
|
||||
btRigidBody* body1,
|
||||
btRigidBody* body2,
|
||||
const btMatrix3x3& world2A,
|
||||
const btMatrix3x3& world2B,
|
||||
|
||||
const btVector3& invInertiaADiag,
|
||||
const btScalar invMassA,
|
||||
const btVector3& linvelA,const btVector3& angvelA,
|
||||
const btVector3& rel_posA1,
|
||||
const btVector3& invInertiaBDiag,
|
||||
const btScalar invMassB,
|
||||
const btVector3& linvelB,const btVector3& angvelB,
|
||||
const btVector3& rel_posA2,
|
||||
|
||||
btScalar depthA, const btVector3& normalA,
|
||||
const btVector3& rel_posB1,const btVector3& rel_posB2,
|
||||
btScalar depthB, const btVector3& normalB,
|
||||
btScalar& imp0,btScalar& imp1)
|
||||
{
|
||||
|
||||
(void)linvelA;
|
||||
(void)linvelB;
|
||||
(void)angvelA;
|
||||
(void)angvelB;
|
||||
|
||||
|
||||
|
||||
imp0 = btScalar(0.);
|
||||
imp1 = btScalar(0.);
|
||||
|
||||
btScalar len = btFabs(normalA.length()) - btScalar(1.);
|
||||
if (btFabs(len) >= SIMD_EPSILON)
|
||||
return;
|
||||
|
||||
btAssert(len < SIMD_EPSILON);
|
||||
|
||||
|
||||
//this jacobian entry could be re-used for all iterations
|
||||
btJacobianEntry jacA(world2A,world2B,rel_posA1,rel_posA2,normalA,invInertiaADiag,invMassA,
|
||||
invInertiaBDiag,invMassB);
|
||||
btJacobianEntry jacB(world2A,world2B,rel_posB1,rel_posB2,normalB,invInertiaADiag,invMassA,
|
||||
invInertiaBDiag,invMassB);
|
||||
|
||||
//const btScalar vel0 = jacA.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);
|
||||
//const btScalar vel1 = jacB.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);
|
||||
|
||||
const btScalar vel0 = normalA.dot(body1->getVelocityInLocalPoint(rel_posA1)-body2->getVelocityInLocalPoint(rel_posA1));
|
||||
const btScalar vel1 = normalB.dot(body1->getVelocityInLocalPoint(rel_posB1)-body2->getVelocityInLocalPoint(rel_posB1));
|
||||
|
||||
// calculate rhs (or error) terms
|
||||
const btScalar dv0 = depthA * m_tau - vel0 * m_damping;
|
||||
const btScalar dv1 = depthB * m_tau - vel1 * m_damping;
|
||||
|
||||
// dC/dv * dv = -C
|
||||
|
||||
// jacobian * impulse = -error
|
||||
//
|
||||
|
||||
//impulse = jacobianInverse * -error
|
||||
|
||||
// inverting 2x2 symmetric system (offdiagonal are equal!)
|
||||
//
|
||||
|
||||
|
||||
btScalar nonDiag = jacA.getNonDiagonal(jacB,invMassA,invMassB);
|
||||
btScalar invDet = btScalar(1.0) / (jacA.getDiagonal() * jacB.getDiagonal() - nonDiag * nonDiag );
|
||||
|
||||
//imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
|
||||
//imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * - nonDiag * invDet;
|
||||
|
||||
imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
|
||||
imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * - nonDiag * invDet;
|
||||
|
||||
//[a b] [d -c]
|
||||
//[c d] inverse = (1 / determinant) * [-b a] where determinant is (ad - bc)
|
||||
|
||||
//[jA nD] * [imp0] = [dv0]
|
||||
//[nD jB] [imp1] [dv1]
|
||||
|
||||
if ( imp0 > btScalar(0.0))
|
||||
{
|
||||
if ( imp1 > btScalar(0.0) )
|
||||
{
|
||||
//both positive
|
||||
}
|
||||
else
|
||||
{
|
||||
imp1 = btScalar(0.);
|
||||
|
||||
// now imp0>0 imp1<0
|
||||
imp0 = dv0 / jacA.getDiagonal();
|
||||
if ( imp0 > btScalar(0.0) )
|
||||
{
|
||||
} else
|
||||
{
|
||||
imp0 = btScalar(0.);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
imp0 = btScalar(0.);
|
||||
|
||||
imp1 = dv1 / jacB.getDiagonal();
|
||||
if ( imp1 <= btScalar(0.0) )
|
||||
{
|
||||
imp1 = btScalar(0.);
|
||||
// now imp0>0 imp1<0
|
||||
imp0 = dv0 / jacA.getDiagonal();
|
||||
if ( imp0 > btScalar(0.0) )
|
||||
{
|
||||
} else
|
||||
{
|
||||
imp0 = btScalar(0.);
|
||||
}
|
||||
} else
|
||||
{
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
void btSolve2LinearConstraint::resolveAngularConstraint( const btMatrix3x3& invInertiaAWS,
|
||||
const btScalar invMassA,
|
||||
const btVector3& linvelA,const btVector3& angvelA,
|
||||
const btVector3& rel_posA1,
|
||||
const btMatrix3x3& invInertiaBWS,
|
||||
const btScalar invMassB,
|
||||
const btVector3& linvelB,const btVector3& angvelB,
|
||||
const btVector3& rel_posA2,
|
||||
|
||||
btScalar depthA, const btVector3& normalA,
|
||||
const btVector3& rel_posB1,const btVector3& rel_posB2,
|
||||
btScalar depthB, const btVector3& normalB,
|
||||
btScalar& imp0,btScalar& imp1)
|
||||
{
|
||||
|
||||
}
|
||||
*/
|
||||
|
@ -0,0 +1,107 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef SOLVE_2LINEAR_CONSTRAINT_H
|
||||
#define SOLVE_2LINEAR_CONSTRAINT_H
|
||||
|
||||
#include "LinearMath/btMatrix3x3.h"
|
||||
#include "LinearMath/btVector3.h"
|
||||
|
||||
|
||||
class btRigidBody;
|
||||
|
||||
|
||||
|
||||
/// constraint class used for lateral tyre friction.
|
||||
class btSolve2LinearConstraint
|
||||
{
|
||||
btScalar m_tau;
|
||||
btScalar m_damping;
|
||||
|
||||
public:
|
||||
|
||||
btSolve2LinearConstraint(btScalar tau,btScalar damping)
|
||||
{
|
||||
m_tau = tau;
|
||||
m_damping = damping;
|
||||
}
|
||||
//
|
||||
// solve unilateral constraint (equality, direct method)
|
||||
//
|
||||
void resolveUnilateralPairConstraint(
|
||||
btRigidBody* body0,
|
||||
btRigidBody* body1,
|
||||
|
||||
const btMatrix3x3& world2A,
|
||||
const btMatrix3x3& world2B,
|
||||
|
||||
const btVector3& invInertiaADiag,
|
||||
const btScalar invMassA,
|
||||
const btVector3& linvelA,const btVector3& angvelA,
|
||||
const btVector3& rel_posA1,
|
||||
const btVector3& invInertiaBDiag,
|
||||
const btScalar invMassB,
|
||||
const btVector3& linvelB,const btVector3& angvelB,
|
||||
const btVector3& rel_posA2,
|
||||
|
||||
btScalar depthA, const btVector3& normalA,
|
||||
const btVector3& rel_posB1,const btVector3& rel_posB2,
|
||||
btScalar depthB, const btVector3& normalB,
|
||||
btScalar& imp0,btScalar& imp1);
|
||||
|
||||
|
||||
//
|
||||
// solving 2x2 lcp problem (inequality, direct solution )
|
||||
//
|
||||
void resolveBilateralPairConstraint(
|
||||
btRigidBody* body0,
|
||||
btRigidBody* body1,
|
||||
const btMatrix3x3& world2A,
|
||||
const btMatrix3x3& world2B,
|
||||
|
||||
const btVector3& invInertiaADiag,
|
||||
const btScalar invMassA,
|
||||
const btVector3& linvelA,const btVector3& angvelA,
|
||||
const btVector3& rel_posA1,
|
||||
const btVector3& invInertiaBDiag,
|
||||
const btScalar invMassB,
|
||||
const btVector3& linvelB,const btVector3& angvelB,
|
||||
const btVector3& rel_posA2,
|
||||
|
||||
btScalar depthA, const btVector3& normalA,
|
||||
const btVector3& rel_posB1,const btVector3& rel_posB2,
|
||||
btScalar depthB, const btVector3& normalB,
|
||||
btScalar& imp0,btScalar& imp1);
|
||||
|
||||
/*
|
||||
void resolveAngularConstraint( const btMatrix3x3& invInertiaAWS,
|
||||
const btScalar invMassA,
|
||||
const btVector3& linvelA,const btVector3& angvelA,
|
||||
const btVector3& rel_posA1,
|
||||
const btMatrix3x3& invInertiaBWS,
|
||||
const btScalar invMassB,
|
||||
const btVector3& linvelB,const btVector3& angvelB,
|
||||
const btVector3& rel_posA2,
|
||||
|
||||
btScalar depthA, const btVector3& normalA,
|
||||
const btVector3& rel_posB1,const btVector3& rel_posB2,
|
||||
btScalar depthB, const btVector3& normalB,
|
||||
btScalar& imp0,btScalar& imp1);
|
||||
|
||||
*/
|
||||
|
||||
};
|
||||
|
||||
#endif //SOLVE_2LINEAR_CONSTRAINT_H
|
71
bullet/src/BulletDynamics/ConstraintSolver/btSolverBody.h
Normal file
71
bullet/src/BulletDynamics/ConstraintSolver/btSolverBody.h
Normal file
@ -0,0 +1,71 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef BT_SOLVER_BODY_H
|
||||
#define BT_SOLVER_BODY_H
|
||||
|
||||
class btRigidBody;
|
||||
#include "LinearMath/btVector3.h"
|
||||
#include "LinearMath/btMatrix3x3.h"
|
||||
|
||||
|
||||
|
||||
|
||||
ATTRIBUTE_ALIGNED16 (struct) btSolverBody
|
||||
{
|
||||
btVector3 m_centerOfMassPosition;
|
||||
btVector3 m_linearVelocity;
|
||||
btVector3 m_angularVelocity;
|
||||
btRigidBody* m_originalBody;
|
||||
float m_invMass;
|
||||
float m_friction;
|
||||
float m_angularFactor;
|
||||
|
||||
inline void getVelocityInLocalPoint(const btVector3& rel_pos, btVector3& velocity ) const
|
||||
{
|
||||
velocity = m_linearVelocity + m_angularVelocity.cross(rel_pos);
|
||||
}
|
||||
|
||||
//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
|
||||
inline void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude)
|
||||
{
|
||||
m_linearVelocity += linearComponent*impulseMagnitude;
|
||||
m_angularVelocity += angularComponent*impulseMagnitude*m_angularFactor;
|
||||
}
|
||||
|
||||
void writebackVelocity()
|
||||
{
|
||||
if (m_invMass)
|
||||
{
|
||||
m_originalBody->setLinearVelocity(m_linearVelocity);
|
||||
m_originalBody->setAngularVelocity(m_angularVelocity);
|
||||
}
|
||||
}
|
||||
|
||||
void readVelocity()
|
||||
{
|
||||
if (m_invMass)
|
||||
{
|
||||
m_linearVelocity = m_originalBody->getLinearVelocity();
|
||||
m_angularVelocity = m_originalBody->getAngularVelocity();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
#endif //BT_SOLVER_BODY_H
|
@ -0,0 +1,63 @@
|
||||
|
||||
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef BT_SOLVER_CONSTRAINT_H
|
||||
#define BT_SOLVER_CONSTRAINT_H
|
||||
|
||||
class btRigidBody;
|
||||
#include "LinearMath/btVector3.h"
|
||||
#include "LinearMath/btMatrix3x3.h"
|
||||
|
||||
//#define NO_FRICTION_TANGENTIALS 1
|
||||
|
||||
///1D constraint along a normal axis between bodyA and bodyB. It can be combined to solve contact and friction constraints.
|
||||
ATTRIBUTE_ALIGNED16 (struct) btSolverConstraint
|
||||
{
|
||||
btVector3 m_relpos1CrossNormal;
|
||||
btVector3 m_relpos2CrossNormal;
|
||||
btVector3 m_contactNormal;
|
||||
btVector3 m_angularComponentA;
|
||||
btVector3 m_angularComponentB;
|
||||
|
||||
btScalar m_appliedVelocityImpulse;
|
||||
int m_solverBodyIdA;
|
||||
int m_solverBodyIdB;
|
||||
btScalar m_friction;
|
||||
btScalar m_restitution;
|
||||
btScalar m_jacDiagABInv;
|
||||
btScalar m_penetration;
|
||||
btScalar m_appliedImpulse;
|
||||
|
||||
int m_constraintType;
|
||||
int m_frictionIndex;
|
||||
int m_unusedPadding[2];
|
||||
|
||||
enum btSolverConstraintType
|
||||
{
|
||||
BT_SOLVER_CONTACT_1D = 0,
|
||||
BT_SOLVER_FRICTION_1D
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#endif //BT_SOLVER_CONSTRAINT_H
|
||||
|
||||
|
@ -0,0 +1,56 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
|
||||
#include "btTypedConstraint.h"
|
||||
#include "BulletDynamics/Dynamics/btRigidBody.h"
|
||||
|
||||
static btRigidBody s_fixed(0, 0,0);
|
||||
|
||||
btTypedConstraint::btTypedConstraint(btTypedConstraintType type)
|
||||
: m_constraintType (type),
|
||||
m_userConstraintType(-1),
|
||||
m_userConstraintId(-1),
|
||||
m_rbA(s_fixed),
|
||||
m_rbB(s_fixed),
|
||||
m_appliedImpulse(btScalar(0.))
|
||||
{
|
||||
s_fixed.setMassProps(btScalar(0.),btVector3(btScalar(0.),btScalar(0.),btScalar(0.)));
|
||||
}
|
||||
btTypedConstraint::btTypedConstraint(btTypedConstraintType type, btRigidBody& rbA)
|
||||
: m_constraintType (type),
|
||||
m_userConstraintType(-1),
|
||||
m_userConstraintId(-1),
|
||||
m_rbA(rbA),
|
||||
m_rbB(s_fixed),
|
||||
m_appliedImpulse(btScalar(0.))
|
||||
{
|
||||
s_fixed.setMassProps(btScalar(0.),btVector3(btScalar(0.),btScalar(0.),btScalar(0.)));
|
||||
|
||||
}
|
||||
|
||||
|
||||
btTypedConstraint::btTypedConstraint(btTypedConstraintType type, btRigidBody& rbA,btRigidBody& rbB)
|
||||
: m_constraintType (type),
|
||||
m_userConstraintType(-1),
|
||||
m_userConstraintId(-1),
|
||||
m_rbA(rbA),
|
||||
m_rbB(rbB),
|
||||
m_appliedImpulse(btScalar(0.))
|
||||
{
|
||||
s_fixed.setMassProps(btScalar(0.),btVector3(btScalar(0.),btScalar(0.),btScalar(0.)));
|
||||
|
||||
}
|
||||
|
112
bullet/src/BulletDynamics/ConstraintSolver/btTypedConstraint.h
Normal file
112
bullet/src/BulletDynamics/ConstraintSolver/btTypedConstraint.h
Normal file
@ -0,0 +1,112 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef TYPED_CONSTRAINT_H
|
||||
#define TYPED_CONSTRAINT_H
|
||||
|
||||
class btRigidBody;
|
||||
#include "LinearMath/btScalar.h"
|
||||
|
||||
enum btTypedConstraintType
|
||||
{
|
||||
POINT2POINT_CONSTRAINT_TYPE,
|
||||
HINGE_CONSTRAINT_TYPE,
|
||||
CONETWIST_CONSTRAINT_TYPE,
|
||||
D6_CONSTRAINT_TYPE,
|
||||
VEHICLE_CONSTRAINT_TYPE
|
||||
};
|
||||
|
||||
///TypedConstraint is the baseclass for Bullet constraints and vehicles
|
||||
class btTypedConstraint
|
||||
{
|
||||
int m_userConstraintType;
|
||||
int m_userConstraintId;
|
||||
|
||||
btTypedConstraintType m_constraintType;
|
||||
|
||||
btTypedConstraint& operator=(btTypedConstraint& other)
|
||||
{
|
||||
btAssert(0);
|
||||
(void) other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
protected:
|
||||
btRigidBody& m_rbA;
|
||||
btRigidBody& m_rbB;
|
||||
btScalar m_appliedImpulse;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
btTypedConstraint(btTypedConstraintType type);
|
||||
virtual ~btTypedConstraint() {};
|
||||
btTypedConstraint(btTypedConstraintType type, btRigidBody& rbA);
|
||||
|
||||
btTypedConstraint(btTypedConstraintType type, btRigidBody& rbA,btRigidBody& rbB);
|
||||
|
||||
virtual void buildJacobian() = 0;
|
||||
|
||||
virtual void solveConstraint(btScalar timeStep) = 0;
|
||||
|
||||
const btRigidBody& getRigidBodyA() const
|
||||
{
|
||||
return m_rbA;
|
||||
}
|
||||
const btRigidBody& getRigidBodyB() const
|
||||
{
|
||||
return m_rbB;
|
||||
}
|
||||
|
||||
btRigidBody& getRigidBodyA()
|
||||
{
|
||||
return m_rbA;
|
||||
}
|
||||
btRigidBody& getRigidBodyB()
|
||||
{
|
||||
return m_rbB;
|
||||
}
|
||||
|
||||
int getUserConstraintType() const
|
||||
{
|
||||
return m_userConstraintType ;
|
||||
}
|
||||
|
||||
void setUserConstraintType(int userConstraintType)
|
||||
{
|
||||
m_userConstraintType = userConstraintType;
|
||||
};
|
||||
|
||||
void setUserConstraintId(int uid)
|
||||
{
|
||||
m_userConstraintId = uid;
|
||||
}
|
||||
|
||||
int getUserConstraintId() const
|
||||
{
|
||||
return m_userConstraintId;
|
||||
}
|
||||
btScalar getAppliedImpulse() const
|
||||
{
|
||||
return m_appliedImpulse;
|
||||
}
|
||||
|
||||
btTypedConstraintType getConstraintType () const
|
||||
{
|
||||
return m_constraintType;
|
||||
}
|
||||
};
|
||||
|
||||
#endif //TYPED_CONSTRAINT_H
|
Reference in New Issue
Block a user