bluecore/ode/OPCODE/OPC_TriTriOverlap.h

280 lines
8.2 KiB
C
Raw Normal View History

2008-01-16 11:45:17 +00:00
//! if OPC_TRITRI_EPSILON_TEST is true then we do a check (if |dv|<EPSILON then dv=0.0;) else no check is done (which is less robust, but faster)
#define LOCAL_EPSILON 0.000001f
//! sort so that a<=b
#define SORT(a,b) \
if(a>b) \
{ \
const float c=a; \
a=b; \
b=c; \
}
//! Edge to edge test based on Franlin Antonio's gem: "Faster Line Segment Intersection", in Graphics Gems III, pp. 199-202
#define EDGE_EDGE_TEST(V0, U0, U1) \
Bx = U0[i0] - U1[i0]; \
By = U0[i1] - U1[i1]; \
Cx = V0[i0] - U0[i0]; \
Cy = V0[i1] - U0[i1]; \
f = Ay*Bx - Ax*By; \
d = By*Cx - Bx*Cy; \
if((f>0.0f && d>=0.0f && d<=f) || (f<0.0f && d<=0.0f && d>=f)) \
{ \
const float e=Ax*Cy - Ay*Cx; \
if(f>0.0f) \
{ \
if(e>=0.0f && e<=f) return TRUE; \
} \
else \
{ \
if(e<=0.0f && e>=f) return TRUE; \
} \
}
//! TO BE DOCUMENTED
#define EDGE_AGAINST_TRI_EDGES(V0, V1, U0, U1, U2) \
{ \
float Bx,By,Cx,Cy,d,f; \
const float Ax = V1[i0] - V0[i0]; \
const float Ay = V1[i1] - V0[i1]; \
/* test edge U0,U1 against V0,V1 */ \
EDGE_EDGE_TEST(V0, U0, U1); \
/* test edge U1,U2 against V0,V1 */ \
EDGE_EDGE_TEST(V0, U1, U2); \
/* test edge U2,U1 against V0,V1 */ \
EDGE_EDGE_TEST(V0, U2, U0); \
}
//! TO BE DOCUMENTED
#define POINT_IN_TRI(V0, U0, U1, U2) \
{ \
/* is T1 completly inside T2? */ \
/* check if V0 is inside tri(U0,U1,U2) */ \
float a = U1[i1] - U0[i1]; \
float b = -(U1[i0] - U0[i0]); \
float c = -a*U0[i0] - b*U0[i1]; \
float d0 = a*V0[i0] + b*V0[i1] + c; \
\
a = U2[i1] - U1[i1]; \
b = -(U2[i0] - U1[i0]); \
c = -a*U1[i0] - b*U1[i1]; \
const float d1 = a*V0[i0] + b*V0[i1] + c; \
\
a = U0[i1] - U2[i1]; \
b = -(U0[i0] - U2[i0]); \
c = -a*U2[i0] - b*U2[i1]; \
const float d2 = a*V0[i0] + b*V0[i1] + c; \
if(d0*d1>0.0f) \
{ \
if(d0*d2>0.0f) return TRUE; \
} \
}
//! TO BE DOCUMENTED
BOOL CoplanarTriTri(const Point& n, const Point& v0, const Point& v1, const Point& v2, const Point& u0, const Point& u1, const Point& u2)
{
float A[3];
short i0,i1;
/* first project onto an axis-aligned plane, that maximizes the area */
/* of the triangles, compute indices: i0,i1. */
A[0] = fabsf(n[0]);
A[1] = fabsf(n[1]);
A[2] = fabsf(n[2]);
if(A[0]>A[1])
{
if(A[0]>A[2])
{
i0=1; /* A[0] is greatest */
i1=2;
}
else
{
i0=0; /* A[2] is greatest */
i1=1;
}
}
else /* A[0]<=A[1] */
{
if(A[2]>A[1])
{
i0=0; /* A[2] is greatest */
i1=1;
}
else
{
i0=0; /* A[1] is greatest */
i1=2;
}
}
/* test all edges of triangle 1 against the edges of triangle 2 */
EDGE_AGAINST_TRI_EDGES(v0, v1, u0, u1, u2);
EDGE_AGAINST_TRI_EDGES(v1, v2, u0, u1, u2);
EDGE_AGAINST_TRI_EDGES(v2, v0, u0, u1, u2);
/* finally, test if tri1 is totally contained in tri2 or vice versa */
POINT_IN_TRI(v0, u0, u1, u2);
POINT_IN_TRI(u0, v0, v1, v2);
return FALSE;
}
//! TO BE DOCUMENTED
#define NEWCOMPUTE_INTERVALS(VV0, VV1, VV2, D0, D1, D2, D0D1, D0D2, A, B, C, X0, X1) \
{ \
if(D0D1>0.0f) \
{ \
/* here we know that D0D2<=0.0 */ \
/* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1; \
} \
else if(D0D2>0.0f) \
{ \
/* here we know that d0d1<=0.0 */ \
A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2; \
} \
else if(D1*D2>0.0f || D0!=0.0f) \
{ \
/* here we know that d0d1<=0.0 or that D0!=0.0 */ \
A=VV0; B=(VV1 - VV0)*D0; C=(VV2 - VV0)*D0; X0=D0 - D1; X1=D0 - D2; \
} \
else if(D1!=0.0f) \
{ \
A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2; \
} \
else if(D2!=0.0f) \
{ \
A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1; \
} \
else \
{ \
/* triangles are coplanar */ \
return CoplanarTriTri(N1, V0, V1, V2, U0, U1, U2); \
} \
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Triangle/triangle intersection test routine,
* by Tomas Moller, 1997.
* See article "A Fast Triangle-Triangle Intersection Test",
* Journal of Graphics Tools, 2(2), 1997
*
* Updated June 1999: removed the divisions -- a little faster now!
* Updated October 1999: added {} to CROSS and SUB macros
*
* int NoDivTriTriIsect(float V0[3],float V1[3],float V2[3],
* float U0[3],float U1[3],float U2[3])
*
* \param V0 [in] triangle 0, vertex 0
* \param V1 [in] triangle 0, vertex 1
* \param V2 [in] triangle 0, vertex 2
* \param U0 [in] triangle 1, vertex 0
* \param U1 [in] triangle 1, vertex 1
* \param U2 [in] triangle 1, vertex 2
* \return true if triangles overlap
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
inline_ BOOL AABBTreeCollider::TriTriOverlap(const Point& V0, const Point& V1, const Point& V2, const Point& U0, const Point& U1, const Point& U2)
{
// Stats
mNbPrimPrimTests++;
// Compute plane equation of triangle(V0,V1,V2)
Point E1 = V1 - V0;
Point E2 = V2 - V0;
const Point N1 = E1 ^ E2;
const float d1 =-N1 | V0;
// Plane equation 1: N1.X+d1=0
// Put U0,U1,U2 into plane equation 1 to compute signed distances to the plane
float du0 = (N1|U0) + d1;
float du1 = (N1|U1) + d1;
float du2 = (N1|U2) + d1;
// Coplanarity robustness check
#ifdef OPC_TRITRI_EPSILON_TEST
if(fabsf(du0)<LOCAL_EPSILON) du0 = 0.0f;
if(fabsf(du1)<LOCAL_EPSILON) du1 = 0.0f;
if(fabsf(du2)<LOCAL_EPSILON) du2 = 0.0f;
#endif
const float du0du1 = du0 * du1;
const float du0du2 = du0 * du2;
if(du0du1>0.0f && du0du2>0.0f) // same sign on all of them + not equal 0 ?
return FALSE; // no intersection occurs
// Compute plane of triangle (U0,U1,U2)
E1 = U1 - U0;
E2 = U2 - U0;
const Point N2 = E1 ^ E2;
const float d2=-N2 | U0;
// plane equation 2: N2.X+d2=0
// put V0,V1,V2 into plane equation 2
float dv0 = (N2|V0) + d2;
float dv1 = (N2|V1) + d2;
float dv2 = (N2|V2) + d2;
#ifdef OPC_TRITRI_EPSILON_TEST
if(fabsf(dv0)<LOCAL_EPSILON) dv0 = 0.0f;
if(fabsf(dv1)<LOCAL_EPSILON) dv1 = 0.0f;
if(fabsf(dv2)<LOCAL_EPSILON) dv2 = 0.0f;
#endif
const float dv0dv1 = dv0 * dv1;
const float dv0dv2 = dv0 * dv2;
if(dv0dv1>0.0f && dv0dv2>0.0f) // same sign on all of them + not equal 0 ?
return FALSE; // no intersection occurs
// Compute direction of intersection line
const Point D = N1^N2;
// Compute and index to the largest component of D
float max=fabsf(D[0]);
short index=0;
float bb=fabsf(D[1]);
float cc=fabsf(D[2]);
if(bb>max) max=bb,index=1;
if(cc>max) max=cc,index=2;
// This is the simplified projection onto L
const float vp0 = V0[index];
const float vp1 = V1[index];
const float vp2 = V2[index];
const float up0 = U0[index];
const float up1 = U1[index];
const float up2 = U2[index];
// Compute interval for triangle 1
float a,b,c,x0,x1;
NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1);
// Compute interval for triangle 2
float d,e,f,y0,y1;
NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1);
const float xx=x0*x1;
const float yy=y0*y1;
const float xxyy=xx*yy;
float isect1[2], isect2[2];
float tmp=a*xxyy;
isect1[0]=tmp+b*x1*yy;
isect1[1]=tmp+c*x0*yy;
tmp=d*xxyy;
isect2[0]=tmp+e*xx*y1;
isect2[1]=tmp+f*xx*y0;
SORT(isect1[0],isect1[1]);
SORT(isect2[0],isect2[1]);
if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return FALSE;
return TRUE;
}